A060544
Centered 9-gonal (also known as nonagonal or enneagonal) numbers. Every third triangular number, starting with a(1)=1.
Original entry on oeis.org
1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946, 1081, 1225, 1378, 1540, 1711, 1891, 2080, 2278, 2485, 2701, 2926, 3160, 3403, 3655, 3916, 4186, 4465, 4753, 5050, 5356, 5671, 5995, 6328, 6670, 7021, 7381, 7750, 8128, 8515, 8911, 9316
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Ignacio Larrosa Cañestro, Hexágono y estrella determinados por tres pares de cevianas simétricas, (java applet).
- Al Cugo et al., Marion's theorem, The Mathematics Teacher 86 (1993) p. 619.
- John Elias, Illustration of Initial Terms
- F. Pollock, On the Extension of the Principle of Fermat's Theorem of the Polygonal Numbers to the Higher Orders of Series Whose Ultimate Differences Are Constant. With a New Theorem Proposed, Applicable to All the Orders, Abs. Papers Commun. Roy. Soc. London 5, 922-924, 1843-1850.
- Eric Weisstein's World of Mathematics, Alkane Graph
- Eric Weisstein's World of Mathematics, Graph Path
- Eric Weisstein's World of Mathematics, Marion's Theorem
- Eric Weisstein's World of Mathematics, Wiener Sum Index
- Index entries for two-way infinite sequences
- Index entries for sequences related to centered polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([1..50],n->(2*n-1)^2+(n-1)*n/2); # Muniru A Asiru, Mar 01 2019
-
[(2*n-1)^2+(n-1)*n/2: n in [1..50]]; // Vincenzo Librandi, Nov 18 2015
-
H := n -> simplify(1/hypergeom([-3*n,3*n+3,1],[3/2,2],3/4)); A060544 := n -> H(n-1); seq(A060544(i),i=1..19); # Peter Luschny, Jan 09 2012
-
Take[Accumulate[Range[150]], {1, -1, 3}] (* Harvey P. Dale, Mar 11 2013 *)
LinearRecurrence[{3, -3, 1}, {1, 10, 28}, 50] (* Harvey P. Dale, Mar 11 2013 *)
FoldList[#1 + #2 &, 1, 9 Range @ 50] (* Robert G. Wilson v, Feb 02 2011 *)
Table[(3 n - 1) (3 n - 2)/2, {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
Table[Binomial[3 n - 1, 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
Table[PolygonalNumber[3 n - 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
-
a(n)=(3*n-1)*(3*n-2)/2
-
[(3*n-1)*(3*n-2)/2 for n in (1..50)] # G. C. Greubel, Mar 02 2019
Formulas by Paul Berry corrected for offset 1 by
Wolfdieter Lang, Jan 30 2015
A006564
Icosahedral numbers: a(n) = n*(5*n^2 - 5*n + 2)/2.
Original entry on oeis.org
1, 12, 48, 124, 255, 456, 742, 1128, 1629, 2260, 3036, 3972, 5083, 6384, 7890, 9616, 11577, 13788, 16264, 19020, 22071, 25432, 29118, 33144, 37525, 42276, 47412, 52948, 58899, 65280, 72106, 79392, 87153, 95404, 104160, 113436, 123247, 133608
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., Vol. 131, No. 1 (2002), pp. 65-75.
- Victor Meally, Letter to N. J. A. Sloane, no date.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a006564 n = n * (5 * n * (n - 1) + 2) `div` 2
-- Reinhard Zumkeller, Jun 16 2013
-
[(5*n^3-5*n^2+2*n)/2: n in [1..100]] // Vincenzo Librandi, Nov 21 2010
-
A006564:=(1+8*z+6*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[n (5n^2-5n+2)/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,12,48,124},40] (* Harvey P. Dale, May 26 2011 *)
-
a(n)=5*n^2*(n-1)/2+n \\ Charles R Greathouse IV, Oct 07 2015
A007613
a(n) = (8^n + 2*(-1)^n)/3.
Original entry on oeis.org
1, 2, 22, 170, 1366, 10922, 87382, 699050, 5592406, 44739242, 357913942, 2863311530, 22906492246, 183251937962, 1466015503702, 11728124029610, 93824992236886, 750599937895082, 6004799503160662, 48038396025285290, 384307168202282326, 3074457345618258602
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A060539
Table by antidiagonals of number of ways of choosing k items from n*k.
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 20, 15, 4, 1, 70, 84, 28, 5, 1, 252, 495, 220, 45, 6, 1, 924, 3003, 1820, 455, 66, 7, 1, 3432, 18564, 15504, 4845, 816, 91, 8, 1, 12870, 116280, 134596, 53130, 10626, 1330, 120, 9, 1, 48620, 735471, 1184040, 593775, 142506, 20475, 2024, 153, 10
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 6, 20, 70, 252, 924, 3432, ...
3, 15, 84, 495, 3003, 18564, 116280, ...
4, 28, 220, 1820, 15504, 134596, 1184040, ...
5, 45, 455, 4845, 53130, 593775, 6724520, ...
6, 66, 816, 10626, 142506, 1947792, 26978328, ...
7, 91, 1330, 20475, 324632, 5245786, 85900584, ...
-
A:= (n, k)-> binomial(n*k, k):
seq(seq(A(n, 1+d-n), n=1..d), d=1..10); # Alois P. Heinz, Jul 28 2023
-
{ i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060539.txt", i++, " ", binomial(n*k, k))); ) } \\ Harry J. Smith, Jul 06 2009
A035006
Number of possible rook moves on an n X n chessboard.
