cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 204 results. Next

A058481 a(n) = 3^n - 2.

Original entry on oeis.org

1, 7, 25, 79, 241, 727, 2185, 6559, 19681, 59047, 177145, 531439, 1594321, 4782967, 14348905, 43046719, 129140161, 387420487, 1162261465, 3486784399, 10460353201, 31381059607, 94143178825, 282429536479, 847288609441
Offset: 1

Views

Author

Vladeta Jovovic, Nov 26 2000

Keywords

Comments

a(n) = number of 2 X n binary matrices with no zero rows or columns.
a(n)^2 + 2*a(n+1) + 1 is a square number, i.e., a(n)^2 + 2*a(n+1) + 1 = (a(n)+3)^2: for n=2, a(2)^2 + 2*a(3) + 1 = 7^2 + 2*25 + 1 = 100 = (7+3)^2; for n=3, a(3)^2 + 2*a(4) + 1 = 25^2 + 2*79 + 1 = 784 = (25+3)^2. - Bruno Berselli, Apr 23 2010
Sum of n-th row of triangle of powers of 3: 1; 3 1 3; 9 3 1 3 9; 27 9 3 1 3 9 27; ... . - Philippe Deléham, Feb 24 2014
a(n) = least k such that k*3^n + 1 is a square. Thus, the square is given by (3^n-1)^2. - Derek Orr, Mar 23 2014
Binomial transform of A058481: (1, 6, 12, 24, 48, 96, ...) and second binomial transform of (1, 5, 1, 5, 1, 5, ...). - Gary W. Adamson, Aug 24 2016
Number of ordered pairs of nonempty sets whose union is [n]. a(2) = 7: ({1,2},{1,2}), ({1,2},{1}), ({1,2},{2}), ({1},{1,2}), ({1},{2}), ({2},{1,2}), ({2},{1}). If "nonempty" is omitted we get A000244. - Manfred Boergens, Mar 29 2023

Examples

			G.f. = x + 7*x^2 + 25*x^3 + 79*x^4 + 241*x^5 + 727*x^6 + 2185*x^7 + 6559*x^8 + ...
a(1) = 1;
a(2) = 3 + 1 + 3 = 7;
a(3) = 9 + 3 + 1 + 3 + 9 = 25;
a(4) = 27 + 9 + 3 + 1 + 3 + 9 + 27 = 79; etc. - _Philippe Deléham_, Feb 24 2014
		

Crossrefs

Programs

Formula

Number of m X n binary matrices with no zero rows or columns is Sum_{j=0..m} (-1)^j*C(m, j)*(2^(m-j)-1)^n.
From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-3*x)-2/(1-x)+1.
E.g.f.: e^(3*x)-2*(e^x)+1. (End)
a(n) = 3*a(n-1) + 4 (with a(1)=1). - Vincenzo Librandi, Aug 07 2010
a(n) = 4*a(n-1) - 3*a(n-2). - G. C. Greubel, Aug 25 2016

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Dec 04 2000

A001998 Bending a piece of wire of length n+1; walks of length n+1 on a tetrahedron; also non-branched catafusenes with n+2 condensed hexagons.

Original entry on oeis.org

1, 2, 4, 10, 25, 70, 196, 574, 1681, 5002, 14884, 44530, 133225, 399310, 1196836, 3589414, 10764961, 32291602, 96864964, 290585050, 871725625, 2615147350, 7845353476, 23535971854, 70607649841, 211822683802, 635467254244, 1906400965570, 5719200505225, 17157599124190
Offset: 0

Views

Author

Keywords

Comments

The wire stays in the plane, there are n bends, each is R,L or O; turning the wire over does not count as a new figure.
Equivalently, walks of n+1 steps on a tetrahedron, visiting n+2 vertices, with n "corners"; the symmetry group is S4, reversing a walk does not count as different. Simply interpret R,L,O as instructions to turn R, turn L, or retrace the last step. Walks are not self-avoiding.
Also, it appears that a(n) gives the number of equivalence classes of n-tuples of 0, 1 and 2, where two n-tuples are equivalent if one can be obtained from the other by a sequence of operations R and C, where R denotes reversal and C denotes taking the 2's complement (C(x)=2-x). This has been verified up to a(19)=290585050. Example: for n=3 there are ten equivalence classes {000, 222}, {001, 100, 122, 221}, {002, 022, 200, 220}, {010, 212}, {011, 110, 112, 211}, {012, 210}, {020, 202}, {021, 102, 120, 201}, {101, 121}, {111}, so a(3)=10. - John W. Layman, Oct 13 2009
There exists a bijection between chains of n+2 hexagons and the above described equivalence classes of n-tuples of 0,1, and 2. Namely, for a given chain of n+2 hexagons we take the sequence of the numbers of vertices of degree 2 (0, 1, or 2) between the consecutive contact vertices on one side of the chain; switching to the other side we obtain the 2's complement of this sequence; reversing the order of the hexagons, we obtain the reverse sequence. The inverse mapping is straightforward. For example, to a linear chain of 7 hexagons there corresponds the 5-tuple 11111. - Emeric Deutsch, Apr 22 2013
If we treat two wire bends (or walks, or tuples) related by turning over (or reversing) as different in any of the above-given interpretations of this sequence, we get A007051 (or A124302). Also, a(n-1) is the sum of first 3 terms in n-th row of A284949, see crossrefs therein. - Andrey Zabolotskiy, Sep 29 2017
a(n-1) is the number of color patterns (set partitions) in an unoriented row of length n using 3 or fewer colors (subsets). - Robert A. Russell, Oct 28 2018
From Allan Bickle, Jun 02 2022: (Start)
a(n) is the number of (unlabeled) 3-paths with n+6 vertices. (A 3-path with order n at least 5 can be constructed from a 4-clique by iteratively adding a new 3-leaf (vertex of degree 3) adjacent to an existing 3-clique containing an existing 3-leaf.)
Recurrences appear in the papers by Bickle, Eckhoff, and Markenzon et al. (End)
a(n) is also the number of distinct planar embeddings of the (n+1)-alkane graph (up to at least n=9, and likely for all n). - Eric W. Weisstein, May 21 2024

