cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 221 results. Next

A285173 Numbers n such that A002496(n+1) < A002496(n)^(1+1/n).

Original entry on oeis.org

3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Felix Fröhlich, May 06 2017

Keywords

Comments

Conjecture: The sequence is the complement of 1, 2, 4, 351 in A000027 (cf. Sun, 2013, Conjecture 2.6. (i)).

References

  • Zhi-Wei Sun, Conjectures involving arithmetical sequences, in: Number Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H. Li and J. Liu), Proceedings of the 6th China-Japan Seminar (Shanghai, August 15-17, 2011), World Scientific Publishing, Singapore, 2013, pp. 244-258.

Crossrefs

Programs

  • PARI
    a002496(n) = my(k=1, i=0); while(i < n, if(ispseudoprime(k^2+1), i++); if(i==n, return(k^2+1)); k++)
    is(n) = a002496(n+1) < a002496(n)^(1+1/n)

A351141 Pairs of primes (p,q) = (A002496(m), A002496(m+1)) such that q-p is a power r of the product of its prime factors for some m.

Original entry on oeis.org

37, 101, 577, 677, 15877, 16901, 57601, 62501, 33988901, 34035557, 113209601, 113507717, 121528577, 121572677, 345960001, 346332101, 635040001, 635544101, 7821633601, 7823402501, 17748634177, 17749167077, 24343488577, 24344112677, 97958984257, 97962740101
Offset: 1

Views

Author

Michel Lagneau, Feb 02 2022

Keywords

Comments

Subsequence of A002496.
The corresponding sequence of numbers q - p is a subsequence of A076292.
Conjecture: the sequence is infinite.
The corresponding powers r are given by the sequence b(n) = 6, 2, 10, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... It seems that b(n) = 2 for n > 5.

Examples

			The pair (257, 401) = (16^2+1, 20^2+1) is not in the sequence because 401 - 257 = 144 = 2^4*3^2.
The pair (577, 677) = (24^2+1, 26^2+1) is in the sequence because 577 - 677 = 100 = 2^2*5^2.
The pair (33988901, 34035557) = (5830^2+1, 5834^2+1) is in the sequence because 33988901 - 34035557 = 46656 = 2^6*3^6.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    T:=array(1..26):nn:=350000:q:=5:j:=1:
    for n from 4 by 2 to nn do:
      p:=n^2+1:
       if type(p, prime)=true
        then
         x:=p-q:r:=q:q:=p:
         u:=factorset(x):n0:=nops(u):ii:=0:d:=product(u[i],i=1..n0):
          for k from 2 to 20 while(ii=0) do:
           if d^k=x
            then ii=1:T[j]:=r:T[j+1]:=q:j:=j+2:
            else
           fi:
          od:
       fi:
    od:
    print(T):
  • PARI
    lista(nn) = my(lastp=2); forprime(p=nextprime(lastp+1), nn, if (issquare(p-1), if (ispowerful(p-lastp), my(f=factor(p-lastp)[,2]); if (vecmin(f) == vecmax(f), print1(lastp, ", ", p, ", "));); lastp = p;);); \\ Michel Marcus, Feb 03 2022

A000012 The simplest sequence of positive numbers: the all 1's sequence.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 16 1994

