cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 99 results. Next

A008615 a(n) = floor(n/2) - floor(n/3).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 13, 14, 14, 14, 14, 15, 14
Offset: 0

Views

Author

Keywords

Comments

If the two leading 0's are dropped, this becomes the essentially identical sequence A103221, with g.f. 1/((1-x^2)*(1-x^3)), which arises in many contexts. For example, 1/((1-x^4)*(1-x^6)) is the Poincaré series [or Poincare series] for modular forms of weight w for the full modular group. As generators one may take the Eisenstein series E_4 (A004009) and E_6 (A013973).
Dimension of the space of weight 2n+8 cusp forms for Gamma_0( 1 ).
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 5 ).
a(n) is the number of ways n can be written as the sum of a positive even number and a nonnegative multiple of 3 and so the number of ways (n-2) can be written as the sum of a nonnegative even number and a nonnegative multiple of 3 and also the number of ways (n+3) can be written as the sum of a positive even number and a positive multiple of 3.
It appears that this is also the number of partitions of 2n+6 that are 4-term arithmetic progressions. - John W. Layman, May 01 2009 [verified by Wesley Ivan Hurt, Jan 17 2021]
a(n) is the number of (n+3)-digit fixed points under the base-3 Kaprekar map A164993 (see A164997 for the list of fixed points). - Joseph Myers, Sep 04 2009
Starting from n=10 also the number of balls in new consecutive hexagonal edges, if an (infinite) chain of balls is winded spirally around the first ball at the center, such that each six steps make an entire winding. - K. G. Stier, Dec 21 2012
In any three consecutive terms at least two of them are equal to each other. - Michael Somos, Mar 01 2014
Number of partitions of (n-2) into parts 2 and 3. - David Neil McGrath, Sep 05 2014
a(n), n >= 0, is also the dimension of S_{2*(n+4)}, the complex vector space of modular cusp forms of weight 2*(n+4) and level 1 (full modular group). The dimension of S_0, S_2, S_4 and S_6 is 0. See, e.g., Ash and Gross, p. 178. Table 13.1. - Wolfdieter Lang, Sep 16 2016
From Wolfdieter Lang, May 08 2017: (Start)
a(n-2) = floor((n-2)/2) - floor((n-2)/3) = floor(n/2) - floor((n+1)/3) is for n >=0 the number of integers k in the interval (n+1)/3 < k <= floor(n/2). This problem appears in the computation of the number of zeros of Chebyshev S(n, x) polynomials (coefficients in A049310) in the open interval (-1, +1). See a comment there. This computation was motivated by a conjecture given in A008611 by Michel Lagneau, Mar 31 2017.
a(n) is also the number of integers k in the closed interval (n+1)/3 <= k <= floor(n/2), which is floor(n/2) - (ceiling((n+1)/3) - 1) for n >= 0 (proof trivial for n+1 == 0 (mod 3) and otherwise). From the preceding statement this a(n) is also a(n-2) + [n == 2 (mod 3)] for n >= 0 (with [statement] = 1 if the statement is true and zero otherwise). This proves the recurrence given by Michael Somos in the formula section. (End)
Assuming the Collatz conjecture to be true, for n > 1, a(n+7) is the row length of the n-th row of A340985. That is, the number of weakly connected components of the Collatz digraph of order n. - Sebastian Karlsson, Feb 23 2021

Examples

			G.f. = x^2 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + 2*x^11 + 2*x^12 + ...
		

References

  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.
  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
  • E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag, Berlin, 1983; p. 141, Th. 1.1.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962.
  • J.-M. Kantor, Où en sont les mathématiques, La formule de Molien-Weyl, SMF, Vuibert, p. 79

Crossrefs

Essentially the same as A103221.
First differences of A069905 (and A001399).