Examples

			There are 2 ways to bend a piece of wire of length 2 (bend it or not).
For n=4 and a(n-1)=10, the 6 achiral patterns are AAAA, AABB, ABAB, ABBA, ABCA, and ABBC.  The 4 chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB. - _Robert A. Russell_, Oct 28 2018
		

References

  • A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 75.
  • S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem. 134 (1997), 55-70.
  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
  • R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [I think this reference does not mention this sequence. - N. J. A. Sloane, Aug 10 2006]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A320750, offset by one. Column k = 0 of A323942, offset by two.
Cf. A124302 (oriented), A107767 (chiral), A182522 (achiral), with varying offsets.
Column 3 of A320750.
The numbers of unlabeled k-paths for k = 2..7 are given in A005418, A001998, A056323, A056324, A056325, and A345207, respectively.
The sequences above converge to A103293(n+1).

Programs

  • GAP
    a:=[];; for n in [2..45] do if n mod 2 =0 then Add(a,((3^((n-2)/2)+1)/2)^2); else Add(a,  3^((n-3)/2)+(1/4)*(3^(n-2)+1)); fi; od; a; # Muniru A Asiru, Oct 28 2018
  • Maple
    A001998 := proc(n) if n = 0 then 1 elif n mod 2 = 1 then (1/4)*(3^n+4*3^((n-1)/2)+1) else (1/4)*(3^n+2*3^(n/2)+1); fi; end;
    A001998:=(-1+3*z+2*z**2-8*z**3+3*z**4)/(z-1)/(3*z-1)/(3*z**2-1); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence with an extra leading 1
  • Mathematica
    a[n_?OddQ] := (1/4)*(3^n + 4*3^((n - 1)/2) + 1); a[n_?EvenQ] := (1/4)*(3^n + 2*3^(n/2) + 1); Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jan 25 2013, from formula *)
    LinearRecurrence[{4,0,-12,9},{1,2,4,10},30] (* Harvey P. Dale, Apr 10 2013 *)
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=3; Table[Sum[StirlingS2[n,j]+Ach[n,j],{j,k}]/2,{n,40}] (* Robert A. Russell, Oct 28 2018 *)
  • PARI
    Vec((1-2*x-4*x^2+6*x^3)/((1-x)*(1-3*x)*(1-3*x^2)) + O(x^50)) \\ Colin Barker, May 15 2016
    

Formula

a(n) = if n mod 2 = 0 then ((3^((n-2)/2)+1)/2)^2 else 3^((n-3)/2)+(1/4)*(3^(n-2)+1).
G.f.: (1-2*x-4*x^2+6*x^3) / ((1-x)*(1-3*x)*(1-3*x^2)). - Corrected by Colin Barker, May 15 2016
a(n) = 4*a(n-1)-12*a(n-3)+9*a(n-4), with a(0)=1, a(1)=2, a(2)=4, a(3)=10. - Harvey P. Dale, Apr 10 2013
a(n) = (1+3^n+3^(1/2*(-1+n))*(2-2*(-1)^n+sqrt(3)+(-1)^n*sqrt(3)))/4. - Colin Barker, May 15 2016
E.g.f.: (2*sqrt(3)*sinh(sqrt(3)*x) + 3*exp(2*x)*cosh(x) + 3*cosh(sqrt(3)*x))/6. - Ilya Gutkovskiy, May 15 2016
From Robert A. Russell, Oct 28 2018: (Start)
a(n-1) = (A124302(n) + A182522(n)) / 2 = A124302(n) - A107767(n-1) = A107767(n-1) + A182522(n).
a(n-1) = Sum_{j=1..k} (S2(n,j) + Ach(n,j)) / 2, where k=3 is the maximum number of colors, S2 is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
a(n-1) = A057427(n) + A056326(n) + A056327(n). (End)
a(2*n) = A007051(n)^2; a(2*n+1) = A007051(n)*A007051(n+1). - Todd Simpson, Mar 25 2024

Extensions

Offset and Maple code corrected by Colin Mallows, Nov 12 1999
Term added by Robert A. Russell, Oct 30 2018

A113405 Expansion of x^3/(1 - 2*x + x^3 - 2*x^4) = x^3/( (1-2*x)*(1+x)*(1-x+x^2) ).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 7, 14, 28, 57, 114, 228, 455, 910, 1820, 3641, 7282, 14564, 29127, 58254, 116508, 233017, 466034, 932068, 1864135, 3728270, 7456540, 14913081, 29826162, 59652324, 119304647, 238609294, 477218588, 954437177, 1908874354, 3817748708
Offset: 0