Keywords

Comments

Number of ways of writing n as a product of primes.
Number of ways of writing n as a sum of distinct powers of 2.
Continued fraction for golden ratio A001622.
Partial sums of A000007 (characteristic function of 0). - Jeremy Gardiner, Sep 08 2002
An example of an infinite sequence of positive integers whose distinct pairwise concatenations are all primes! - Don Reble, Apr 17 2005
Binomial transform of A000007; inverse binomial transform of A000079. - Philippe Deléham, Jul 07 2005
A063524(a(n)) = 1. - Reinhard Zumkeller, Oct 11 2008
For n >= 0, let M(n) be the matrix with first row = (n n+1) and 2nd row = (n+1 n+2). Then a(n) = absolute value of det(M(n)). - K.V.Iyer, Apr 11 2009
The partial sums give the natural numbers (A000027). - Daniel Forgues, May 08 2009
From Enrique Pérez Herrero, Sep 04 2009: (Start)
a(n) is also tau_1(n) where tau_2(n) is A000005.
a(n) is a completely multiplicative arithmetical function.
a(n) is both squarefree and a perfect square. See A005117 and A000290. (End)
Also smallest divisor of n. - Juri-Stepan Gerasimov, Sep 07 2009
Also decimal expansion of 1/9. - Enrique Pérez Herrero, Sep 18 2009; corrected by Klaus Brockhaus, Apr 02 2010
a(n) is also the number of complete graphs on n nodes. - Pablo Chavez (pchavez(AT)cmu.edu), Sep 15 2009
Totally multiplicative sequence with a(p) = 1 for prime p. Totally multiplicative sequence with a(p) = a(p-1) for prime p. - Jaroslav Krizek, Oct 18 2009
n-th prime minus phi(prime(n)); number of divisors of n-th prime minus number of perfect partitions of n-th prime; the number of perfect partitions of n-th prime number; the number of perfect partitions of n-th noncomposite number. - Juri-Stepan Gerasimov, Oct 26 2009
For all n>0, the sequence of limit values for a(n) = n!*Sum_{k>=n} k/(k+1)!. Also, a(n) = n^0. - Harlan J. Brothers, Nov 01 2009
a(n) is also the number of 0-regular graphs on n vertices. - Jason Kimberley, Nov 07 2009
Differences between consecutive n. - Juri-Stepan Gerasimov, Dec 05 2009
From Matthew Vandermast, Oct 31 2010: (Start)
1) When sequence is read as a regular triangular array, T(n,k) is the coefficient of the k-th power in the expansion of (x^(n+1)-1)/(x-1).
2) Sequence can also be read as a uninomial array with rows of length 1, analogous to arrays of binomial, trinomial, etc., coefficients. In a q-nomial array, T(n,k) is the coefficient of the k-th power in the expansion of ((x^q -1)/(x-1))^n, and row n has a sum of q^n and a length of (q-1)*n + 1. (End)
The number of maximal self-avoiding walks from the NW to SW corners of a 2 X n grid.
When considered as a rectangular array, A000012 is a member of the chain of accumulation arrays that includes the multiplication table A003991 of the positive integers. The chain is ... < A185906 < A000007 < A000012 < A003991 < A098358 < A185904 < A185905 < ... (See A144112 for the definition of accumulation array.) - Clark Kimberling, Feb 06 2011
a(n) = A007310(n+1) (Modd 3) := A193680(A007310(n+1)), n>=0. For general Modd n (not to be confused with mod n) see a comment on A203571. The nonnegative members of the three residue classes Modd 3, called [0], [1], and [2], are shown in the array A088520, if there the third row is taken as class [0] after inclusion of 0. - Wolfdieter Lang, Feb 09 2012
Let M = Pascal's triangle without 1's (A014410) and V = a variant of the Bernoulli numbers A027641 but starting [1/2, 1/6, 0, -1/30, ...]. Then M*V = [1, 1, 1, 1, ...]. - Gary W. Adamson, Mar 05 2012
As a lower triangular array, T is an example of the fundamental generalized factorial matrices of A133314. Multiplying each n-th diagonal by t^n gives M(t) = I/(I-t*S) = I + t*S + (t*S)^2 + ... where S is the shift operator A129184, and T = M(1). The inverse of M(t) is obtained by multiplying the first subdiagonal of T by -t and the other subdiagonals by zero, so A167374 is the inverse of T. Multiplying by t^n/n! gives exp(t*S) with inverse exp(-t*S). - Tom Copeland, Nov 10 2012
The original definition of the meter was one ten-millionth of the distance from the Earth's equator to the North Pole. According to that historical definition, the length of one degree of latitude, that is, 60 nautical miles, would be exactly 111111.111... meters. - Jean-François Alcover, Jun 02 2013
Deficiency of 2^n. - Omar E. Pol, Jan 30 2014
Consider n >= 1 nonintersecting spheres each with surface area S. Define point p on sphere S_i to be a "public point" if and only if there exists a point q on sphere S_j, j != i, such that line segment pq INTERSECT S_i = {p} and pq INTERSECT S_j = {q}; otherwise, p is a "private point". The total surface area composed of exactly all private points on all n spheres is a(n)*S = S. ("The Private Planets Problem" in Zeitz.) - Rick L. Shepherd, May 29 2014
For n>0, digital roots of centered 9-gonal numbers (A060544). - Colin Barker, Jan 30 2015
Product of nonzero digits in base-2 representation of n. - Franklin T. Adams-Watters, May 16 2016
Alternating row sums of triangle A104684. - Wolfdieter Lang, Sep 11 2016
A fixed point of the run length transform. - Chai Wah Wu, Oct 21 2016
Length of period of continued fraction for sqrt(A002522) or sqrt(A002496). - A.H.M. Smeets, Oct 10 2017
a(n) is also the determinant of the (n+1) X (n+1) matrix M defined by M(i,j) = binomial(i,j) for 0 <= i,j <= n, since M is a lower triangular matrix with main diagonal all 1's. - Jianing Song, Jul 17 2018
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = min(i,j) for 1 <= i,j <= n (see Xavier Merlin reference). - Bernard Schott, Dec 05 2018
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = tau(gcd(i,j)) for 1 <= i,j <= n (see De Koninck & Mercier reference). - Bernard Schott, Dec 08 2020

Examples

			1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...)))) = A001622.
1/9 = 0.11111111111111...
From _Wolfdieter Lang_, Feb 09 2012: (Start)
Modd 7 for nonnegative odd numbers not divisible by 3:
A007310: 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, ...
Modd 3:  1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
(End)
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 692 pp. 90 and 297, Ellipses, Paris, 2004.
  • Xavier Merlin, Méthodix Algèbre, Exercice 1-a), page 153, Ellipses, Paris, 1995.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 277, 284.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
  • Paul Zeitz, The Art and Craft of Mathematical Problem Solving, The Great Courses, The Teaching Company, 2010 (DVDs and Course Guidebook, Lecture 6: "Pictures, Recasting, and Points of View", pp. 32-34).

