cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A060544 Centered 9-gonal (also known as nonagonal or enneagonal) numbers. Every third triangular number, starting with a(1)=1.

Original entry on oeis.org

1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946, 1081, 1225, 1378, 1540, 1711, 1891, 2080, 2278, 2485, 2701, 2926, 3160, 3403, 3655, 3916, 4186, 4465, 4753, 5050, 5356, 5671, 5995, 6328, 6670, 7021, 7381, 7750, 8128, 8515, 8911, 9316
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Comments

Triangular numbers not == 0 (mod 3). - Amarnath Murthy, Nov 13 2005
Shallow diagonal of triangular spiral in A051682. - Paul Barry, Mar 15 2003
Equals the triangular numbers convolved with [1, 7, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009
a(n) is congruent to 1 (mod 9) for all n. The sequence of digital roots of the a(n) is A000012(n). The sequence of units' digits of the a(n) is period 20: repeat [1, 0, 8, 5, 1, 6, 0, 3, 5, 6, 6, 5, 3, 0, 6, 1, 5, 8, 0, 1]. - Ant King, Jun 18 2012
Divide each side of any triangle ABC with area (ABC) into 2n + 1 equal segments by 2n points: A_1, A_2, ..., A_(2n) on side a, and similarly for sides b and c. If the hexagon with area (Hex(n)) delimited by AA_n, AA_(n+1), BB_n, BB_(n+1), CC_n and CC_(n+1) cevians, we have a(n+1) = (ABC)/(Hex(n)) for n >= 1, (see link with java applet). - Ignacio Larrosa Cañestro, Jan 02 2015; edited by Wolfdieter Lang, Jan 30 2015
For the case n = 1 see the link for Marion's Theorem (actually Marion Walter's Theorem, see the Cugo et al, reference). Also, the generalization considered here has been called there (Ryan) Morgan's Theorem. - Wolfdieter Lang, Jan 30 2015
Pollock states that every number is the sum of at most 11 terms of this sequence, but note that "1, 10, 28, 35, &c." has a typo (35 should be 55). - Michel Marcus, Nov 04 2017
a(n) is also the number of (nontrivial) paths as well as the Wiener sum index of the (n-1)-alkane graph. - Eric W. Weisstein, Jul 15 2021

Crossrefs

Programs

  • GAP
    List([1..50],n->(2*n-1)^2+(n-1)*n/2); # Muniru A Asiru, Mar 01 2019
    
  • Magma
    [(2*n-1)^2+(n-1)*n/2: n in [1..50]]; // Vincenzo Librandi, Nov 18 2015
    
  • Maple
    H := n -> simplify(1/hypergeom([-3*n,3*n+3,1],[3/2,2],3/4)); A060544 := n -> H(n-1); seq(A060544(i),i=1..19); # Peter Luschny, Jan 09 2012
  • Mathematica
    Take[Accumulate[Range[150]], {1, -1, 3}] (* Harvey P. Dale, Mar 11 2013 *)
    LinearRecurrence[{3, -3, 1}, {1, 10, 28}, 50] (* Harvey P. Dale, Mar 11 2013 *)
    FoldList[#1 + #2 &, 1, 9 Range @ 50] (* Robert G. Wilson v, Feb 02 2011 *)
    Table[(3 n - 1) (3 n - 2)/2, {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
    Table[Binomial[3 n - 1, 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
    Table[PolygonalNumber[3 n - 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
  • PARI
    a(n)=(3*n-1)*(3*n-2)/2
    
