cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A002697 a(n) = n*4^(n-1).

Original entry on oeis.org

0, 1, 8, 48, 256, 1280, 6144, 28672, 131072, 589824, 2621440, 11534336, 50331648, 218103808, 939524096, 4026531840, 17179869184, 73014444032, 309237645312, 1305670057984, 5497558138880, 23089744183296
Offset: 0

Views

Author

Keywords

Comments

Coefficient of x^(2n-2) in Chebyshev polynomial T(2n) is -a(n).
Let M_n be the n X n matrix m_(i,j) = 1 + 2*abs(i-j); then det(M_n) = (-1)^(n-1)*a(n-1). - Benoit Cloitre, May 28 2002
Number of subsequences 00 in all words of length n+1 on the alphabet {0,1,2,3}. Example: a(2)=8 because we have 000,001,002,003,100,200,300 (the other 57=A125145(3) words of length 3 have no subsequences 00). a(n) = Sum_{k=0..n} k*A128235(n+1, k). - Emeric Deutsch, Feb 27 2007
Let P(A) be the power set of an n-element set A. Then a(n) = the sum of the size of the symmetric difference of x and y for every subset {x,y} of P(A). - Ross La Haye, Dec 30 2007 (See the comment from Bernard Schott below.)
Let P(A) be the power set of an n-element set A and B be the Cartesian product of P(A) with itself. Then remove (y,x) from B when (x,y) is in B and x != y and call this R35. Then a(n) = the sum of the size of the symmetric difference of x and y for every (x,y) of R35. [proposed edit of comment just above; by Ross La Haye]
The numbers in this sequence are the Wiener indices of the graphs of n-cubes (Boolean hypercubes). For example, the 3-cube is the graph of the standard cube whose Wiener index is 48. - K.V.Iyer, Feb 26 2009
From Gary W. Adamson, Sep 06 2009: (Start)
Starting (1, 8, 48, ...) = 4th binomial transform of [1, 4, 0, 0, 0, ...].
Equals the sum of terms in 2^n X 2^n semi-magic square arrays in which each row and column is composed of a binomial frequency of terms in the set (1, 3, 5, 7, ...).
The first few such arrays = [1] [1,3; 3,1]; /Q.
[1, 3, 5, 3;
3, 1, 3, 5;
5, 3, 1, 3;
3, 5, 3, 1]
(sum of terms = 48, with a binomial frequency of (1, 2, 1) as to (1, 3, 5) in each row and column)
[1, 3, 5, 3, 5, 7, 5, 3;
3, 1, 3, 5, 7, 5, 3, 5;
5, 3, 1, 3, 5, 3, 5, 7;
3, 5, 3, 1, 3, 5, 7, 5;
5, 7, 5, 3, 1, 3, 5, 3;
7, 5, 3, 5, 3, 1, 3, 5;
5, 3, 5, 7, 5, 3, 1, 3;
3, 5, 7, 5, 3, 5, 3, 1]
(sum of terms = 256, with each row and column composed of one 1, three 3's, three 5's, and one 7)
... (End)
Let P(A) be the power set of an n-element set A and B be the Cartesian product of P(A) with itself. Then a(n) = the sum of the size of the intersection of x and y for every (x,y) of B. - Ross La Haye, Jan 05 2013
Following the last comment of Ross, A002699 is the similar sequence when "intersection" is replaced by "symmetric difference" and A212698 is the similar sequence when "intersection" is replaced by "union". - Bernard Schott, Jan 04 2013
Also, following the first comment of Ross, A082134 is the similar sequence when "symmetric difference" is replaced by "intersection" and A133224 is the similar sequence when "symmetric difference" is replaced by "union". - Bernard Schott, Jan 15 2013
Let [n] denote the set {1,2,3,...,n} and denote an n-permutation of the elements of [n] by p = p(1)p(2)p(3)...p(n), where p(i) is the i-th entry in the linear order given by p. Then (p(i),p(j)) is an inversion of p if i < j but p(i) > p(j). Denote the number of inversions of p by inv(p) and call a 2n-permutation p = p(1)p(2)...p(2n) 2-ordered if p(1) < p(3) < ... < p(2n-1) and p(2) < p(4) < ... < p(2n). Then Sum(inv(p)) = n*4^(n-1), where the sum is taken over all 2-ordered 2n-permutations of p. See Bona reference below. - Ross La Haye, Jan 21 2014
Sum over all peaks of Dyck paths of semilength n of the product of the x and y coordinates. - Alois P. Heinz, May 29 2015
Sum of the number of all edges over all j-dimensional subcubes of the boolean hypercube graph of dimension n, Q_n, for all j, so a(n) = Sum_{j=1..n} binomial(n,j)*2^(n-j) * j*2^(j-1). - Constantinos Kourouzides, Mar 24 2024