Views

Author

Paul Barry, Oct 28 2005

Keywords

Comments

A transform of the Jacobsthal numbers. A059633 is the equivalent transform of the Fibonacci numbers.
Paul Curtz, Aug 05 2007, observes that the inverse binomial transform of 0,0,0,1,2,4,7,14,28,57,114,228,455,910,1820,... gives the same sequence up to signs. That is, the extended sequence is an eigensequence for the inverse binomial transform (an autosequence).
The round() function enables the closed (non-recurrence) formula to take a very simple form: see Formula section. This can be generalized without loss of simplicity to a(n) = round(b^n/c), where b and c are very small, incommensurate integers (c may also be an integer fraction). Particular choices of small integers for b and c produce a number of well-known sequences which are usually defined by a recurrence - see Cross Reference. - Ross Drewe, Sep 03 2009

Crossrefs

From Ross Drewe, Sep 03 2009: (Start)
Other sequences a(n) = round(b^n / c), where b and c are very small integers:
A001045 b = 2; c = 3
A007910 b = 2; c = 5
A016029 b = 2; c = 5/3
A077947 b = 2; c = 7
abs(A078043) b = 2; c = 7/3
A007051 b = 3; c = 2
A015518 b = 3; c = 4
A034478 b = 5; c = 2
A003463 b = 5; c = 4
A015531 b = 5; c = 6
(End)

Programs

  • Magma
    [Round(2^n/9): n in [0..40]]; // Vincenzo Librandi, Aug 11 2011
    
  • Maple
    A010892 := proc(n) op((n mod 6)+1,[1,1,0,-1,-1,0]) ; end proc:
    A113405 := proc(n) (2^n-(-1)^n)/9 -A010892(n-1)/3; end proc: # R. J. Mathar, Dec 17 2010
  • Mathematica
    CoefficientList[Series[x^3/(1-2x+x^3-2x^4),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,-1,2},{0,0,0,1},40] (* Harvey P. Dale, Apr 30 2011 *)
  • PARI
    a(n)=2^n\/9 \\ Charles R Greathouse IV, Jun 05 2011
    
  • Python
    def A113405(n): return ((1<Chai Wah Wu, Apr 17 2025

Formula

a(n) = 2a(n-1) - a(n-3) + 2a(n-4).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*A001045(k).
a(n) = Sum_{k=0..n} binomial((n+k)/2,k)*A001045((n-k)/2)*(1+(-1)^(n-k))/2.
a(3n) = A015565(n), a(3n+1) = 2*A015565(n), a(3n+2) = 4*A015565(n). - Paul Curtz, Nov 30 2007
From Paul Curtz, Dec 16 2007: (Start)
a(n+1) - 2a(n) = A131531(n).
a(n) + a(n+3) = 2^n. (End)
a(n) = round(2^n/9). - Ross Drewe, Sep 03 2009
9*a(n) = 2^n + (-1)^n - 3*A010892(n). - R. J. Mathar, Mar 24 2018

Extensions

Edited by N. J. A. Sloane, Dec 13 2007

A056272 Word structures of length n using a 5-ary alphabet.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 202, 855, 3845, 18002, 86472, 422005, 2079475, 10306752, 51263942, 255514355, 1275163905, 6368612302, 31821472612, 159042661905, 795019337135, 3974515030652, 19870830712482, 99348921288655
Offset: 0

Views

Author

Keywords

Comments

Permuting the alphabet will not change a word structure. Thus aabc and bbca have the same structure.
Density of regular language L over {1,2,3,4}^* (i.e., number of strings of length n in L) described by regular expression 11* + 11*2(1+2)* + 11*2(1+2)*3(1+2+3)* + 11*2(1+2)*3(1+2+3)*4(1+2+3+4)* + 11*2(1+2)*3(1+2+3)*4(1+2+3+4)*5(1+2+3+4+5)* - Nelma Moreira, Oct 10 2004
Number of set partitions of [n] into at most 5 parts. - Joerg Arndt, Apr 18 2014

Examples

			For a(4)=15, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD; the 8 chiral patterns are the 4 pairs AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

A row of the array in A278984.
Cf. A056324 (unoriented), A320935 (chiral), A305751 (achiral).

Programs

  • GAP
    List([0..25],n->Sum([0..5],k->Stirling2(n,k))); # Muniru A Asiru, Oct 30 2018
  • Magma
    I:=[1,1,2,5,15]; [n le 5 select I[n] else 11*Self(n-1)-41*Self(n-2)+61*Self(n-3)-30*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 19 2014
    
  • Maple
    seq(add(combinat:-stirling2(n, j), j=0..5), n=0..23); # Zerinvary Lajos, Dec 04 2007
    # Alternative:
    (x*(x*(x*(11*x-37)+32)-10)+1)/(x*(x*(x*(30*x-61)+41)-11)+1):
    series(%, x, 32): seq(coeff(%, x, n), n=0..23); # Peter Luschny, Nov 05 2018
  • Mathematica
    CoefficientList[Series[(1 - 10 x + 32 x^2 - 37 x^3 + 11 x^4)/((x - 1) (3 x - 1) (2 x - 1) (5 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 19 2014 *)
    LinearRecurrence[{11,-41,61,-30},{1,1,2,5,15},30] (* Harvey P. Dale, Feb 25 2018 *)
    Table[Sum[StirlingS2[n, k], {k, 0, 5}], {n, 0, 30}] (* Robert A. Russell, Apr 25 2018 *)
    CoefficientList[Series[1/120 (44 + 45 E^x + 20 E^(2 x) + 10 E^(3 x) + E^(5 x)), {x, 0, 30}], x]*Table[k!, {k, 0, 30}] (* Stefano Spezia, Nov 06 2018 *)
  • PARI
    a(n) = sum(k=0,5, stirling(n, k, 2) ); \\ Joerg Arndt, Apr 18 2014
    