  • Sage
    [(3*n-1)*(3*n-2)/2 for n in (1..50)] # G. C. Greubel, Mar 02 2019

Formula

a(n) = C(3*n, 3)/n = (3*n-1)*(3*n-2)/2 = A001504(n-1)/2.
a(n) = a(n-1) + 9*(n-1) = A060543(n, 3) = A006566(n)/n.
a(n) = A025035(n)/A025035(n-1) = A027468(n-1) + 1 = A000217(3*n-2).
a(1-n) = a(n).
From Paul Barry, Mar 15 2003: (Start)
a(n) = C(n-1, 0) + 9*C(n-1, 1) + 9*C(n-1, 2); binomial transform of (1, 9, 9, 0, 0, 0, ...).
a(n) = 9*A000217(n-1) + 1.
G.f.: x*(1 + 7*x + x^2)/(1-x)^3. (End)
Narayana transform (A001263) of [1, 9, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n-1) = Pochhammer(4,3*n)/(Pochhammer(2,n)*Pochhammer(n+1,2*n)).
a(n-1) = 1/Hypergeometric([-3*n,3*n+3,1],[3/2,2],3/4). - Peter Luschny, Jan 09 2012
From Ant King, Jun 18 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*a(n-1) - a(n-2) + 9.
a(n) = A000217(n) + 7*A000217(n-1) + A000217(n-2).
Sum_{n>=1} 1/a(n) = 2*Pi/(3*sqrt(3)) = A248897.
(End)
a(n) = (2*n-1)^2 + (n-1)*n/2. - Ivan N. Ianakiev, Nov 18 2015
a(n) = A101321(9,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: (2 + 9*x^2)*exp(x)/2 - 1. - G. C. Greubel, Mar 02 2019
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 11*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 11/(2*e) - 1. (End)
a(n) = A000567(n) + A005449(n-1) (see illustration in links). - John Elias, Nov 10 2020
a(n) = P(2*n,4)*P(3*n,3)/24 for n>=2, where P(s,k) = ((s - 2)*k^2 - (s - 4)*k)/2 is the k-th s-gonal number. - Lechoslaw Ratajczak, Jul 18 2021

Extensions

Additional description from Terrel Trotter, Jr., Apr 06 2002
Formulas by Paul Berry corrected for offset 1 by Wolfdieter Lang, Jan 30 2015

A006564 Icosahedral numbers: a(n) = n*(5*n^2 - 5*n + 2)/2.

Original entry on oeis.org

1, 12, 48, 124, 255, 456, 742, 1128, 1629, 2260, 3036, 3972, 5083, 6384, 7890, 9616, 11577, 13788, 16264, 19020, 22071, 25432, 29118, 33144, 37525, 42276, 47412, 52948, 58899, 65280, 72106, 79392, 87153, 95404, 104160, 113436, 123247, 133608
Offset: 1

Views

Author

Keywords

Comments

Schlaefli symbol for this polyhedron: {3,5}.
One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012). - Daniel Forgues, May 14 2010

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000292 (tetrahedral numbers), A000578 (cubes), A005900 (octahedral numbers), A006566 (dodecahedral numbers).

Programs

  • Haskell
    a006564 n = n * (5 * n * (n - 1) + 2) `div` 2
    -- Reinhard Zumkeller, Jun 16 2013
    
  • Magma
    [(5*n^3-5*n^2+2*n)/2: n in [1..100]] // Vincenzo Librandi, Nov 21 2010
    
  • Maple
    A006564:=(1+8*z+6*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[n (5n^2-5n+2)/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,12,48,124},40] (* Harvey P. Dale, May 26 2011 *)
  • PARI
    a(n)=5*n^2*(n-1)/2+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = C(n+2,3) + 8*C(n+1,3) + 6*C(n,3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with a(0)=1, a(1)=12, a(2)=48, a(3)=124. - Harvey P. Dale, May 26 2011
G.f.: x*(6*x^2 + 8*x + 1)/(x-1)^4. - Harvey P. Dale, May 26 2011
a(n) = A006566(n) - A035006(n). - Peter M. Chema, May 04 2016
E.g.f.: x*(2 + 10*x + 5*x^2)*exp(x)/2. - Ilya Gutkovskiy, May 04 2016
Sum_{n>=1} 1/a(n) = A175578. - Amiram Eldar, Jan 03 2022

A007613 a(n) = (8^n + 2*(-1)^n)/3.