Examples

			From _Bernard Schott_, Jan 04 2013: (Start)
See the comment about intersection of X and Y.
If A={b,c}, then in P(A) we have:
{b}Inter{b}={b},
{b}Inter{b,c}={b},
{c}Inter{c}={c},
{c}Inter{b,c}={c},
{b,c}Inter{b}={b},
{b,c}Inter{c}={c},
{b,c}Inter{b,c}={b,c}
and : #{b}+ #{b}+ #{c}+ #{c}+ #{b}+ #{c}+ #{b,c} = 8 = 2*4^(2-1) = a(2).
The other intersections are empty.
(End)
		

References

  • Miklos Bona, Combinatorics of Permutations, Chapman and Hall/CRC, 2004, pp. 1, 43, 64.
  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 516.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = n*4^(n-1).
G.f.: x/(1-4x)^2. a(n+1) is the convolution of powers of 4 (A000302). - Wolfdieter Lang, May 16 2003
Third binomial transform of n. E.g.f.: x*exp(4x). - Paul Barry, Jul 22 2003
a(n) = Sum_{k=0..n} k*binomial(2*n, 2*k). - Benoit Cloitre, Jul 30 2003
For n>=0, a(n+1) = Sum_{i+j+k+l=n} binomial(2i, i)*binomial(2j, j)*binomial(2k, k)*binomial(2l, l). - Philippe Deléham, Jan 22 2004
a(n) = Sum_{k=0..n} 4^(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2. - Paul Barry, Oct 15 2004
Sum_{n>0} 1/a(n) = 8*log(2) - 4*log(3). - Jaume Oliver Lafont, Sep 11 2009
a(0) = 0, a(n) = 4*a(n-1) + 4^(n-1). - Vincenzo Librandi, Dec 31 2010
a(n+1) is the convolution of A000984 with A002457. - Rui Duarte, Oct 08 2011
a(0) = 0, a(1) = 1, a(n) = 8*a(n-1) - 16*a(n-2). - Harvey P. Dale, Jan 18 2012
a(n) = A002699(n)/2 = A212698(n)/3. - Bernard Schott, Jan 04 2013
G.f.: W(0)*x/2 , where W(k) = 1 + 1/( 1 - 4*x*(k+2)/( 4*x*(k+2) + (k+1)/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(5/4). - Amiram Eldar, Oct 28 2020
a(n) = (1/2)*Sum_{k=0..n} k*binomial(2*n, k). Compare this with the formula of Benoit Cloitre above. - Wolfdieter Lang, Nov 12 2021
a(n) = (-1)^(n-1)*det(M(n)) for n > 0, where M(n) is the n X n symmetric Toeplitz matrix whose first row consists of 1, 3, ..., 2*n-1. - Stefano Spezia, Aug 04 2022

A142150 The nonnegative integers interleaved with 0's.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0, 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0, 41, 0, 42, 0, 43, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 15 2008