Programs

  • Haskell
    a008615 n = n `div` 2 - n `div` 3  -- Reinhard Zumkeller, Apr 28 2014
    
  • Magma
    [Floor(n/2)-Floor(n/3): n in [0..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Magma
    a := func< n | n lt 2 select 0 else n eq 2 select 1 else Dimension( ModularForms( PSL2( Integers()), 2*n-4))>; /* Michael Somos, Dec 11 2018 */
    
  • Maple
    a := n-> floor(n/2) - floor(n/3): seq(a(n), n = 0 .. 87);
  • Mathematica
    a[n_]:=Floor[n/2]-Floor[n/3]; Array[a,90,0] (* Vladimir Joseph Stephan Orlovsky, Dec 05 2008; corrected by Harvey P. Dale, Nov 30 2011 *)
    LinearRecurrence[{0, 1, 1, 0, -1}, {0, 0, 1, 0, 1}, 100]; (* Vincenzo Librandi, Sep 09 2015 *)
  • PARI
    {a(n) = (n\2) - (n\3)}; /* Michael Somos, Feb 06 2003 */
    
  • Python
    def A008615(n): return n//2 - n//3 # Chai Wah Wu, Jun 07 2022

Formula

a(n) = a(n-6) + 1 = a(n-2) + a(n-3) - a(n-5). - Henry Bottomley, Sep 02 2000
G.f.: x^2 / ((1-x^2) * (1-x^3)).
From Reinhard Zumkeller, Feb 27 2008: (Start)
a(A016933(n)) = a(A016957(n)) = a(A016969(n)) = n+1.
a(A008588(n)) = a(A016921(n)) = a(A016945(n)) = n. (End)
a(6*k) = k, k >= 0. - Zak Seidov, Sep 09 2012
a(n) = A005044(n+1) - A005044(n-3). - Johannes W. Meijer, Oct 18 2013
a(n) = floor((n+4)/6) - floor((n+3)/6) + floor((n+2)/6). - Mircea Merca, Nov 27 2013
Euler transform of length 3 sequence [0, 1, 1]. - Michael Somos, Mar 01 2014
a(n+2) = a(n) + 1 if n == 0 (mod 3), a(n+2) = a(n) otherwise. - Michael Somos, Mar 01 2014. See the May 08 2017 comment above. - Wolfdieter Lang, May 08 2017
a(n) = -a(-1 - n) for all n in Z. - Michael Somos, Mar 01 2014.
a(n) = A004526(n) - A002264(n). - Reinhard Zumkeller, Apr 28 2014
a(n) = Sum_{i=0..n-2} (floor(i/6)-floor((i-3)/6))*(-1)^i. - Wesley Ivan Hurt, Sep 08 2015
a(n) = a(n+6) - 1 = A103221(n+4) - 1, n >= 0. - Wolfdieter Lang, Sep 16 2016
12*a(n) = 2*n +1 +3*(-1)^n -4*A057078(n). - R. J. Mathar, Jun 19 2019
a(n) = Sum_{k=1..floor((n+3)/2)} Sum_{j=k..floor((2*n+6-k)/3)} Sum_{i=j..floor((2*n+6-j-k)/2)} ([j-k = i-j = 2*n+6-2*i-j-k] - [k = j = i = 2*n+6-i-j-k]), where [ ] is the (generalized) Iverson bracket. - Wesley Ivan Hurt, Jan 17 2021
E.g.f.: (3*(2 + x)*cosh(x) - 2*exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 3*(x-1)*sinh(x))/18. - Stefano Spezia, Oct 17 2022

A016933 a(n) = 6*n + 2.

Original entry on oeis.org

2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 188, 194, 200, 206, 212, 218, 224, 230, 236, 242, 248, 254, 260, 266, 272, 278, 284, 290, 296, 302, 308, 314, 320, 326
Offset: 0

Views

Author

Keywords

Comments

Number of 3 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (10;0) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1Sergey Kitaev, Nov 11 2004
Exponents n>1 for which 1 - x + x^n is reducible. - Ron Knott, Oct 13 2016
For the Collatz problem, these are the descenders' values that require division by 2. - Fred Daniel Kline, Jan 19 2017
For n > 3, also the number of (not necessarily maximal) cliques in the n-helm graph. - Eric W. Weisstein, Nov 29 2017

Crossrefs

Programs

Formula

A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A013730(n). - Reinhard Zumkeller, Feb 24 2009
A089911(2*a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013
a(n) = 2*(6*n-1) - a(n-1) (with a(0)=2). - Vincenzo Librandi, Nov 20 2010
G.f.: 2*(1+2*x)/(1-x)^2. - Colin Barker, Jan 08 2012
a(n) = (3 * A016813(n) + 1) / 2.- Fred Daniel Kline, Jan 20 2017
a(n) = A016789(A005843(n)). - Felix Fröhlich, Jan 20 2017
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/18 + log(2)/6. - Amiram Eldar, Dec 10 2021
a(n) = 2 * A016777(n). - Alois P. Heinz, Dec 27 2023
From Elmo R. Oliveira, Mar 08 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
E.g.f.: 2*exp(x)*(1 + 3*x). (End)