Original entry on oeis.org

1, 2, 22, 170, 1366, 10922, 87382, 699050, 5592406, 44739242, 357913942, 2863311530, 22906492246, 183251937962, 1466015503702, 11728124029610, 93824992236886, 750599937895082, 6004799503160662, 48038396025285290, 384307168202282326, 3074457345618258602
Offset: 0

Views

Author

Keywords

Comments

Also, the cogrowth sequence of C3 X C3 = ; that is, the number of words of length 3n that reduce to the identity. - Sean A. Irvine, Nov 04 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = A078008(3*n). - Paul Barry, Nov 29 2003
From Paul Barry, Mar 24 2004: (Start)
a(n) = (A082311(n) + (-1)^n)/2.
a(n) = (A001045(3*n+1) + (-1)^n)/2. (End)
a(n) = Sum_{k=0..n} binomial(3*n, 3*k). - Paul Barry, Jan 13 2005
a(n) = 8*a(n-1) + 6*(-1)^n. - Paul Curtz, Nov 19 2007
From Colin Barker, Sep 29 2014: (Start)
a(n) = 7*a(n-1) + 8*a(n-2).
G.f.: (1-5*x) / ((1+x)*(1-8*x)). (End)
E.g.f.: (1/3)*(exp(8*x) + 2*exp(-x)). - G. C. Greubel, Apr 23 2023

Extensions

More terms from Colin Barker, Sep 29 2014

A060539 Table by antidiagonals of number of ways of choosing k items from n*k.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 20, 15, 4, 1, 70, 84, 28, 5, 1, 252, 495, 220, 45, 6, 1, 924, 3003, 1820, 455, 66, 7, 1, 3432, 18564, 15504, 4845, 816, 91, 8, 1, 12870, 116280, 134596, 53130, 10626, 1330, 120, 9, 1, 48620, 735471, 1184040, 593775, 142506, 20475, 2024, 153, 10
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Examples

			Square array A(n,k) begins:
  1,  1,    1,     1,      1,       1,        1, ...
  2,  6,   20,    70,    252,     924,     3432, ...
  3, 15,   84,   495,   3003,   18564,   116280, ...
  4, 28,  220,  1820,  15504,  134596,  1184040, ...
  5, 45,  455,  4845,  53130,  593775,  6724520, ...
  6, 66,  816, 10626, 142506, 1947792, 26978328, ...
  7, 91, 1330, 20475, 324632, 5245786, 85900584, ...
		

Crossrefs

Columns include A000027, A000384, A006566, A060541.
Main diagonal is A014062.
Cf. A295772.

Programs

  • Maple
    A:= (n, k)-> binomial(n*k, k):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..10);  # Alois P. Heinz, Jul 28 2023
  • PARI
    { i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060539.txt", i++, " ", binomial(n*k, k))); ) } \\ Harry J. Smith, Jul 06 2009

Formula

A(n,k) = binomial(n*k,k) = A007318(n*k,k) = A060538(n,k)/A060538(n-1,k).

A035006 Number of possible rook moves on an n X n chessboard.

Original entry on oeis.org

0, 8, 36, 96, 200, 360, 588, 896, 1296, 1800, 2420, 3168, 4056, 5096, 6300, 7680, 9248, 11016, 12996, 15200, 17640, 20328, 23276, 26496, 30000, 33800, 37908, 42336, 47096, 52200, 57660, 63488, 69696, 76296, 83300, 90720, 98568, 106856
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

Obviously A035005(n) = A002492(n-1) + a(n) since Queen = Bishop + Rook. - Johannes W. Meijer, Feb 04 2010
X values of solutions of the equation: (X-Y)^3-2*X*Y=0. Y values are b(n)=2*n*(n-1)^2 (see A181617). - Mohamed Bouhamida, Jul 06 2023

Examples

			On a 3 X 3-board, rook has 9*4 moves, so a(3)=36.
		

References

  • E. Bonsdorff, K. Fabel and O. Riihimaa, Schach und Zahl (Chess and numbers), Walter Rau Verlag, Dusseldorf, 1966.

Crossrefs

Cf. A033586 (King), A035005 (Queen), A035008 (Knight), A002492 (Bishop) and A049450 (Pawn).