Keywords

Comments

Number of vertical pairs in a wheel with n equal sections. - Wesley Ivan Hurt, Jan 22 2012
Number of even terms of n-th row in the triangles A162610 and A209297. - Reinhard Zumkeller, Jan 19 2013
Also the result of writing n-1 in base 2 and multiplying the last digit with the number with its last digit removed. See A115273 and A257844-A257850 for generalization to other bases. - M. F. Hasler, May 10 2015
Also follows the rule: a(n+1) is the number of terms that are identical with a(n) for a(0..n-1). - Marc Morgenegg, Jul 08 2019

Crossrefs

Programs

Formula

a(n) = XOR{k AND (n-k): 0<=k<=n}.
a(n) = (n/2)*0^(n mod 2); a(2*n)=n and a(2*n+1)=0.
a(n) = floor(n^2/2) mod n. - Enrique Pérez Herrero, Jul 29 2009
a(n) = A027656(n-2). - Reinhard Zumkeller, Nov 05 2009
a(n) = Sum_{k=0..n} (k mod 2)*((n-k) mod 2). - Reinhard Zumkeller, Nov 05 2009
a(n+1) = A000217(n) mod A000027(n+1) = A000217(n) mod A001477(n+1). - Edgar Almeida Ribeiro (edgar.a.ribeiro(AT)gmail.com), May 19 2010
From Bruno Berselli, Oct 19 2010: (Start)
a(n) = n*(1+(-1)^n)/4.
G.f.: x^2/(1-x^2)^2.
a(n) = 2*a(n-2)-a(n-4) for n > 3.
Sum_{i=0..n} a(i) = (2*n*(n+1)+(2*n+1)*(-1)^n-1)/16 (see A008805). (End)
a(n) = -a(-n) = A195034(n-1)-A195034(-n-1). - Bruno Berselli, Oct 12 2011
a(n) = A000326(n) - A191967(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = Sum_{i=1..n} floor((2*i-n)/2). - Wesley Ivan Hurt, Aug 21 2014
a(n-1) = floor(n/2)*(n mod 2), where (n mod 2) is the parity of n, or remainder of division by 2. - M. F. Hasler, May 10 2015
a(n) = A158416(n) - 1. - Filip Zaludek, Oct 30 2016
E.g.f.: x*sinh(x)/2. - Ilya Gutkovskiy, Oct 30 2016
a(n) = A000007(a(n-1)) + a(n-2) for n > 1. - Nicolas Bělohoubek, Oct 06 2024

A005993 Expansion of (1+x^2)/((1-x)^2*(1-x^2)^2).

Original entry on oeis.org

1, 2, 6, 10, 19, 28, 44, 60, 85, 110, 146, 182, 231, 280, 344, 408, 489, 570, 670, 770, 891, 1012, 1156, 1300, 1469, 1638, 1834, 2030, 2255, 2480, 2736, 2992, 3281, 3570, 3894, 4218, 4579, 4940, 5340, 5740, 6181, 6622, 7106, 7590, 8119, 8648, 9224, 9800
Offset: 0