A255127 Ludic array: square array A(row,col), where row n lists the numbers removed at stage n in the sieve which produces Ludic numbers. Array is read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 19, 7, 10, 21, 35, 31, 11, 12, 27, 49, 59, 55, 13, 14, 33, 65, 85, 103, 73, 17, 16, 39, 79, 113, 151, 133, 101, 23, 18, 45, 95, 137, 203, 197, 187, 145, 25, 20, 51, 109, 163, 251, 263, 281, 271, 167, 29, 22, 57, 125, 191, 299, 325, 367, 403, 311, 205, 37, 24, 63, 139, 217, 343, 385, 461, 523, 457, 371, 253, 41
Offset: 2

Views

Author

Antti Karttunen, Feb 22 2015

Keywords

Comments

The starting offset of the sequence giving the terms of square array is 2. However, we can tacitly assume that a(1) = 1 when the sequence is used as a permutation of natural numbers. However, term 1 itself is out of the array.
The choice of offset = 2 for the terms starting in rows >= 1 is motivated by the desire to have a permutation of the integers n -> a(n) with a(n) = A(A002260(n-1), A004736(n-1)) for n > 1 and a(1) := 1. However, since this sequence is declared as a "table", offset = 2 would mean that the first *row* (not element) has index 2. I think the sequence should have offset = 1 and the permutation of the integers would be n -> a(n-1) with a(0) := 1 (if a(1) = A(1,1) = 2). Or, the sequence could have offset 0, with an additional row 0 of length 1 with the only element a(0) = A(0,1) = 1, the permutation still being n -> a(n-1) if a(n=0, 1, 2, ...) = (1, 2, 4, ...). This would be in line with considering 1 as the first ludic number, and A(n, 1) = A003309(n+1) for n >= 0. - M. F. Hasler, Nov 12 2024

Examples

			The top left corner of the array:
   2,   4,   6,   8,  10,  12,   14,   16,   18,   20,   22,   24,   26
   3,   9,  15,  21,  27,  33,   39,   45,   51,   57,   63,   69,   75
   5,  19,  35,  49,  65,  79,   95,  109,  125,  139,  155,  169,  185
   7,  31,  59,  85, 113, 137,  163,  191,  217,  241,  269,  295,  323
  11,  55, 103, 151, 203, 251,  299,  343,  391,  443,  491,  539,  587
  13,  73, 133, 197, 263, 325,  385,  449,  511,  571,  641,  701,  761
  17, 101, 187, 281, 367, 461,  547,  629,  721,  809,  901,  989, 1079
  23, 145, 271, 403, 523, 655,  781,  911, 1037, 1157, 1289, 1417, 1543
  25, 167, 311, 457, 599, 745,  883, 1033, 1181, 1321, 1469, 1615, 1753
  29, 205, 371, 551, 719, 895, 1073, 1243, 1421, 1591, 1771, 1945, 2117
...
		

Crossrefs

Transpose: A255129.
Inverse: A255128. (When considered as a permutation of natural numbers with a(1) = 1).
Cf. A260738 (index of the row where n occurs), A260739 (of the column).
Main diagonal: A255410.
Column 1: A003309 (without the initial 1). Column 2: A254100.
Row 1: A005843, Row 2: A016945, Row 3: A255413, Row 4: A255414, Row 5: A255415, Row 6: A255416, Row 7: A255417, Row 8: A255418, Row 9: A255419.
A192607 gives all the numbers right of the leftmost column, and A192506 gives the composites among them.
Cf. A272565, A271419, A271420 and permutations A269379, A269380, A269384.
Cf. also related or derived arrays A260717, A257257, A257258 (first differences of rows), A276610 (of columns), A276580.
Analogous arrays for other sieves: A083221, A255551, A255543.
Cf. A376237 (ludic factorials), A377469 (ludic analog of A005867).