Crossrefs

Programs

  • Haskell
    a000012 = const 1
    a000012_list = repeat 1 -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    [1 : n in [0..100]];
    
  • Maple
    seq(1, i=0..150);
  • Mathematica
    Array[1 &, 50] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
  • Maxima
    makelist(1, n, 1, 30); /* Martin Ettl, Nov 07 2012 */
    
  • PARI
    {a(n) = 1};
    
  • Python
    print([1 for n in range(90)]) # Michael S. Branicky, Apr 04 2022

Formula

a(n) = 1.
G.f.: 1/(1-x).
E.g.f.: exp(x).
G.f.: Product_{k>=0} (1 + x^(2^k)). - Zak Seidov, Apr 06 2007
Completely multiplicative with a(p^e) = 1.
Regarded as a square array by antidiagonals, g.f. 1/((1-x)(1-y)), e.g.f. Sum T(n,m) x^n/n! y^m/m! = e^{x+y}, e.g.f. Sum T(n,m) x^n y^m/m! = e^y/(1-x). Regarded as a triangular array, g.f. 1/((1-x)(1-xy)), e.g.f. Sum T(n,m) x^n y^m/m! = e^{xy}/(1-x). - Franklin T. Adams-Watters, Feb 06 2006
Dirichlet g.f.: zeta(s). - Ilya Gutkovskiy, Aug 31 2016
a(n) = Sum_{l=1..n} (-1)^(l+1)*2*cos(Pi*l/(2*n+1)) = 1 identically in n >= 1 (for n=0 one has 0 from the undefined sum). From the Jolley reference, (429) p. 80. Interpretation: consider the n segments between x=0 and the n positive zeros of the Chebyshev polynomials S(2*n, x) (see A049310). Then the sum of the lengths of every other segment starting with the one ending in the largest zero (going from the right to the left) is 1. - Wolfdieter Lang, Sep 01 2016
As a lower triangular matrix, T = M*T^(-1)*M = M*A167374*M, where M(n,k) = (-1)^n A130595(n,k). Note that M = M^(-1). Cf. A118800 and A097805. - Tom Copeland, Nov 15 2016

A002522 a(n) = n^2 + 1.

Original entry on oeis.org

1, 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 325, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1025, 1090, 1157, 1226, 1297, 1370, 1445, 1522, 1601, 1682, 1765, 1850, 1937, 2026, 2117, 2210, 2305, 2402, 2501
Offset: 0