Original entry on oeis.org
0, 8, 36, 96, 200, 360, 588, 896, 1296, 1800, 2420, 3168, 4056, 5096, 6300, 7680, 9248, 11016, 12996, 15200, 17640, 20328, 23276, 26496, 30000, 33800, 37908, 42336, 47096, 52200, 57660, 63488, 69696, 76296, 83300, 90720, 98568, 106856
Offset: 1
Ulrich Schimke (ulrschimke(AT)aol.com)
On a 3 X 3-board, rook has 9*4 moves, so a(3)=36.
- E. Bonsdorff, K. Fabel and O. Riihimaa, Schach und Zahl (Chess and numbers), Walter Rau Verlag, Dusseldorf, 1966.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Alexander M. Haupt, Bijective enumeration of rook walks, arXiv:2007.01018 [math.CO], 2020.
- M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- M. Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- Richard P. Stanley, Bijective Proof Problems, Problem 540 p. 63, (2015).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[(n-1)*2*n^2: n in [1..40]]; // Vincenzo Librandi, Jun 16 2011
-
Table[(n-1) 2 n^2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,8,36,96},40] (* Harvey P. Dale, May 12 2012 *)
A005904
Centered dodecahedral numbers.
Original entry on oeis.org
1, 33, 155, 427, 909, 1661, 2743, 4215, 6137, 8569, 11571, 15203, 19525, 24597, 30479, 37231, 44913, 53585, 63307, 74139, 86141, 99373, 113895, 129767, 147049, 165801, 186083, 207955, 231477, 256709, 283711, 312543, 343265, 375937, 410619, 447371, 486253, 527325
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Amiram Eldar, Table of n, a(n) for n = 0..10000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Boon K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558; alternative link.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
A005904:=(z+1)*(z**2+28*z+1)/(z-1)**4; [Conjectured by Simon Plouffe in his 1992 dissertation.]
-
a[n_] := (2*n + 1) * (5*n^2 + 5*n + 1); Array[a, 30, 0] (* Amiram Eldar, Sep 12 2022 *)
A228888
a(n) = binomial(3*n + 2, 3).
Original entry on oeis.org
10, 56, 165, 364, 680, 1140, 1771, 2600, 3654, 4960, 6545, 8436, 10660, 13244, 16215, 19600, 23426, 27720, 32509, 37820, 43680, 50116, 57155, 64824, 73150, 82160, 91881, 102340, 113564, 125580, 138415, 152096, 166650, 182104, 198485, 215820, 234136, 253460
Offset: 1
From _Bruno Berselli_, Jun 26 2018: (Start)
Including 0, row sums of the triangle:
| 0| .................................................................. 0
| 1| 2 3 4 ..................................................... 10
| 5| 6 7 8 9 10 11 ......................................... 56
|12| 13 14 15 16 17 18 19 20 21 ............................ 165
|22| 23 24 25 26 27 28 29 30 31 32 33 34 ................ 364
|35| 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 .... 680
...
in the first column of which we have the pentagonal numbers (A000326).
(End)
Similar sequences are listed in
A316224.
-
[Binomial(3*n + 2, 3): n in [1..40]]; // Vincenzo Librandi, Sep 09 2013
-
seq(binomial(3*n+2,3), n = 1..38);
-
Table[(Binomial[3 n + 2, 3]), {n, 1, 40}] (* Vincenzo Librandi, Sep 09 2013 *)
A054776
a(n) = 3*n*(3*n-1)*(3*n-2).
Original entry on oeis.org
0, 6, 120, 504, 1320, 2730, 4896, 7980, 12144, 17550, 24360, 32736, 42840, 54834, 68880, 85140, 103776, 124950, 148824, 175560, 205320, 238266, 274560, 314364, 357840, 405150, 456456, 511920, 571704, 635970, 704880, 778596, 857280, 941094
Offset: 0
- L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 46.
- Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 268.
A124388
a(n) = 27*n + 18.
Original entry on oeis.org
18, 45, 72, 99, 126, 153, 180, 207, 234, 261, 288, 315, 342, 369, 396, 423, 450, 477, 504, 531, 558, 585, 612, 639, 666, 693, 720, 747, 774, 801, 828, 855, 882, 909, 936, 963, 990, 1017, 1044, 1071, 1098, 1125, 1152, 1179, 1206, 1233, 1260, 1287, 1314, 1341, 1368
Offset: 0
A060541
a(n) = binomial(4*n, 4).
Original entry on oeis.org
1, 70, 495, 1820, 4845, 10626, 20475, 35960, 58905, 91390, 135751, 194580, 270725, 367290, 487635, 635376, 814385, 1028790, 1282975, 1581580, 1929501, 2331890, 2794155, 3321960, 3921225, 4598126, 5359095, 6210820, 7160245, 8214570, 9381251, 10668000, 12082785
Offset: 1
-
[Binomial(4 n, 4): n in [1..40]]; // Vincenzo Librandi, Jan 20 2015
-
Table[Binomial[4n, 4], {n, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *)
LinearRecurrence[{5,-10,10,-5,1},{1,70,495,1820,4845},40] (* Harvey P. Dale, Jan 13 2015 *)
-
a(n) = n*(2*n - 1)*(4*n - 1)*(4*n - 3)/3; \\ Harry J. Smith, Jul 06 2009
Comments