Programs

  • Mathematica
    rows = 12; cols = 12; t = Range[2, 3000]; r = {1}; n = 1; While[n <= rows, k = First[t]; AppendTo[r, k]; t0 = t; t = Drop[t, {1, -1, k}]; ro[n++] = Complement[t0, t][[1 ;; cols]]]; A = Array[ro, rows]; Table[ A[[n - k + 1, k]], {n, 1, rows}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 14 2016, after Ray Chandler *)
  • Python
    a255127 = lambda n: A255127(A002260(k-1), A004736(k-1))
    def A255127(n, k):
        A = A255127; R = A.rows
        while len(R) <= n or len(R[n]) < min(k, A.P[n]): A255127_extend(2*n)
        return R[n][(k-1) % A.P[n]] + (k-1)//A.P[n] * A.S[n]
    A=A255127; A.rows=[[1],[2],[3]]; A.P=[1]*3; A.S=[0,2,6]; A.limit=30
    def A255127_extend(rMax=9, A=A255127):
        A.limit *= 2; L = [x+5-x%2 for x in range(0, A.limit, 3)]
        for r in range(3, rMax):
            if len(A.P) == r:
                A.P += [ A.P[-1] * (A.rows[-1][0] - 1) ]  # A377469
                A.rows += [[]]; A.S += [ A.S[-1] * L[0] ] # ludic factorials
            if len(R := A.rows[r]) < A.P[r]: # append more terms to this row
                R += L[ L[0]*len(R) : A.S[r] : L[0] ]
            L = [x for i, x in enumerate(L) if i%L[0]] # M. F. Hasler, Nov 17 2024
  • Scheme
    (define (A255127 n) (if (<= n 1) n (A255127bi (A002260 (- n 1)) (A004736 (- n 1)))))
    (define (A255127bi row col) ((rowfun_n_for_A255127 row) col))
    ;; definec-macro memoizes its results:
    (definec (rowfun_n_for_A255127 n) (if (= 1 n) (lambda (n) (+ n n)) (let* ((rowfun_for_remaining (rowfun_n_for_remaining_numbers (- n 1))) (eka (rowfun_for_remaining 0))) (COMPOSE rowfun_for_remaining (lambda (n) (* eka (- n 1)))))))
    (definec (rowfun_n_for_remaining_numbers n) (if (= 1 n) (lambda (n) (+ n n 3)) (let* ((rowfun_for_prevrow (rowfun_n_for_remaining_numbers (- n 1))) (off (rowfun_for_prevrow 0))) (COMPOSE rowfun_for_prevrow (lambda (n) (+ 1 n (floor->exact (/ n (- off 1)))))))))
    

Formula

From M. F. Hasler, Nov 12 2024: (Start)
A(r, c) = A(r, c-P(r)) + S(r) = A(r, ((c-1) mod P(r)) + 1) + floor((c-1)/P(r))*S(r) with periods P = (1, 1, 2, 8, 48, 480, 5760, ...) = A377469, and shifts S = (2, 6, 30, 210, 2310, 30030, 510510) = A376237(2, 3, ...). For example:
A(1, c) = A(1, c-1) + 2 = 2 + (c-1)*2 = 2*c,
A(2, c) = A(2, c-1) + 6 = 3 + (c-1)*6 = 6*c - 3,
A(3, c) = A(3, c-2) + 30 = {5 if c is odd else 19} + floor((c-1)/2)*30 = 15*c - 11 + (c mod 2),
A(4, c) = A(4, c-8) + 210 = A(4, ((c-1) mod 8)+1) + floor((c-1)/8)*210, etc. (End)

A083140 Sieve of Eratosthenes arranged as an array and read by antidiagonals in the up direction; n-th row has property that smallest prime factor is prime(n).

Original entry on oeis.org

2, 3, 4, 5, 9, 6, 7, 25, 15, 8, 11, 49, 35, 21, 10, 13, 121, 77, 55, 27, 12, 17, 169, 143, 91, 65, 33, 14, 19, 289, 221, 187, 119, 85, 39, 16, 23, 361, 323, 247, 209, 133, 95, 45, 18, 29, 529, 437, 391, 299, 253, 161, 115, 51, 20, 31, 841, 667, 551, 493, 377, 319, 203, 125, 57, 22
Offset: 2

Views

Author

Yasutoshi Kohmoto, Jun 05 2003

Keywords

Comments

A permutation of natural numbers >= 2.
The proportion of integers in the n-th row of the array is given by A005867(n-1)/A002110(n) = A038110(n)/A038111(n). - Peter Kagey, Jun 03 2019, based on comments by Jamie Morken and discussion with Tom Hanlon.
The proportion of the integers after the n-th row of the array is given by A005867(n)/A002110(n). - Tom Hanlon, Jun 08 2019