Formula

a(n) = Sum_{k=0..5} Stirling2(n, k).
a(n) = (5^n + 10*3^n + 20*2^n + 45)/5! for n >= 1. - Vladeta Jovovic, Aug 17 2003
From Nelma Moreira, Oct 10 2004: (Start)
For c=5, a(n) = c^n/c! + Sum_{k=0..c-2} (k^n/k!*(Sum_{j=2..c-k} (-1)^j/j!)).
a(n) = Sum_{k=1..c} g(k, c)*k^n where g(1, 1) = 1, g(1, c) = g(1, c-1) + (-1)^(c-1)/(c-1)! if c > 1; g(k, c) = g(k-1, c-1)/k if c > 1, 2 <= k <= c and n >= 1. (End)
a(n+1) is the top entry of the vector M^n*[1,1,1,1,1,0,0,0,...], where M is an infinite bidiagonal matrix with M(r,r+1)=1 in the superdiagonal and M(r,r)=r, r>=1 as the main diagonal, and the rest zeros. The n-th power of the matrix is multiplied from the right with a column vector starting with 5 1's. - Gary W. Adamson, Jun 24 2011
G.f.: (1 - 10x + 32x^2 - 37x^3 + 11x^4)/((1 - x)*(1 - 2x)*(1 - 3x)*(1 - 5x)). - R. J. Mathar, Jul 06 2011 [Adapted to offset 0 by Robert A. Russell, Oct 30 2018]
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=5. - Robert A. Russell, Apr 25 2018
E.g.f.: (1/120)*(44 + 45*exp(x) + 20*exp(2*x) + 10*exp(3*x) + exp(5*x)). - Stefano Spezia, Nov 06 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 06 2018

A124302 Number of set partitions with at most 3 blocks; number of Dyck paths of height at most 4; dimension of space of symmetric polynomials in 3 noncommuting variables.

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574, 265721, 797162, 2391485, 7174454, 21523361, 64570082, 193710245, 581130734, 1743392201, 5230176602, 15690529805, 47071589414, 141214768241, 423644304722, 1270932914165, 3812798742494, 11438396227481
Offset: 0

Views

Author

Mike Zabrocki, Oct 25 2006

Keywords

Comments

Row sums of triangle in A056241. - Philippe Deléham, Oct 30 2006
Row sums of triangle in A147746. - Philippe Deléham, Dec 04 2008
Hankel transform is := [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
Number of nonisomorphic graded posets with 0 and 1 and uniform Hasse graph of rank n with no 3-element antichain. (Uniform used in the sense of Retakh, Serconek and Wilson. Graded used in Stanley's sense that every maximal chain has the same length n.) - David Nacin, Feb 26 2012
Number of Dyck paths of length 2n and height at most 4. - Ira M. Gessel, Aug 06 2012

Examples

			There are 15 set partitions of {1,2,3,4}, only {{1},{2},{3},{4}} has more than 3 blocks, so a(4) = 14.
G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 41*x^5 + 122*x^6 + 365*x^7 + ...
		

References

  • R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Essentially the same as A007051.

Programs

  • Magma
    I:=[1, 1, 2]; [n le 3 select I[n] else  4*Self(n-1) - 3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 25 2012
    
  • Maple
    a:= proc(n); if n<3 then [1,1,2][n+1]; else 4*a(n-1)-3*a(n-2); fi; end:
    # Mike Zabrocki, Oct 25 2006
    with(GraphTheory): G:=PathGraph(5): A:= AdjacencyMatrix(G): nmax:=27; for n from 0 to 2*nmax do B(n):=A^n; b(n):=B(n)[1,1]; od: for n from 0 to nmax do a(n):=b(2*n) od: seq(a(n),n=0..nmax);
    # Johannes W. Meijer, May 29 2010
  • Mathematica
    a=Exp[x]-1; Range[0, 20]! CoefficientList[Series[1+a+a^2/2+a^3/6, {x,0,20}],x]
    Join[{1}, LinearRecurrence[{4, -3}, {1, 2}, 20]] (* David Nacin, Feb 26 2012 *)
    CoefficientList[Series[1 / (1 - x / (1 - x / (1 - x / (1 - x)))), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 25 2012 *)
    Table[Sum[StirlingS2[n,k],{k,0,3}],{n,0,30}] (* Robert A. Russell, Mar 29 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, (3^(n-1) + 1) / 2)}; /* Michael Somos, Apr 03 2014 */
  • Python
    def a(n, adict={0:1, 1:1, 2:2}):
        if n in adict:
            return adict[n]
        adict[n]=4*a(n-1) - 3*a(n-2)
        return adict[n] # David Nacin, Mar 04 2012
    