Views

Author

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

Alkane (or paraffin) numbers l(6,n).
Dimension of the space of homogeneous degree n polynomials in (x1, y1, x2, y2) invariant under permutation of variables x1<->y1, x2<->y2.
Also multidigraphs with loops on 2 nodes with n arcs (see A138107). - Vladeta Jovovic, Dec 27 1999
Euler transform of finite sequence [2,3,0,-1]. - Michael Somos, Mar 17 2004
a(n-2) is the number of plane partitions with trace 2. - Michael Somos, Mar 17 2004
With offset 4, a(n) is the number of bracelets with n beads, 3 of which are red, 1 of which is blue. For odd n, a(n) = C(n-1,3)/2. For even n, a(n) = C(n-1,3)/2 +(n-2)/4. For n >= 6, with K = (n-1)(n-2)/((n-5)(n-4)), for odd n, a(n) = K*a(n-2). For even n, a(n) = K*a(n-2) -(n-2)/(n-5). - Washington Bomfim, Aug 05 2008
Equals (1,2,3,4,...) convolved with (1,0,3,0,5,...). - Gary W. Adamson, Feb 16 2009
Equals row sums of triangle A177878.
Equals (1/2)*((1, 4, 10, 20, 35, 56, ...) + (1, 0, 2 0, 3, 0, 4, ...)).
From Ctibor O. Zizka, Nov 21 2014: (Start)
With offset 4, a(n) is the number of different patterns of the 2-color 4-partition of n.
P(n)_(k;t) gives the number of different patterns of the t-color, k-partition of n.
P(n;i;j) = Sum(r=1..m) c_(i,j)*v_r*F_r(X_1,...,X_i).
m partition number of i.
c_(i,j) number of different coloring patterns on the r-th form (X_1,...,X_i) of i-partition with j-colors.
v_r number of i-partitions of n of the r-th form (X_1,...,X_i).
F_r(X_1,...,X_i) number of different patterns of the r-th form i-partition of n.
Some simple results:
P(1)(k;t)=1, P(2)(k;t)=2, P(3)(k;t)=4, P(4)(k;t)=11, etc.
P(n;1;1) = P(n;n;n) = 1 for all n;
P(n;2;2) = floor(n/2) (A004526);
P(n;3;2) = (n*n - 2*n + n mod 2)/4 (A002620).
This sequence is a(n) = P(n;4;2).
2-coloring of 4-partition is (A,B,A,B) or (B,A,B,A).
Each 4-partition of n has one of the form (X_1,X_1,X_1,X_1),(X_1,X_1,X_1,X_2), (X_1,X_1,X_2,X_2),(X_1,X_1,X_2,X_3),(X_1,X_2,X_3,X_4).
The number of forms is m=5 which is the partition number of k=4.
Partition form (X_1,X_1,X_1,X_1) gives 1 pattern ((X_1A,X_1B,X_1A,X_1B), (X_1,X_1,X_1,X_2) gives 2 patterns, (X_1,X_1,X_2,X_2) gives 4 patterns, (X_1,X_1,X_2,X_3) gives 6 patterns and (X_1,X_2,X_3,X_4) gives 12 patterns.
Thus a(n) = P(n;4;2) = 1*1*v_1 + 1*2*v_2 + 1*4*v_3 + 1*6*v_4 + 1*12*v_5 where v_r is the number of different 4-partitions of the r-th form (X_1,X_2,X_3,X_4) for a given n.
Example:
The 4-partitions of 8 are (2,2,2,2), (1,1,1,5), (1,1,3,3), (1,1,2,4), and (1,2,2,3):
(2,2,2,2) 1 pattern
(1,1,1,5), (1,1,5,1) 2 patterns
(1,1,3,3), (1,3,3,1), (3,1,1,3), (1,3,1,3) 4 patterns
(1,1,2,4), (1,1,4,2), (1,2,1,4), (1,2,4,1), (1,4,1,2), (2,1,1,4) 6 patterns
(2,2,1,3), (2,2,3,1), (2,1,2,3), (2,1,3,2), (2,3,2,1), (1,2,2,3) 6 patterns
Thus a(8) = P(8,4,2) = 1 + 2 + 4 + 6 + 6 = 19. (End)
a(n) = length of run n+2 of consecutive 1's in A254338. - Reinhard Zumkeller, Feb 27 2015
Take a chessboard of (n+2) X (n+2) unit squares in which the a1 square is black. a(n) is the number of composite squares having black unit squares on their vertices. - Ivan N. Ianakiev, Jul 19 2018
a(n) is the number of 1423-avoiding odd Grassmannian permutations of size n+2. Avoiding any of the patterns 2314 or 3412 gives the same sequence. - Juan B. Gil, Mar 09 2023

Examples

			a(2) = 6, since ( x1*y1, x2*y2, x1*x1+y1*y1, x2*x2+y2*y2, x1*x2+y1*y2, x1*y2+x2*y1 ) are a basis for homogeneous quadratic invariant polynomials.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • L. Smith, Polynomial Invariants of Finite Groups, A K Peters, 1995, p. 96.