Views

Author

Keywords

Comments

An n X n nonnegative matrix A is primitive (see A070322) iff every element of A^k is > 0 for some power k. If A is primitive then the power which should have all positive entries is <= n^2 - 2n + 2 (Wielandt).
a(n) = Phi_4(n), where Phi_k is the k-th cyclotomic polynomial.
As the positive solution to x=2n+1/x is x=n+sqrt(a(n)), the continued fraction expansion of sqrt(a(n)) is {n; 2n, 2n, 2n, 2n, ...}. - Benoit Cloitre, Dec 07 2001
a(n) is one less than the arithmetic mean of its neighbors: a(n) = (a(n-1) + a(n+1))/2 - 1. E.g., 2 = (1+5)/2 - 1, 5 = (2+10)/2 - 1. - Amarnath Murthy, Jul 29 2003
Equivalently, the continued fraction expansion of sqrt(a(n)) is (n;2n,2n,2n,...). - Franz Vrabec, Jan 23 2006
Number of {12,1*2*,21}-avoiding signed permutations in the hyperoctahedral group.
The number of squares of side 1 which can be drawn without lifting the pencil, starting at one corner of an n X n grid and never visiting an edge twice is n^2-2n+2. - Sébastien Dumortier, Jun 16 2005
Also, numbers m such that m^3 - m^2 is a square, (n*(1 + n^2))^2. - Zak Seidov
1 + 2/2 + 2/5 + 2/10 + ... = Pi*coth Pi [Jolley], see A113319. - Gary W. Adamson, Dec 21 2006
For n >= 1, a(n-1) is the minimal number of choices from an n-set such that at least one particular element has been chosen at least n times or each of the n elements has been chosen at least once. Some games define "matches" this way; e.g., in the classic Parker Brothers, now Hasbro, board game Risk, a(2)=5 is the number of cards of three available types (suits) required to guarantee at least one match of three different types or of three of the same type (ignoring any jokers or wildcards). - Rick L. Shepherd, Nov 18 2007
Positive X values of solutions to the equation X^3 + (X - 1)^2 + X - 2 = Y^2. To prove that X = n^2 + 1: Y^2 = X^3 + (X - 1)^2 + X - 2 = X^3 + X^2 - X - 1 = (X - 1)(X^2 + 2X + 1) = (X - 1)*(X + 1)^2 it means: (X - 1) must be a perfect square, so X = n^2 + 1 and Y = n(n^2 + 2). - Mohamed Bouhamida, Nov 29 2007
{a(k): 0 <= k < 4} = divisors of 10. - Reinhard Zumkeller, Jun 17 2009
Appears in A054413 and A086902 in relation to sequences related to the numerators and denominators of continued fractions convergents to sqrt((2*n)^2/4 + 1), n=1, 2, 3, ... . - Johannes W. Meijer, Jun 12 2010
For n > 0, continued fraction [n,n] = n/a(n); e.g., [5,5] = 5/26. - Gary W. Adamson, Jul 15 2010
The only real solution of the form f(x) = A*x^p with negative p which satisfies f^(m)(x) = f^[-1](x), x >= 0, m >= 1, with f^(m) the m-th derivative and f^[-1] the compositional inverse of f, is obtained for m=2*n, p=p(n)= -(sqrt(a(n))-n) and A=A(n)=(fallfac(p(n),2*n))^(-p(n)/(p(n)+1)), with fallfac(x,k):=Product_{j=0..k-1} (x-j) (falling factorials). See the T. Koshy reference, pp. 263-4 (there are also two solutions for positive p, see the corresponding comment in A087475). - Wolfdieter Lang, Oct 21 2010
n + sqrt(a(n)) = [2*n;2*n,2*n,...] with the regular continued fraction with period 1. This is the even case. For the general case see A087475 with the Schroeder reference and comments. For the odd case see A078370.
a(n-1) counts configurations of non-attacking bishops on a 2 X n strip [Chaiken et al., Ann. Combin. 14 (2010) 419]. - R. J. Mathar, Jun 16 2011
Also numbers k such that 4*k-4 is a square. Hence this sequence is the union of A053755 and A069894. - Arkadiusz Wesolowski, Aug 02 2011
a(n) is also the Moore lower bound on the order, A191595(n), of an (n,5)-cage. - Jason Kimberley, Oct 17 2011
Left edge of the triangle in A195437: a(n+1) = A195437(n,0). - Reinhard Zumkeller, Nov 23 2011
If h (5,17,37,65,101,...) is prime is relatively prime to 6, then h^2-1 is divisible by 24. - Vincenzo Librandi, Apr 14 2014
The identity (4*n^2+2)^2 - (n^2+1)*(4*n)^2 = 4 can be written as A005899(n)^2 - a(n)*A008586(n)^2 = 4. - Vincenzo Librandi, Jun 15 2014
a(n) is also the number of permutations simultaneously avoiding 213 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl, Aug 07 2014
a(n-1) is the maximum number of stages in the Gale-Shapley algorithm for finding a stable matching between two sets of n elements given an ordering of preferences for each element (see Gura et al.). - Melvin Peralta, Feb 07 2016
Because of Fermat's little theorem, a(n) is never divisible by 3. - Altug Alkan, Apr 08 2016
For n > 0, if a(n) points are placed inside an n X n square, it will always be the case that at least two of the points will be a distance of sqrt(2) units apart or less. - Melvin Peralta, Jan 21 2017
Also the limit as q->1^- of the unimodal polynomial (1-q^(n*k+1))/(1-q) after making the simplification k=n. The unimodal polynomial is from O'Hara's proof of unimodality of q-binomials after making the restriction to partitions of size <= 1. See G_1(n,k) from arXiv:1711.11252. As the size restriction s increases, G_s->G_infinity=G: the q-binomials. Then substituting k=n and q=1 yields the central binomial coefficients: A000984. - Bryan T. Ek, Apr 11 2018
a(n) is the smallest number congruent to both 1 (mod n) and 2 (mod n+1). - David James Sycamore, Apr 04 2019
a(n) is the number of permutations of 1,2,...,n+1 with exactly one reduced decomposition. - Richard Stanley, Dec 22 2022
From Klaus Purath, Apr 03 2025: (Start)
The odd prime factors of these terms are always of the form 4*k + 1.
All a(n) = D satisfy the Pell equation (k*x)^2 - D*y^2 = -1. The values for k and the solutions x, y can be calculated using the following algorithm: k = n, x(0) = 1, x(1) = 4*D - 1, y(0) = 1, y(1) = 4*D - 3. The two recurrences are of the form (4*D - 2, -1). The solutions x, y of the Pell equations for n = {1 ... 14} are in OEIS.
It follows from the above that this sequence is a subsequence of A031396. (End)

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 17*x^4 + 26*x^5 + 37*x^6 + 50*x^7 + 65*x^8 + ...
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • E. Gura and M. Maschler, Insights into Game Theory: An Alternative Mathematical Experience, Cambridge, 2008; p. 26.
  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, New York, 2001.

Crossrefs

Left edge of A055096.
Cf. A059100, A117950, A087475, A117951, A114949, A117619 (sequences of form n^2 + K).
a(n+1) = A101220(n, n+1, 3).
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), this sequence (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Oct 30 2011
Cf. A002496 (primes).
Cf. A254858.
Subsequence of A031396.