Examples

			Array begins:
   2   4   6   8  10  12  14  16  18  20  22  24 .... (A005843 \ {0})
   3   9  15  21  27  33  39  45  51  57  63  69 .... (A016945)
   5  25  35  55  65  85  95 115 125 145 155 175 .... (A084967)
   7  49  77  91 119 133 161 203 217 259 287 301 .... (A084968)
  11 121 143 187 209 253 319 341 407 451 473 517 .... (A084969)
  13 169 221 247 299 377 403 481 533 559 611 689 .... (A084970)
		

Crossrefs

Cf. A083141 (main diagonal), A083221 (transpose), A004280, A038179, A084967, A084968, A084969, A084970, A084971.
Arrays of integers grouped into rows by various criteria:
by greatest prime factor: A125624,
by lowest prime factor: this sequence (upward antidiagonals), A083221 (downward antidiagonals),
by number of distinct prime factors: A125666,
by number of prime factors counted with multiplicity: A078840,
by prime signature: A095904,
by ordered prime signature: A096153,
by number of divisors: A119586,
by number of 1's in binary expansion: A066884 (upward), A067576 (downward),
by distance to next prime: A192179.

Programs

  • Mathematica
    a = Join[ {Table[2n, {n, 1, 12}]}, Table[ Take[ Prime[n]*Select[ Range[100], GCD[ Prime[n] #, Product[ Prime[i], {i, 1, n - 1}]] == 1 &], 12], {n, 2, 12}]]; Flatten[ Table[ a[[i, n - i]], {n, 2, 12}, {i, n - 1, 1, -1}]]
    (* second program: *)
    rows = 12; Clear[T]; Do[For[m = p = Prime[n]; k = 1, k <= rows, m += p, If[ FactorInteger[m][[1, 1]] == p, T[n, k++] = m]], {n, rows}]; Table[T[n - k + 1, k], {n, rows}, {k, n}] // Flatten (* Jean-François Alcover, Mar 08 2016 *)

Extensions

More terms from Hugo Pfoertner and Robert G. Wilson v, Jun 13 2003

A017533 a(n) = 12*n + 1.

Original entry on oeis.org

1, 13, 25, 37, 49, 61, 73, 85, 97, 109, 121, 133, 145, 157, 169, 181, 193, 205, 217, 229, 241, 253, 265, 277, 289, 301, 313, 325, 337, 349, 361, 373, 385, 397, 409, 421, 433, 445, 457, 469, 481, 493, 505, 517, 529, 541, 553, 565, 577, 589, 601, 613, 625, 637
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 12*n + 1, n >= 0.
a(n) = 24*n - 10 - a(n-1), (with a(0)=1). - Vincenzo Librandi, Dec 24 2010
G.f.: (1 + 11*x)/(1-x)^2. - Indranil Ghosh, Apr 05 2017
E.g.f.: (1 + 12*x)*exp(x). - G. C. Greubel, Sep 18 2019

A047241 Numbers that are congruent to {1, 3} mod 6.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49, 51, 55, 57, 61, 63, 67, 69, 73, 75, 79, 81, 85, 87, 91, 93, 97, 99, 103, 105, 109, 111, 115, 117, 121, 123, 127, 129, 133, 135, 139, 141, 145, 147, 151, 153, 157, 159, 163, 165, 169, 171, 175, 177, 181, 183
Offset: 1

Views

Author

Keywords

Comments

Also the numbers k such that 10^p+k could possibly be prime. - Roderick MacPhee, Nov 20 2011 This statement can be written as follows. If 10^m + k = prime, for any m >= 1, then k is in this sequence. See the pink box comments by Roderick MacPhee from Dec 09 2014. - Wolfdieter Lang, Dec 09 2014
The odd-indexed terms are one more than the arithmetic mean of their neighbors; the even-indexed terms are one less than the arithmetic mean of their neighbors. - Amarnath Murthy, Jul 29 2003
Partial sums are A212959. - Philippe Deléham, Mar 16 2014
12*a(n) is conjectured to be the length of the boundary after n iterations of the hexagon and square expansion shown in the link. The squares and hexagons have side length 1 in some units. The pattern is supposed to become the planar Archimedean net 4.6.12 when n -> infinity. - Kival Ngaokrajang, Nov 30 2014
Positive numbers k for which 1/2 + k/3 + k^2/6 is an integer. - Bruno Berselli, Apr 12 2018

References

  • L. Lovasz, J. Pelikan, K. Vesztergombi, Discrete Mathematics, Springer (2003); 14.4, p. 225.