Formula

O.g.f.: (q^2 - 3*q + 1)/(3*q^2 - 4*q + 1) = Sum_{k=0..3} (q^k/Product_{i=1..k} (1-i*q)).
a(n) = 4*a(n-1) - 3*a(n-2); a(0) = 1, a(1) = 1, a(2) = 2, a(n) = Sum_{k=1..3} A008277(n,k).
Inverse binomial transform of A007581. - Philippe Deléham, Oct 30 2006
a(n) = Sum_{k=0..n} A056241(n,k), n >= 1. - Philippe Deléham, Oct 30 2006
a(0) = 1, a(n) = (3^(n-1) + 1)/2 for n >= 1, see A007051. - Philippe Deléham, Oct 30 2006
E.g.f.: (2 + 3*exp(x) + exp(3x))/6.
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x)))). - Michael Somos, May 03 2012
G.f.: 1 + x + 3*x^2*U(0)/2 where U(k) = 1 + 2/(3*3^k + 3*3^k/(1 - 18*x*3^k/ (9*x*3^k - 1/U(k+1)))); (continued fraction, 4-step). - Sergei N. Gladkovskii, Nov 01 2012
G.f.: 1+x*G(0) where G(k) = 1 + 2*x/( 1-2*x - x*(1-2*x)/(x + (1-2*x)*2/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
a(n) = Sum_{k=0..3} Stirling2(n,k). - Robert A. Russell, Mar 29 2018
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=3. - Robert A. Russell, Apr 25 2018

A254103 Permutation of natural numbers: a(0) = 0, a(2n) = (3*a(n))-1, a(2n+1) = floor((3*(1+a(n)))/2).

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 8, 6, 14, 9, 11, 7, 23, 13, 17, 10, 41, 22, 26, 15, 32, 18, 20, 12, 68, 36, 38, 21, 50, 27, 29, 16, 122, 63, 65, 34, 77, 40, 44, 24, 95, 49, 53, 28, 59, 31, 35, 19, 203, 103, 107, 55, 113, 58, 62, 33, 149, 76, 80, 42, 86, 45, 47, 25, 365, 184, 188, 96, 194, 99, 101, 52, 230, 117, 119, 61, 131, 67, 71, 37, 284, 144, 146, 75, 158, 81, 83, 43
Offset: 0

Views

Author

Antti Karttunen, Jan 25 2015

Keywords

Comments

This sequence can be represented as a binary tree. Each child to the left is obtained by multiplying the parent by three and subtracting one, and each child to the right is obtained by adding one to parent, multiplying by three, and then halving the result (discarding a possible remainder):
0
|
...................1...................
2 3
5......../ \........4 8......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
14 9 11 7 23 13 17 10
41 22 26 15 32 18 20 12 68 36 38 21 50 27 29 16
etc.

Crossrefs

Inverse: A254104.
Similar permutations: A048673, A183209.

Programs

  • Python
    def a(n):
        if n==0: return 0
        if n%2==0: return 3*a(n//2) - 1
        else: return int((3*(1 + a((n - 1)//2)))/2)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 06 2017

Formula

a(0) = 0, a(2n) = A016789(a(n)-1), a(2n+1) = A032766(1+a(n)).
a(0) = 0, a(2n) = (3*a(n))-1, a(2n+1) = floor((3*(1+a(n)))/2).
Other identities:
a(2^n) = A007051(n) for all n >= 0. [A property shared with A048673 and A183209.]

A056273 Word structures of length n using a 6-ary alphabet.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 876, 4111, 20648, 109299, 601492, 3403127, 19628064, 114700315, 676207628, 4010090463, 23874362200, 142508723651, 852124263684, 5101098232519, 30560194493456, 183176170057707, 1098318779272060, 6586964947803695, 39510014478620232, 237013033135668883
Offset: 0

Views

Author

Keywords

Comments

Set partitions of the n-set into at most 6 parts; also restricted growth strings (RGS) with six letters s(1),s(2),...,s(6) where the first occurrence of s(j) precedes the first occurrence of s(k) for all j < k. - Joerg Arndt, Jul 06 2011
Permuting the alphabet will not change a word structure. Thus aabc and bbca have the same structure.
Density of regular language L over {1,2,3,4,5,6}^* (i.e., number of strings of length n in L) described by regular expression with c=6: Sum_{i=1..c} Product_{j=1..i} (j(1+...+j)*) where Sum stands for union and Product for concatenation. - Nelma Moreira, Oct 10 2004
Word structures of length n using an N-ary alphabet are generated by taking M^n* the vector [(N 1's),0,0,0,...], leftmost column term = a(n+1). In the case of A056273, the vector = [1,1,1,1,1,1,0,0,0,...]. As the vector approaches all 1's, the leftmost column terms approach A000110, the Bell sequence. - Gary W. Adamson, Jun 23 2011
From Gary W. Adamson, Jul 06 2011: (Start)
Construct an infinite array of sequences representing word structures of length n using an N-ary alphabet as follows:
.
1, 1, 1, 1, 1, 1, 1, 1, ...; N=1, A000012
1, 2, 4, 8, 16, 32, 64, 128, ...; N=2, A000079
1, 2, 5, 14, 41, 122, 365, 1094, ...; N=3, A007051
1, 2, 5, 15, 51, 187, 715, 2795, ...; N=4, A007581
1, 2, 5, 15, 52, 202, 855, 3845, ...; N=5, A056272
1, 2, 5, 15, 52, 203, 876, 4111, ...; N=6, A056273
...
The sequences tend to A000110. Finite differences of columns reinterpreted as rows generate A008277 as a triangle: (1; 1,1; 1,3,1; 1,7,6,1; ...). (End)

Examples

			For a(4) = 15, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD; the 8 chiral patterns are the 4 pairs AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

A row of the array in A278984 and A320955.
Cf. A056325 (unoriented), A320936 (chiral), A305752 (chiral).