Programs

  • Magma
    [(n-1)*2*n^2: n in [1..40]]; // Vincenzo Librandi, Jun 16 2011
  • Mathematica
    Table[(n-1) 2 n^2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,8,36,96},40] (* Harvey P. Dale, May 12 2012 *)

Formula

a(n) = (n-1)*2*n^2.
a(n) = Sum_{j=1..n} ((n+j-1)^2 - (n-j+1)^2). - Zerinvary Lajos, Sep 13 2006
1/a(n+1) = Integral_{x=1/(n+1)..1/n} x*h(x) = Integral_{x=1/(n+1)..1/n} x*(1/x - floor(1/x)) = 1/((2*(n^2+2*n+1))*n) and Sum_{n>=1} 1/((2*(n^2+2*n+1))*n) = 1-Zeta(2)/2 where h(x) is the Gauss (continued fraction) map h(x)={x^-1} and {x} is the fractional part of x. - Stephen Crowley, Jul 24 2009
a(n) = 4 * A006002(n-1). - Johannes W. Meijer, Feb 04 2010
G.f.: 4*x^2*(2+x)/(1-x)^4. - Colin Barker, Mar 11 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=0, a(2)=8, a(3)=36, a(4)=96. - Harvey P. Dale, May 12 2012
a(n) = A006566(n) - A006564(n). - Peter M. Chema, Feb 10 2016
E.g.f.: 2*exp(x)*x^2*(2 + x). - Stefano Spezia, May 10 2022
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=2} 1/a(n) = 1 - Pi^2/12.
Sum_{n>=2} (-1)^n/a(n) = Pi^2/24 + log(2) - 1. (End)

A005904 Centered dodecahedral numbers.

Original entry on oeis.org

1, 33, 155, 427, 909, 1661, 2743, 4215, 6137, 8569, 11571, 15203, 19525, 24597, 30479, 37231, 44913, 53585, 63307, 74139, 86141, 99373, 113895, 129767, 147049, 165801, 186083, 207955, 231477, 256709, 283711, 312543, 343265, 375937, 410619, 447371, 486253, 527325
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005904:=(z+1)*(z**2+28*z+1)/(z-1)**4; [Conjectured by Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    a[n_] := (2*n + 1) * (5*n^2 + 5*n + 1); Array[a, 30, 0] (* Amiram Eldar, Sep 12 2022 *)

Formula

a(n) = (2*n+1)*(5*n^2+5*n+1).
Sum_{n>=0} 1/a(n) = -psi((5+sqrt(5))/10) - psi((5-sqrt(5))/10) - 2*gamma - 4*log(2), where psi is the digamma function and gamma is Euler's constant (A001620). - Amiram Eldar, Sep 12 2022
E.g.f.: exp(x)*(1 + 32*x + 45*x^2 + 10*x^3). - Stefano Spezia, Jun 06 2025

A228888 a(n) = binomial(3*n + 2, 3).

Original entry on oeis.org

10, 56, 165, 364, 680, 1140, 1771, 2600, 3654, 4960, 6545, 8436, 10660, 13244, 16215, 19600, 23426, 27720, 32509, 37820, 43680, 50116, 57155, 64824, 73150, 82160, 91881, 102340, 113564, 125580, 138415, 152096, 166650, 182104, 198485, 215820, 234136, 253460
Offset: 1

Views

Author

Peter Bala, Sep 09 2013

Keywords

Examples

			From _Bruno Berselli_, Jun 26 2018: (Start)
Including 0, row sums of the triangle:
| 0|   .................................................................. 0
| 1|   2   3   4   ..................................................... 10
| 5|   6   7   8   9  10  11   ......................................... 56
|12|  13  14  15  16  17  18  19  20  21   ............................ 165
|22|  23  24  25  26  27  28  29  30  31  32  33  34   ................ 364
|35|  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50   .... 680
...
in the first column of which we have the pentagonal numbers (A000326).
(End)
		

Crossrefs

Cf. A006566 (binomial(3*n,3)) and A228887 (binomial(3*n + 1,3)).
Cf. A228889.
Similar sequences are listed in A316224.

Programs

  • Magma
    [Binomial(3*n + 2, 3): n in [1..40]]; // Vincenzo Librandi, Sep 09 2013
  • Maple
    seq(binomial(3*n+2,3), n = 1..38);
  • Mathematica
    Table[(Binomial[3 n + 2, 3]), {n, 1, 40}] (* Vincenzo Librandi, Sep 09 2013 *)

Formula

a(n) = binomial(3*n + 2, 3) = 1/6*(3*n)*(3*n + 1)*(3*n + 2).
a(-n) = - A006566(n).
a(n) = 1/6*A228889(n).
G.f.: (10*x + 16*x^2 + x^3)/(1 - x)^4 = 10*x + 56*x^2 + 165*x^3 + ....
Sum {n >= 1} 1/a(n) = 9/2 - 3/2*log(3) - 1/2*sqrt(3)*Pi.
Sum {n >= 1} (-1)^n/a(n) = 9/2 - 4*log(2) - 1/3*sqrt(3)*Pi.