Programs

Formula

O.g.f.: (1-x+2*x^2)/((1-x)^3). - Eric Werley, Jun 27 2011
Sequences of the form a(n) = n^2 + K with offset 0 have o.g.f. (K - 2*K*x + K*x^2 + x + x^2)/(1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a*(n-3). - R. J. Mathar, Apr 28 2008
For n > 0: a(n-1) = A143053(A000290(n)) - 1. - Reinhard Zumkeller, Jul 20 2008
A143053(a(n)) = A000290(n+1). - Reinhard Zumkeller, Jul 20 2008
a(n)*a(n-2) = (n-1)^4 + 4. - Reinhard Zumkeller, Feb 12 2009
a(n) = A156798(n)/A087475(n). - Reinhard Zumkeller, Feb 16 2009
From Reinhard Zumkeller, Mar 08 2010: (Start)
a(n) = A170949(A002061(n+1));
A170949(a(n)) = A132411(n+1);
A170950(a(n)) = A002061(n+1). (End)
For n > 1, a(n)^2 + (a(n) + 1)^2 + ... + (a(n) + n - 2)^2 + (a(n) + n - 1 + a(n) + n)^2 = (n+1) *(6*n^4 + 18*n^3 + 26*n^2 + 19*n + 6) / 6 = (a(n) + n)^2 + ... + (a(n) + 2*n)^2. - Charlie Marion, Jan 10 2011
From Eric Werley, Jun 27 2011: (Start)
a(n) = 2*a(n-1) - a(n-2) + 2.
a(n) = a(n-1) + 2*n - 1. (End)
a(n) = (n-1)^2 + 2(n-1) + 2 = 122 read in base n-1 (for n > 3). - Jason Kimberley, Oct 20 2011
a(n)*a(n+1) = a(n*(n+1) + 1) so a(1)*a(2) = a(3). More generally, a(n)*a(n+k) = a(n*(n+k) + 1) + k^2 - 1. - Jon Perry, Aug 01 2012
a(n) = (n!)^2* [x^n] BesselI(0, 2*sqrt(x))*(1+x). - Peter Luschny, Aug 25 2012
a(n) = A070216(n,1) for n > 0. - Reinhard Zumkeller, Nov 11 2012
E.g.f.: exp(x)*(1 + x + x^2). - Geoffrey Critzer, Aug 30 2013
a(n) = A254858(n-2,3) for n > 2. - Reinhard Zumkeller, Feb 09 2015
Sum_{n>=0} (-1)^n / a(n) = (1+Pi/sinh(Pi))/2 = 0.636014527491... = A367976 . - Vaclav Kotesovec, Feb 14 2015
Sum_{n>=0} 1/a(n) = (1 + Pi*coth(Pi))/2 = 2.076674... = A113319. - Vaclav Kotesovec, Apr 10 2016
4*a(n) = A001105(n-1) + A001105(n+1). - Bruno Berselli, Jul 03 2017
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi)*sinh(sqrt(2)*Pi).
Product_{n>=1} (1 - 1/a(n)) = Pi*csch(Pi). (End)
Sum_{n>=0} a(n)/n! = 3*e. - Davide Rotondo, Feb 16 2025

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A005574 Numbers k such that k^2 + 1 is prime.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40, 54, 56, 66, 74, 84, 90, 94, 110, 116, 120, 124, 126, 130, 134, 146, 150, 156, 160, 170, 176, 180, 184, 204, 206, 210, 224, 230, 236, 240, 250, 256, 260, 264, 270, 280, 284, 300, 306, 314, 326, 340, 350, 384, 386, 396
Offset: 1

Views

Author

Keywords

Comments

Hardy and Littlewood conjectured that the asymptotic number of elements in this sequence not exceeding n is approximately c*sqrt(n)/log(n) for some constant c. - Stefan Steinerberger, Apr 06 2006
Also, nonnegative integers such that a(n)+i is a Gaussian prime. - Maciej Ireneusz Wilczynski, May 30 2011
Apparently Goldbach conjectured that any a > 1 from this sequence can be written as a=b+c where b and c are in this sequence (Lemmermeyer link below). - Jeppe Stig Nielsen, Oct 14 2015
No term > 2 can be both in this sequence and in A001105 because of the Aurifeuillean factorization (2*k^2)^2 + 1 = (2*k^2 - 2*k + 1) * (2*k^2 + 2*k + 1). - Jeppe Stig Nielsen, Aug 04 2019

References

  • Harvey Dubner, "Generalized Fermat primes", J. Recreational Math., 18 (1985): 279-280.
  • R. K. Guy, "Unsolved Problems in Number Theory", 3rd edition, A2.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 15, Thm. 17.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": this sequence (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), A114271 (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), A114275 (i=12).
Cf. A010051, A259645, A295405 (characteristic function).

Programs

  • Haskell
    a005574 n = a005574_list !! (n-1)
    a005574_list = filter ((== 1) . a010051' . (+ 1) . (^ 2)) [0..]
    -- Reinhard Zumkeller, Jul 03 2015
    
  • Magma
    [n: n in [0..400] | IsPrime(n^2+1)]; // Vincenzo Librandi, Nov 18 2010
    
  • Mathematica
    Select[Range[350], PrimeQ[ #^2 + 1] &] (* Stefan Steinerberger, Apr 06 2006 *)
    Join[{1},2Flatten[Position[PrimeQ[Table[x^2+1,{x,2,1000,2}]],True]]]  (* Fred Patrick Doty, Aug 18 2017 *)
  • PARI
    isA005574(n) = isprime(n^2+1) \\ Michael B. Porter, Mar 20 2010
    
  • PARI
    for(n=1, 1e3, if(isprime(n^2 + 1), print1(n, ", "))) \\ Altug Alkan, Oct 14 2015
    
  • Python
    from sympy import isprime; [print(n, end = ', ') for n in range(1, 400) if isprime(n*n+1)] # Ya-Ping Lu, Apr 23 2025

Formula

a(n) = A090693(n) - 1.
a(n) = 2*A001912(n-1) for n > 1. - Jeppe Stig Nielsen, Aug 04 2019

A056899 Primes of the form k^2 + 2.