Programs

  • GAP
    List([0..25],n->Sum([0..6],k->Stirling2(n,k))); # Muniru A Asiru, Oct 30 2018
    
  • Magma
    [(&+[StirlingSecond(n, i): i in [0..6]]): n in [0..30]]; // Vincenzo Librandi, Nov 07 2018
  • Maple
    egf := (265+264*exp(x)+135*exp(x*2)+40*exp(x*3)+15*exp(x*4)+exp(6*x))/6!:
    ser := series(egf,x,30): seq(n!*coeff(ser,x,n),n=0..22); # Peter Luschny, Nov 06 2018
  • Mathematica
    Table[Sum[StirlingS2[n,k],{k,0,6}],{n,0,30}] (* or *) LinearRecurrence[ {16,-95,260,-324,144},{1,1,2,5,15,52},30] (* Harvey P. Dale, Jun 05 2015 *)
  • PARI
    Vec((1 - 15*x + 81*x^2 - 192*x^3 + 189*x^4 - 53*x^5)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-6*x)) + O(x^30)) \\ Michel Marcus, Nov 07 2018
    

Formula

a(n) = Sum_{k=0..6} Stirling2(n, k).
For n > 0, a(n) = (1/6!)*(6^n + 15*4^n + 40*3^n + 135*2^n + 264). - Vladeta Jovovic, Aug 17 2003
From Nelma Moreira, Oct 10 2004: (Start)
For n > 0 and c = 6:
a(n) = (c^n)/c! + Sum_{k=0..c-2} ((k^n)/k!*(Sum_{j=2..c-k}(((-1)^j)/j!))).
a(n) = Sum_{k=1..c} (g(k, c)*k^n) where g(1, 1) = 1; g(1, c) = g(1, c-1) + ((-1)^(c-1))/(c-1)! if c>1. For 2 <= k <= c: g(k, c) = g(k-1, c-1)/k if c>1. (End)
G.f.: (1 - 15*x + 81*x^2 - 192*x^3 + 189*x^4 - 53*x^5)/((1-x)*(1-2x)*(1-3x)*(1-4x)*(1-6x)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009 [corrected by R. J. Mathar, Sep 16 2009] [Adapted to offset 0 by Robert A. Russell, Nov 06 2018]
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=6. - Robert A. Russell, Apr 25 2018
E.g.f.: (265 + 264*exp(x) + 135*exp(x*2) + 40*exp(x*3) + 15*exp(x*4) + exp(6*x))/6!. - Peter Luschny, Nov 06 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 06 2018

A067771 Number of vertices in Sierpiński triangle of order n.

Original entry on oeis.org

3, 6, 15, 42, 123, 366, 1095, 3282, 9843, 29526, 88575, 265722, 797163, 2391486, 7174455, 21523362, 64570083, 193710246, 581130735, 1743392202, 5230176603, 15690529806, 47071589415, 141214768242, 423644304723, 1270932914166
Offset: 0

Views

Author

Martin Wessendorf (martinw(AT)mail.ahc.umn.edu), Feb 09 2002

Keywords

Comments

An order 0 Sierpiński triangle is a triangle. Order n+1 is formed from three copies of order n by identifying pairs of corner vertices of each pair of triangles. - Allan Bickle, Aug 03 2024
This sequence represents another link from the product factor space Q X Q / {(1,1), (-1, -1)} to Sierpiński's triangle. The first "link" found was to sequence A048473. - Creighton Dement, Aug 05 2004
a(n) equals the number of orbits of the finite group PSU(3,3^n) on subsets of size 3 of the 3^(3n)+1 isotropic points of a unitary 3 space. - Paul M. Bradley, Jan 31 2017
For n >= 1, number of edges in a planar Apollonian graph at iteration n. - Andrew D. Walker, Jul 08 2017
Also the total domination number of the (n+3)-Dorogovtsev-Goltsev-Mendes graph, using the convention DGM(0) = P_2. - Eric W. Weisstein, Jan 14 2024

Examples

			Order 0 is a triangle, so a(0) = 3.
Order 1 has three corners (degree 2) and three other vertices, so a(1) = 6.
3 example graphs:                        o
                                        / \
                                       o---o
                                      / \ / \
                        o            o---o---o
                       / \          / \     / \
             o        o---o        o---o   o---o
            / \      / \ / \      / \ / \ / \ / \
           o---o    o---o---o    o---o---o---o---o
Graph:      S_1        S_2              S_3
Vertices:    3          6                15
Edges:       3          9                27
		

References

  • Peter Wessendorf and Kristina Downing, personal communication.

Crossrefs

Cf. A048473.
Cf. A007283, A029858, A067771, A193277, A233774, A233775, A246959 (Sierpiński triangle graphs).