Crossrefs

Subsequence of A186422.
Union of A016921 and A016945. - Wesley Ivan Hurt, Sep 28 2013

Programs

  • Haskell
    a047241 n = a047241_list !! (n-1)
    a047241_list = 1 : 3 : map (+ 6) a047241_list
    -- Reinhard Zumkeller, Feb 19 2013
    
  • Maple
    seq(3*k-2-((k+1) mod 2), k=1..100); # Wesley Ivan Hurt, Sep 28 2013
  • Mathematica
    Table[{2, 4}, {30}] // Flatten // Prepend[#, 1]& // Accumulate (* Jean-François Alcover, Jun 10 2013 *)
    Select[Range[200], MemberQ[{1, 3}, Mod[#, 6]]&] (* or *) LinearRecurrence[{1, 1, -1}, {1, 3, 7}, 70] (* Harvey P. Dale, Oct 01 2013 *)
  • PARI
    a(n)=bitor(3*n-3,1) \\ Charles R Greathouse IV, Sep 28 2013
    
  • Python
    for n in range(1,10**5):print(3*n-2-((n+1)%2)) # Soumil Mandal, Apr 14 2016

Formula

From Paul Barry, Sep 04 2003: (Start)
O.g.f.: (1 + 2*x + 3*x^2)/((1 + x)*(1 - x)^2) = (1 + 2*x + 3*x^2)/((1 - x)*(1 - x^2)).
E.g.f.: (6*x + 1)*exp(x)/2 + exp(-x)/2;
a(n) = 3*n - 5/2 - (-1)^n/2. (End)
a(n) = 2*floor((n-1)/2) + 2*n - 1. - Gary Detlefs, Mar 18 2010
a(n) = 6*n - a(n-1) - 8 with n > 1, a(1)=1. - Vincenzo Librandi, Aug 05 2010
a(n) = 3*n - 2 - ((n+1) mod 2). - Wesley Ivan Hurt, Jun 29 2013
a(1)=1, a(2)=3, a(3)=7; for n>3, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Oct 01 2013
From Benedict W. J. Irwin, Apr 13 2016: (Start)
A005408(a(n)+1) = A016813(A001651(n)),
A007310(a(n)) = A005408(A087444(n)-1),
A007310(A005408(a(n)+1)) = A017533(A001651(n)). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) + log(3)/4. - Amiram Eldar, Dec 11 2021

Extensions

Formula corrected by Bruno Berselli, Jun 24 2010

A142463 a(n) = 2*n^2 + 2*n - 1.

Original entry on oeis.org

-1, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511, 4703, 4899, 5099
Offset: 0

Views

Author

Roger L. Bagula, Sep 19 2008

Keywords

Comments

Essentially the same as A132209.
From Vincenzo Librandi, Nov 25 2010: (Start)
Numbers k such that 2*k + 3 is a square.
First diagonal of A144562. (End)
The terms a(n) give the values for c of indefinite binary quadratic forms [a, b, c] = [2, 4n+2, a(n)] of discriminant D = 12, where a and c can be switched. The positive numbers represented by these forms are given in A084917. - Klaus Purath, Aug 31 2023

Crossrefs

Programs

Formula

a(n) = a(n-1) + 4*n.
From Paul Barry, Nov 03 2009: (Start)
G.f.: (1 - 6*x + x^2)/(1-x)^3.
a(n) = 4*C(n+1,2) - 1. (End)
a(n) = -A188653(2*n+1). - Reinhard Zumkeller, Apr 13 2011
a(n) = 3*( Sum_{k=1..n} k^5 )/( Sum_{k=1..n} k^3 ), n > 0. - Gary Detlefs, Oct 18 2011
a(n) = (A005408(n)^2 - 3)/2. - Zhandos Mambetaliyev, Feb 11 2017
E.g.f.: (-1 + 4*x + 2*x^2)*exp(x). - G. C. Greubel, Mar 01 2021
From Leo Tavares, Nov 22 2021: (Start)
a(n) = 2*A005563(n) - A005408(n). See Hexagonic Diamonds illustration.
a(n) = A016945(n-1) + A001105(n-1). See Hexagonic Rectangles illustration.
a(n) = A004767(n-1) + A046092(n-1). See Hexagonic Crosses illustration.
a(n) = A002378(n) + A028387(n-1). See Hexagonic Columns illustration. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Dec 03 2021
Sum_{n>=0} 1/a(n) = tan(sqrt(3)*Pi/2)*Pi/(2*sqrt(3)). - Amiram Eldar, Sep 16 2022