A054776 a(n) = 3*n*(3*n-1)*(3*n-2).

Original entry on oeis.org

0, 6, 120, 504, 1320, 2730, 4896, 7980, 12144, 17550, 24360, 32736, 42840, 54834, 68880, 85140, 103776, 124950, 148824, 175560, 205320, 238266, 274560, 314364, 357840, 405150, 456456, 511920, 571704, 635970, 704880, 778596, 857280, 941094
Offset: 0

Views

Author

Henry Bottomley, May 19 2000

Keywords

References

  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 46.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 268.

Crossrefs

Programs

Formula

a(n) = A007531(3n-2) = 6*A006566(n).
Sum_{n>=1} 1/a(n) = Pi*sqrt(3)/12 - log(3)/4 = 0.178796768891527... [Jolley eq. 250]. - Benoit Cloitre, Apr 05 2002
G.f.: 6*x*(1+16*x+10*x^2)/(1-x)^4.
E.g.f.: 3*exp(x)*x*(2 + 18x + 9x^2). - Indranil Ghosh, Apr 15 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/3 - Pi/(6*sqrt(3)). - Amiram Eldar, Mar 08 2022

A124388 a(n) = 27*n + 18.

Original entry on oeis.org

18, 45, 72, 99, 126, 153, 180, 207, 234, 261, 288, 315, 342, 369, 396, 423, 450, 477, 504, 531, 558, 585, 612, 639, 666, 693, 720, 747, 774, 801, 828, 855, 882, 909, 936, 963, 990, 1017, 1044, 1071, 1098, 1125, 1152, 1179, 1206, 1233, 1260, 1287, 1314, 1341, 1368
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 30 2006

Keywords

Comments

Second differences of dodecahedral numbers (A006566).
Also, first differences of dodecahedral gnomic numbers (A093485); a(n+1) - a(n) = 27.

Crossrefs

Programs

Formula

a(n) = 9*A016789(n).
G.f.: 9*(2 + x)/(x-1)^2. - R. J. Mathar, Jul 02 2011
From Elmo R. Oliveira, Dec 08 2024: (Start)
E.g.f.: 9*exp(x)*(2 + 3*x).
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)
Sum_{n>=0} (-1)^n/a(n) = (Pi/sqrt(3) - log(2))/27. - Amiram Eldar, May 11 2025

A060541 a(n) = binomial(4*n, 4).

Original entry on oeis.org

1, 70, 495, 1820, 4845, 10626, 20475, 35960, 58905, 91390, 135751, 194580, 270725, 367290, 487635, 635376, 814385, 1028790, 1282975, 1581580, 1929501, 2331890, 2794155, 3321960, 3921225, 4598126, 5359095, 6210820, 7160245, 8214570, 9381251, 10668000, 12082785
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(4 n, 4): n in [1..40]]; // Vincenzo Librandi, Jan 20 2015
  • Mathematica
    Table[Binomial[4n, 4], {n, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,70,495,1820,4845},40] (* Harvey P. Dale, Jan 13 2015 *)
  • PARI
    a(n) = n*(2*n - 1)*(4*n - 1)*(4*n - 3)/3; \\ Harry J. Smith, Jul 06 2009
    

Formula

a(n) = n*(2n-1)*(4n-1)*(4n-3)/3.
a(n) = n * A015219(n-1) = A000332(4n) = A060539(n, 4).
G.f.: x*(1+65*x+155*x^2+35*x^3) / (1-x)^5. - R. J. Mathar, Oct 03 2011
From Amiram Eldar, Mar 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 6*log(2) - Pi.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*sqrt(2)*log(sqrt(2)-1) - log(2) + (2*sqrt(2) - 3/2)*Pi. (End)

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Jul 06 2009
Previous Showing 11-20 of 34 results. Next