Programs

  • Magma
    [(3/2)*(1+3^n): n in [0..30]]; // Vincenzo Librandi, Jun 20 2011
  • Mathematica
    LinearRecurrence[{4, -3}, {3, 6}, 26] (* or *)
    CoefficientList[Series[3 (1 - 2 x)/((1 - x) (1 - 3 x)), {x, 0, 25}], x] (* Michael De Vlieger, Feb 02 2017 *)
    Table[3/2 (3^n + 1), {n, 0, 20}] (* Eric W. Weisstein, Jan 14 2024 *)
    3/2 (3^Range[0, 20] + 1) (* Eric W. Weisstein, Jan 14 2024 *)

Formula

a(n) = (3/2)*(3^n + 1).
a(n) = 3 + 3^1 + 3^2 + 3^3 + 3^4 + ... + 3^n = 3 + Sum_{k=1..n} 3^n.
a(n) = 3*A007051(n).
a(0) = 3, a(n) = a(n-1) + 3^n. a(n) = (3/2)*(1+3^n). - Zak Seidov, Mar 19 2007
a(n) = 4*a(n-1) - 3*a(n-2).
G.f.: 3*(1-2*x)/((1-x)*(1-3*x)). - Colin Barker, Jan 10 2012
a(n) = A233774(2^n). - Omar E. Pol, Dec 16 2013
a(n) = 3*a(n-1) - 3. - Zak Seidov, Oct 26 2014
E.g.f.: 3*(exp(x) + exp(3*x))/2. - Stefano Spezia, Feb 09 2021
a(n) = A029858(n+1) + 3. - Allan Bickle, Aug 03 2024

Extensions

More terms from Benoit Cloitre, Feb 22 2002

A080937 Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2*n steps with all values <= 5.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, 45542, 147798, 479779, 1557649, 5057369, 16420730, 53317085, 173118414, 562110290, 1825158051, 5926246929, 19242396629, 62479659622, 202870165265, 658715265222, 2138834994142, 6944753544643, 22549473023585
Offset: 0

Views

Author

Henry Bottomley, Feb 25 2003

Keywords

Comments

With interpolated zeros (1,0,1,0,2,...), counts closed walks of length n at start or end node of P_6. The sequence (0,1,0,2,...) counts walks of length n between the start and second node. - Paul Barry, Jan 26 2005
HANKEL transform of sequence and the sequence omitting a(0) is the sequence A130716. This is the unique sequence with that property. - Michael Somos, May 04 2012
From Wolfdieter Lang, Mar 30 2020: (Start)
a(n) is also the upper left entry of the n-th power of the 3 X 3 tridiagonal matrix M_3 = Matrix([1,1,0], [1,2,1], [0,1,2]) from A332602: a(n) = ((M_3)^n)[1,1].
Proof: (M_3)^n = b(n-2)*(M_3)^2 - (6*b(n-3) - b(n-4))*M_3 + b(n-3)*1_3, for n >= 0, with b(n) = A005021(n), for n >= -4. For the proof of this see a comment in A005021. Hence (M_3)^n[1,1] = 2*b(n-2) - 5*b(n-3) + b(n-4), for n >= 0. This proves the 3 X 3 part of the conjecture in A332602 by Gary W. Adamson.
The formula for a(n) given below in terms of r = rho(7) = A160389 proves that a(n)/a(n-1) converges to rho(7)^2 = A116425 = 3.2469796..., because r - 2/r = 0.6920... < 1, and r^2 - 3 = 0.2469... < 1. This limit was conjectured in A332602 by Gary W. Adamson.
(End)

Examples

			G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 131*x^6 + 417*x^7 + 1341*x^8 + ...
		

Crossrefs

Cf. A033191 which essentially provide the same sequence for different limits and tend to A000108.

Programs

  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 09 2016
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|-6|5>>^n. <<1, 1, 2>>)[1, 1]:
    seq(a(n), n=0..35);  # Alois P. Heinz, Nov 09 2012
  • Mathematica
    nn=56;Select[CoefficientList[Series[(1-4x^2+3x^4)/(1-5x^2+6x^4-x^6), {x,0,nn}], x],#>0 &] (* Geoffrey Critzer, Jan 26 2014 *)
    LinearRecurrence[{5,-6,1},{1,1,2},30] (* Jean-François Alcover, Jan 09 2016 *)
  • PARI
    a=vector(99); a[1]=1; a[2]=2;a[3]=5; for(n=4,#a,a[n]=5*a[n-1]-6*a[n-2] +a[n-3]); a \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    {a(n) = if( n<0, n = -n; polcoeff( (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - 4*x + 3*x^2) / (1 - 5*x + 6*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, May 04 2012 */
    

Formula

a(n) = A080934(n,5).
G.f.: (1-4*x+3*x^2)/(1-5*x+6*x^2-x^3). - Ralf Stephan, May 13 2003
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3). - Herbert Kociemba, Jun 11 2004
a(n) = A096976(2*n). - Floor van Lamoen, Nov 02 2005
a(n) = (4/7-4/7*cos(1/7*Pi)^2)*(4*(cos(Pi/7))^2)^n + (1/7-2/7*cos(1/7*Pi) + 4/7*cos(1/7*Pi)^2)*(4*(cos(2*Pi/7))^2)^n + (2/7+2/7*cos(1/7*Pi))*(4*(cos(3*Pi/7))^2)^n for n>=0. - Richard Choulet, Apr 19 2010
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x))))). - Michael Somos, May 04 2012
a(-n) = A038213(n). a(n + 2) * a(n) - a(n + 1)^2 = a(1 - n). Convolution inverse is A123183 with A123183(0)=1. - Michael Somos, May 04 2012
From Wolfdieter Lang, Mar 30 2020: (Start)
In terms of the algebraic number r = rho(7) = A160389 of degree 3 the formula given by Richard Choulet becomes a(n) = (1/7)*(r)^(2*n)*(C1(r) + C2(r)*(r - 2/r)^(2*n) + C3(r)*(r^2 - 3)^(2*n)), with C1(r) = 4 - r^2, C2(r) = 1 - r + r^2, and C3 = 2 + r.
a(n) = ((M_3)^n)[1,1] = 2*b(n-2) - 5*b(n-3) + b(n-4), for n >= 0, with the 3 X 3 tridiagonal matrix M_3 = Matrix([1,1,0], [1,2,1], [0,1,2]) from A332602, and b(n) = A005021(n) (with offset n >= -4). (End)