Original entry on oeis.org

2, 3, 11, 83, 227, 443, 1091, 1523, 2027, 3251, 6563, 9803, 11027, 12323, 13691, 15131, 21611, 29243, 47963, 50627, 56171, 59051, 62003, 65027, 74531, 88211, 91811, 95483, 103043, 119027, 123203, 131771, 136163, 140627, 149771, 173891
Offset: 1

Views

Author

Henry Bottomley, Jul 05 2000

Keywords

Comments

Also, primes of the form k^2 - 2k + 3.
Note that all terms after the first two are equal to 11 modulo 72 and that (a(n)-11)/72 is a triangular number, since they have to be 2 more than the square of an odd multiple of 3 to be prime, and if k = 6*m+3 then a(n) = k^2 + 2 = 72*m*(m+1)/2 + 11.
The quotient cycle length is 2 in the continued fraction expansion of sqrt(p) for these primes. E.g.: cfrac(sqrt(6563),6) = 81+1/(81+1/(162+1/(81+1/(162+1/(81+1/(162+`...`)))))). - Labos Elemer, Feb 22 2001
Primes in A059100; except for a(2)=3 a subsequence of A007491 and congruent to 2 modulo 9. For n>2, a(n)=11 (mod 72). - M. F. Hasler, Apr 05 2009

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988.
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997.

Crossrefs

Intersection of A146327 and A000040; intersection of A059100 and A000040.
Cf. A002496.

Programs

  • Magma
    [n: n in PrimesUpTo(175000) | IsSquare(n-2)];  // Bruno Berselli, Apr 05 2011
    
  • Magma
    [ a: n in [0..450] | IsPrime(a) where a is n^2 +2 ]; // Vincenzo Librandi, Apr 06 2011
    
  • Maple
    select(isprime, [seq(t^2+2, t = 0..1000)]); # Robert Israel, Sep 03 2015
  • Mathematica
    Select[ Range[0, 500]^2 + 2, PrimeQ] (* Robert G. Wilson v, Sep 03 2015 *)
  • PARI
    print1("2, 3");forstep(n=3,1e4,6,if(isprime(t=n^2+2),print1(", "t))) \\ Charles R Greathouse IV, Jul 19 2011

Formula

For n>1, a(n) = 72*A000217(A056900(n-2))+11
a(n) = A067201(n)^2 + 2. - M. F. Hasler, Apr 05 2009

A014442 Largest prime factor of n^2 + 1.

Original entry on oeis.org

2, 5, 5, 17, 13, 37, 5, 13, 41, 101, 61, 29, 17, 197, 113, 257, 29, 13, 181, 401, 17, 97, 53, 577, 313, 677, 73, 157, 421, 53, 37, 41, 109, 89, 613, 1297, 137, 17, 761, 1601, 29, 353, 37, 149, 1013, 73, 17, 461, 1201, 61, 1301, 541, 281, 2917, 89, 3137, 13, 673
Offset: 1

Views

Author

Glen Burch (gburch(AT)erols.com)

Keywords

Comments

All a(n) except for a(1) = 2 are the Pythagorean primes, i.e., primes of form 4k+1. Conjecture: every Pythagorean prime appears in a(n) at least once.
Problem 11831 [Ozols 2015] is to prove that lim inf a(n)/n is zero. - Michael Somos, May 11 2015
From Michael Kaltman, Jun 10 2015: (Start)
For all numbers k in A256011, a(k) < k.
Conjecture: every Pythagorean prime p appears exactly two times among the first p integers of the sequence. Further: if a(i) = a(j) = p and both i and j are less than p (and i is not equal to j), then i + j = p and ij == 1 (mod p). [If a(k) = p as well, then k > p; in fact, k is in A256011.] Two examples: a(2) = a(3) = 5, with 2+3 = 5 and 2*3 = 6 == 1 (mod 5); a(4) = a(13) = 17, with 4+13 = 17 and 4*13 = 52 == 1 (mod 17).
(End)
The conjecture is true. If p is a Pythagorean prime, -1 is a quadratic residue mod p. Then -1 has exactly two square roots mod p, i.e., there are exactly two integers x,y with 1 <= x,y <= p-1 such that x^2 == y^2 == -1 (mod p), i.e., p divides x^2+1 and y^2+1, and moreover y == -x (mod p) so x + y = p, and x*y == -x^2 == 1 (mod p). Any other prime factor q of x^2 + 1 must divide (x^2+1)/p, and since x^2+1 < p^2 we have q < p, so a(x) = p and similarly a(y) = p. - Robert Israel, Jun 11 2015
Conjecture: if n is even and a(n) > n, then n+a(n) is in A256011. Examples: 2+a(2) = 2+5 = 7, 4+a(4) = 4+17 = 21, 6+a(6) = 6+37 = 43, and so on. Note that 18+a(18) is NOT in A256011, but 18 itself is. - Michael Kaltman, Jun 13 2015
This is also true. Suppose A = a(n) > n. n^2+1 is odd so A is an odd prime; n^2 + 1 = A *B with B < A also odd. Then (A+n)^2 + 1 = A*(A+2*n+B) and A+2*n+B is even. The largest prime factor of A+2*n+B is thus at most (A+2*n+B)/2 < A + n, while A < A + n as well. - Robert Israel, Jun 17 2015
Størmer shows that a(n) tends to infinity with n. Chowla shows that a(n) >> log log n. Schinzel shows that lim inf a(n)/log log n >= 4 and, using lower bounds for linear forms of logarithms, this inequality can be generalized for general quadratic polynomials, with 2 replaced by 4/7 for irreducible ones and 2/7 for reducible ones. - Tomohiro Yamada, Apr 15 2017
According to Hooley, an unpublished manuscript of Chebyshev contains the result that a(n)/n is unbounded which was first published and fully proved by Markov. - Charles R Greathouse IV, Oct 27 2018
Note that a(n) is the largest prime p such that n^(p+1) == -1 (mod p). - Thomas Ordowski, Nov 08 2019