Extensions

Edited by the Associate Editors of the OEIS, Sep 02 2009

A017629 a(n) = 12*n + 9.

Original entry on oeis.org

9, 21, 33, 45, 57, 69, 81, 93, 105, 117, 129, 141, 153, 165, 177, 189, 201, 213, 225, 237, 249, 261, 273, 285, 297, 309, 321, 333, 345, 357, 369, 381, 393, 405, 417, 429, 441, 453, 465, 477, 489, 501, 513, 525, 537, 549, 561, 573, 585, 597, 609, 621, 633
Offset: 0

Views

Author

Keywords

Comments

Numbers k such that k mod 2 = (k+1) mod 3 = 1 and (k+2) mod 4 != 1. - Klaus Brockhaus, Jun 15 2004
For n > 3, the number of squares on the infinite 3-column chessboard at <= n knight moves from any fixed point. - Ralf Stephan, Sep 15 2004
A016946 is the subsequence of squares (for n = 3*k*(k+1) = A028896(k), then a(n) = (6k+3)^2 = A016946(k)). - Bernard Schott, Apr 05 2021

Crossrefs

Programs

Formula

a(n) = 6*(4*n+1) - a(n-1) (with a(0)=9). - Vincenzo Librandi, Dec 17 2010
A089911(2*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013
G.f.: (9 + 3*x)/(1 - x)^2. - Alejandro J. Becerra Jr., Jul 08 2020
Sum_{n>=0} (-1)^n/a(n) = (Pi + log(3-2*sqrt(2)))/(12*sqrt(2)). - Amiram Eldar, Dec 12 2021
E.g.f.: 3*exp(x)*(3 + 4*x). - Stefano Spezia, Feb 25 2023

A017593 a(n) = 12*n + 6.

Original entry on oeis.org

6, 18, 30, 42, 54, 66, 78, 90, 102, 114, 126, 138, 150, 162, 174, 186, 198, 210, 222, 234, 246, 258, 270, 282, 294, 306, 318, 330, 342, 354, 366, 378, 390, 402, 414, 426, 438, 450, 462, 474, 486, 498, 510, 522, 534, 546, 558, 570, 582, 594, 606, 618, 630, 642
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0(73).
Continued fraction expansion of tanh(1/6). - Benoit Cloitre, Dec 17 2002
Also solutions to 5^x + 7^x == 11 (mod 13). - Cino Hilliard, May 10 2003
Numbers m such that the sum of the m-th powers of all 2 X 2 matrices over Z/mZ is a nonzero matrix. - José María Grau Ribas, Jan 31 2014
Positive numbers k for which 1/2 + k/4 + k^2/6 is an integer. - Bruno Berselli, Apr 12 2018

Crossrefs

Programs

Formula

A030133(a(n)) = 9. - Reinhard Zumkeller, Jul 04 2007
a(n) = 24*n - a(n-1) with n > 0, a(0)=6. - Vincenzo Librandi, Nov 19 2010
a(0)=6, a(1)=18; for n > 1, a(n) = 2*a(n-1) - a(n-2). - Harvey P. Dale, Aug 20 2014
G.f.: 6*(1+x)/(1-x)^2. - Wolfdieter Lang, Oct 27 2020
Sum_{n>=0} (-1)^n/a(n) = Pi/24 (A019691). - Amiram Eldar, Dec 12 2021
From Amiram Eldar, Nov 24 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2) * sin(5*Pi/24).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2) * cos(5*Pi/24). (End)
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 6*exp(x)*(1 + 2*x).
a(n) = 6*A005408(n) = 3*A016825(n) = 2*A016945(n). (End)

Extensions

Typos in sequence (270 was 2,70 and 510 was 5,10) fixed by Peter Luschny, Dec 14 2009

A061641 Pure numbers in the Collatz (3x+1) iteration. Also called pure hailstone numbers.