A119258 Triangle read by rows: T(n,0) = T(n,n) = 1 and for 0

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 7, 17, 15, 1, 1, 9, 31, 49, 31, 1, 1, 11, 49, 111, 129, 63, 1, 1, 13, 71, 209, 351, 321, 127, 1, 1, 15, 97, 351, 769, 1023, 769, 255, 1, 1, 17, 127, 545, 1471, 2561, 2815, 1793, 511, 1, 1, 19, 161, 799, 2561, 5503, 7937, 7423, 4097, 1023, 1
Offset: 0

Views

Author

Reinhard Zumkeller, May 11 2006

Keywords

Comments

From Richard M. Green, Jul 26 2011: (Start)
T(n,n-k) is the (k-1)-st Betti number of the subcomplex of the n-dimensional half cube obtained by deleting the interiors of all half-cube shaped faces of dimension at least k.
T(n,n-k) is the (k-2)-nd Betti number of the complement of the k-equal real hyperplane arrangement in R^n.
T(n,n-k) gives a lower bound for the complexity of the problem of determining, given n real numbers, whether some k of them are equal.
T(n,n-k) is the number of nodes used by the Kronrod-Patterson-Smolyak cubature formula in numerical analysis. (End)

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 3,  1;
  1, 5,  7,  1;
  1, 7, 17, 15,  1;
  1, 9, 31, 49, 31, 1;
		

Crossrefs

A145661, A119258 and A118801 are all essentially the same (see the Shattuck and Waldhauser paper). - Tamas Waldhauser, Jul 25 2011

Programs

  • Haskell
    a119258 n k = a119258_tabl !! n !! k
    a119258_row n = a119258_tabl !! n
    a119258_list = concat a119258_tabl
    a119258_tabl = iterate (\row -> zipWith (+)
       ([0] ++ init row ++ [0]) $ zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Nov 15 2011
    
  • Magma
    function T(n,k)
      if k eq 0 or k eq n then return 1;
      else return 2*T(n-1,k-1) + T(n-1,k);
      end if;
      return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 18 2019
    
  • Maple
    # Case m = 2 of the more general:
    A119258 := (n,k,m) -> (1-m)^(-n+k)-m^(k+1)*pochhammer(n-k, k+1) *hypergeom([1,n+1],[k+2],m)/(k+1)!;
    seq(seq(round(evalf(A119258(n,k,2))),k=0..n), n=0..10); # Peter Luschny, Jul 25 2014
  • Mathematica
    T[n_, k_] := Binomial[n, k] Hypergeometric2F1[-k, n-k, n-k+1, -1];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 10 2017 *)
  • PARI
    T(n,k) = if(k==0 || k==n, 1, 2*T(n-1, k-1) + T(n-1,k) ); \\ G. C. Greubel, Nov 18 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        else: return 2*T(n-1, k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 18 2019

Formula

T(2*n,n-1) = T(2*n-1,n) for n > 0;
central terms give A119259; row sums give A007051;
T(n,0) = T(n,n) = 1;
T(n,1) = A005408(n-1) for n > 0;
T(n,2) = A056220(n-1) for n > 1;
T(n,n-4) = A027608(n-4) for n > 3;
T(n,n-3) = A055580(n-3) for n > 2;
T(n,n-2) = A000337(n-1) for n > 1;
T(n,n-1) = A000225(n) for n > 0.
T(n,k) = [k<=n]*(-1)^k*Sum_{i=0..k} (-1)^i*C(k-n,k-i)*C(n,i). - Paul Barry, Sep 28 2007
From Richard M. Green, Jul 26 2011: (Start)
T(n,k) = [k<=n] Sum_{i=n-k..n} (-1)^(n-k-i)*2^(n-i)*C(n,i).
T(n,k) = [k<=n] Sum_{i=n-k..n} C(n,i)*C(i-1,n-k-1).
G.f. for T(n,n-k): x^k/(((1-2x)^k)*(1-x)). (End)
T(n,k) = R(n,k,2) where R(n, k, m) = (1-m)^(-n+k)-m^(k+1)*Pochhammer(n-k,k+1)* hyper2F1([1,n+1], [k+2], m)/(k+1)!. - Peter Luschny, Jul 25 2014
From Peter Bala, Mar 05 2018: (Start)
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 + 2*x)^n/(1 + x) about 0. For example, for n = 4 we have (1 + 2*x)^4/(1 + x) = 1 + 7*x + 17*x^2 + 15*x^3 + x^4 + O(x^5).
Row reverse of A112857. (End)
Previous Showing 21-30 of 204 results. Next