References

  • A. A. Markov, Über die Primteiler der Zahlen von der Form 1+4x^2, Bulletin de l'Académie impériale des sciences de St.-Pétersbourg 3 (1895), pp. 55-59.
  • H. Rademacher, Lectures on Elementary Number Theory, pp. 33-38.

Crossrefs

Includes primes from A002496.
Cf. A002144 (Pythagorean primes: primes of form 4n+1).
Cf. A256011.
Cf. A076605 (largest prime factor of n^2 - 1).

Programs

  • GAP
    List([1..60],n->Reversed(Factors(n^2+1))[1]); # Muniru A Asiru, Oct 27 2018
  • Magma
    [Maximum(PrimeDivisors(n^2+1)): n in [1..60]]; // Vincenzo Librandi, Jun 17 2015
    
  • Maple
    seq(max(numtheory:-factorset(n^2+1)),n=1..100) ; # Robert Israel, Jun 11 2015
  • Mathematica
    Table[FactorInteger[n^2+1,FactorComplete->True][[ -1,1]],{n,5!}] ..and/or.. Table[Last[Table[ #[[1]]]&/@FactorInteger[n^2+1]],{n,5!}] ..and/or.. PrimeFactors[n_]:=Flatten[Table[ #[[1]],{1}]&/@FactorInteger[n]]; Table[PrimeFactors[n^2+1][[ -1]],{n,5!}] (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
    a[ n_] := If[ n < 1, 0, FactorInteger[n n + 1][[All, 1]] // Last]; (* Michael Somos, May 11 2015 *)
    Table[FactorInteger[n^2 + 1][[-1, 1]], {n, 80}] (* Vincenzo Librandi, Jun 17 2015 *)
  • PARI
    largeasqp1(m) = { for(a=1,m, y=a^2 + 1; f = factor(y); v = component(f,1); v1 = v[length(v)]; print1(v1",") ) } \\ Cino Hilliard, Jun 12 2004
    
  • PARI
    {a(n) = if( n<1, 0, Vecrev(factor(n*n + 1)[,1])[1])}; /* Michael Somos, May 11 2015 */
    

Formula

a(n) = A006530(1+n^2). - R. J. Mathar, Jan 28 2017

A001912 Numbers k such that 4*k^2 + 1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 10, 12, 13, 18, 20, 27, 28, 33, 37, 42, 45, 47, 55, 58, 60, 62, 63, 65, 67, 73, 75, 78, 80, 85, 88, 90, 92, 102, 103, 105, 112, 115, 118, 120, 125, 128, 130, 132, 135, 140, 142, 150, 153, 157, 163, 170, 175, 192, 193, 198, 200
Offset: 1

Views

Author

Keywords

Comments

Complement of A094550. - Hermann Stamm-Wilbrandt, Sep 16 2014
Positive integers whose square is the sum of two triangular numbers in exactly one way (A000217(k) + A000217(k+1) = k*(k+1)/2 + (k+1)*(k+2)/2 = (k+1)^2). In other words, positive integers k such that A052343(k^2) = 1. - Altug Alkan, Jul 06 2016
4*a(n)^2 + 1 = A002496(n+1). - Hal M. Switkay, Apr 03 2022

References

  • E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971, p. 1.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 11.
  • C. S. Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 116.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002496, A005574, A062325, A090693, A094550, A214517 (first differences).

Programs

  • Magma
    [n: n in [1..100] | IsPrime(4*n^2+1)] // Vincenzo Librandi, Nov 21 2010
    
  • Maple
    A001912 := proc(n)
        option remember;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isprime(4*a^2+1) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Aug 09 2012
  • Mathematica
    Select[Range[200], PrimeQ[4#^2 + 1] &] (* Alonso del Arte, Dec 20 2013 *)
  • PARI
    is(n)=isprime(4*n^2 + 1) \\ Charles R Greathouse IV, Apr 28 2015

Formula

a(n) = A005574(n+1)/2.

A039770 Numbers k such that phi(k) is a perfect square.