Original entry on oeis.org

0, 1, 3, 6, 7, 9, 12, 15, 18, 19, 21, 24, 25, 27, 30, 33, 36, 37, 39, 42, 43, 45, 48, 51, 54, 55, 57, 60, 63, 66, 69, 72, 73, 75, 78, 79, 81, 84, 87, 90, 93, 96, 97, 99, 102, 105, 108, 109, 111, 114, 115, 117, 120, 123, 126, 127, 129, 132, 133, 135, 138, 141, 144, 145
Offset: 1

Views

Author

Frederick Magata (frederick.magata(AT)uni-muenster.de), Jun 14 2001

Keywords

Comments

Let {f(k,N), k=0,1,2,...} denote the (3x+1)-sequence with starting value N; a(n) denotes the smallest positive integer which is not contained in the union of f(k,0),...,f(k,a(n-1)).
In other words, a(n) is the starting value of the next '3x+1'-sequences in the sense that a(n) is not a value in any sequence f(k,N) with N < a(n).
f(0,N)=N, f(k+1,N)=f(k,N)/2 if f(k,N) is even and f(k+1,N)=3*f(k,N)+1 if f(k,N) is odd.
For all n, a(n) mod 6 is 0, 1 or 3. I conjecture that a(n)/n -> C=constant for n->oo, where C=2.311...
The Collatz conjecture says that for all positive n, there exists k such that C_k(n) = 1. Shaw states [p. 195] that "A positive integer n is pure if its entire tree of preimages under the Collatz function C are greater than or equal to it; otherwise n is impure. Equivalently, a positive integer n is impure if there exists rGary W. Adamson, Jan 28 2007
Pure numbers remaining after deleting the impure numbers in the hailstone (Collatz) problem; where the operation C(n) = {3n+1, n odd; n/2, n even}. Add the 0 mod 3 terms in order, among the terms of A127633, since all 0 mod 3 numbers are pure. - Gary W. Adamson, Jan 28 2007
After computing all a(n) < 10^9, the ratio a(n)/n appears to be converging to 2.31303... Hence it appears that the numbers in this sequence have a density of about 1/3 (due to all multiples of 3) + 99/1000. - T. D. Noe, Oct 12 2007
A016945 is a subsequence. - Reinhard Zumkeller, Apr 17 2008

Examples

			Consider n=3: C(n), C_2(n), C_3(n), ...; the iterates are 10, 5, 16, 8, 4, 2, 1, 4, 2, 1; where 4, 5, 8, 10 and 16 have appeared in the orbit of 3 and are thus impure.
a(1)=1 since Im(f(k,0))={0} for all k and so 1 is not a value of f(k,0). a(2)=3 since Im(f(k,0)) union Im(f(k,1))={0,1,2,4} and 3 is the smallest positive integer not contained in this set.
		

Crossrefs

Cf. A070165 (Collatz trajectories), A127633, A336938, A336938. See A177729 for a variant.

Programs

  • Mathematica
    DoCollatz[n_] := Module[{m = n}, While[m > nn || ! reached[[m]], If[m <= nn, reached[[m]] = True]; If[EvenQ[m], m = m/2, m = 3 m + 1]]]; nn = 200; reached = Table[False, {nn}]; t = {0, 1}; While[DoCollatz[t[[-1]]]; pos = Position[reached, False, 1, 1]; pos != {}, AppendTo[t, pos[[1, 1]]]]; t (* T. D. Noe, Jan 22 2013 *)
  • PARI
    firstMiss(A) = { my(i); if(#A == 0 || A[1] > 0, return(0)); for(i = 1, A[#A] + 1, if(!setsearch(A,i), return(i))); };
    iter(A) = { my(a = firstMiss(A)); while(!setsearch(A,a), A = setunion(A, Set([a])); a = if(a % 2, 3*a+1, a/2)); A; };
    makeVec(m) = { my(v = [], A = Set([]), i); for(i = 1, m, v = concat(v, firstMiss(A)); if (i < m, A = iter(A))); v; };
    makeVec(64) \\ Markus Sigg, Aug 08 2020

Extensions

Edited by T. D. Noe and N. J. A. Sloane, Oct 16 2007
Previous Showing 11-20 of 99 results. Next