Original entry on oeis.org

1, 2, 5, 8, 10, 12, 17, 32, 34, 37, 40, 48, 57, 60, 63, 74, 76, 85, 101, 108, 114, 125, 126, 128, 136, 160, 170, 185, 192, 197, 202, 204, 219, 240, 250, 257, 273, 285, 292, 296, 304, 315, 364, 370, 380, 394, 401, 432, 438, 444, 451, 456, 468, 489, 504, 505
Offset: 1

Views

Author

Keywords

Comments

A004171 is a subsequence because phi(2^(2k+1)) = (2^k)^2. - Enrique Pérez Herrero, Aug 25 2011
Subsequence of primes is A002496 since in this case phi(k^2+1) = k^2. - Bernard Schott, Mar 06 2023
Products of distinct terms of A002496 form a subsequence. - Chai Wah Wu, Aug 22 2025

Examples

			phi(34) = 16 = 4*4.
		

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, p. 141.

Crossrefs

Cf. A000010, A007614. A062732 gives the squares. A306882 (squares not totient).

Programs

  • Maple
    with(numtheory); isA039770 := proc (n) return issqr(phi(n)) end proc; seq(`if`(isA039770(n), n, NULL), n = 1 .. 505); # Nathaniel Johnston, Oct 09 2013
  • Mathematica
    Select[ Range[ 600 ], IntegerQ[ Sqrt[ EulerPhi[ # ] ] ]& ]
  • PARI
    for(n=1, 120, if (issquare(eulerphi(n)), print1(n, ", ")))
    
  • Python
    from math import isqrt
    from sympy import totient as phi
    def ok(n): return isqrt(p:=phi(n))**2 == p
    print([k for k in range(1, 506) if ok(k)]) # Michael S. Branicky, Aug 17 2025

Formula

a(n) seems to be asymptotic to c*n^(3/2) with 1 < c < 1.3. - Benoit Cloitre, Sep 08 2002
Banks, Friedlander, Pomerance, and Shparlinski show that a(n) = O(n^1.421). - Charles R Greathouse IV, Aug 24 2009

A028916 Friedlander-Iwaniec primes: Primes of form a^2 + b^4.

Original entry on oeis.org

2, 5, 17, 37, 41, 97, 101, 137, 181, 197, 241, 257, 277, 281, 337, 401, 457, 577, 617, 641, 661, 677, 757, 769, 821, 857, 881, 977, 1097, 1109, 1201, 1217, 1237, 1297, 1301, 1321, 1409, 1481, 1601, 1657, 1697, 1777, 2017, 2069, 2137, 2281, 2389, 2417, 2437
Offset: 1

Views

Author

Keywords

Comments

John Friedlander and Henryk Iwaniec proved that there are infinitely many such primes.
A256852(A049084(a(n))) > 0. - Reinhard Zumkeller, Apr 11 2015
Primes in A111925. - Robert Israel, Oct 02 2015
Its intersection with A185086 is A262340, by the uniqueness part of Fermat's two-squares theorem. - Jonathan Sondow, Oct 05 2015
Cunningham calls these semi-quartan primes. - Charles R Greathouse IV, Aug 21 2017
Primes of the form (x^2 + y^2)/2, where x > y > 0, such that (x-y)/2 or (x+y)/2 is square. - Thomas Ordowski, Dec 04 2017
Named after the Canadian mathematician John Benjamin Friedlander (b. 1941) and the Polish-American mathematician Henryk Iwaniec (b. 1947). - Amiram Eldar, Jun 19 2021

Examples

			2 = 1^2 + 1^4.
5 = 2^2 + 1^4.
17 = 4^2 + 1^4 = 1^2 + 2^4.
		

Crossrefs

Cf. A000290, A000583, A000040, A256852, A256863 (complement), A002645 (subsequence), subsequence of A247857.
Primes of form n^2 + b^4, b fixed: A002496 (b = 1), A243451 (b = 2), A256775 (b = 3), A256776 (b = 4), A256777 (b = 5), A256834 (b = 6), A256835 (b = 7), A256836 (b = 8), A256837 (b = 9), A256838 (b = 10), A256839 (b = 11), A256840 (b = 12), A256841 (b = 13).

Programs

  • Haskell
    a028916 n = a028916_list !! (n-1)
    a028916_list = map a000040 $ filter ((> 0) . a256852) [1..]
    -- Reinhard Zumkeller, Apr 11 2015
  • Maple
    N:= 10^5: # to get all terms <= N
    S:= {seq(seq(a^2+b^4, a = 1 .. floor((N-b^4)^(1/2))),b=1..floor(N^(1/4)))}:
    sort(convert(select(isprime,S),list)); # Robert Israel, Oct 02 2015
  • Mathematica
    nn = 10000; t = {}; Do[n = a^2 + b^4; If[n <= nn && PrimeQ[n], AppendTo[t, n]], {a, Sqrt[nn]}, {b, nn^(1/4)}]; Union[t] (* T. D. Noe, Aug 06 2012 *)
  • PARI
    list(lim)=my(v=List([2]),t);for(a=1,sqrt(lim\=1),forstep(b=a%2+1, sqrtint(sqrtint(lim-a^2)), 2, t=a^2+b^4;if(isprime(t),listput(v,t)))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jun 12 2013
    

Extensions

Title expanded by Jonathan Sondow, Oct 02 2015
Previous Showing 11-20 of 221 results. Next