Crossrefs

Cf. A177878.
Partial sums of A008794 (without 0). - Bruno Berselli, Aug 30 2013

Programs

  • Haskell
    Following Gary W. Adamson.
    import Data.List (inits, intersperse)
    a005993 n = a005994_list !! n
    a005993_list = map (sum . zipWith (*) (intersperse 0 [1, 3 ..]) . reverse) $
                       tail $ inits [1..]
    -- Reinhard Zumkeller, Feb 27 2015
    
  • Magma
    I:=[1,2,6,10,19,28]; [n le 6 select I[n] else 2*Self(n-1)+Self(n-2)-4*Self(n-3)+Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jul 19 2015
    
  • Maple
    g := proc(n) local i; add(floor(i/2)^2,i=1..n+1) end: # Joseph S. Riel (joer(AT)k-online.com), Mar 22 2002
    a:= n-> (Matrix([[1, 0$3, -1, -2]]).Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -4, 1, 2, -1][i] else 0 fi)^n)[1,1]; seq (a(n), n=0..44); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    CoefficientList[Series[(1+x^2)/((1-x)^2*(1-x^2)^2),{x,0,44}],x]  (* Jean-François Alcover, Apr 08 2011 *)
    LinearRecurrence[{2,1,-4,1,2,-1},{1,2,6,10,19,28},50] (* Harvey P. Dale, Feb 20 2012 *)
  • PARI
    a(n)=polcoeff((1+x^2)/(1-x)^2/(1-x^2)^2+x*O(x^n),n)
    
  • PARI
    a(n) = (binomial(n+3, n) + (1-n%2)*binomial((n+2)/2, n>>1))/2 \\ Washington Bomfim, Aug 05 2008
    
  • PARI
    a = vector(50); a[1]=1; a[2]=2;
    for(n=3, 50, a[n] = ((n+2)*a[n-2]+2*a[n-1]-n)/(n-2)); a \\ Gerry Martens, Jun 03 2018
    
  • Sage
    def A005993():
        a, b, to_be = 0, 0, True
        while True:
            yield (a*(a*(2*a+9)+13)+b*(b+1)*(2*b+1)+6)//6
            if to_be: b += 1
            else: a += 1
            to_be = not to_be
    a = A005993()
    [next(a) for  in range(48)] # _Peter Luschny, May 04 2016

Formula

l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
G.f.: (1+x^2)/((1-x)^2*(1-x^2)^2) = (1+x^2)/((1+x)^2*(x-1)^4) = (1/(1-x)^4 +1/(1-x^2)^2)/2.
a(2n) = (n+1)(2n^2+4n+3)/3, a(2n+1) = (n+1)(n+2)(2n+3)/3. a(-4-n) = -a(n).
From Yosu Yurramendi, Sep 12 2008: (Start)
a(n+1) = a(n) + A008794(n+3) with a(1)=1.
a(n) = A027656(n) + 2*A006918(n).
a(n+2) = a(n) + A000982(n+2) with a(1)=1, a(2)=2. (End)
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6). - Jaume Oliver Lafont, Dec 05 2008
a(n) = (n^3 + 6*n^2 + 11*n + 6)/12 + ((n+2)/4)[n even] (the bracket means that the second term is added if and only if n is even). - Benoit Jubin, Mar 31 2012
a(n) = (1/12)*n*(n+1)*(n+2) + (1/4)*(n+1)*(1/2)*(1-(-1)^n), with offset 1. - Yosu Yurramendi, Jun 20 2013
a(n) = Sum_{i=0..n+1} ceiling(i/2) * round(i/2) = Sum_{i=0..n+2} floor(i/2)^2. - Bruno Berselli, Aug 30 2013
a(n) = (n + 2)*(3*(-1)^n + 2*n^2 + 8*n + 9)/24. - Ilya Gutkovskiy, May 04 2016
Recurrence formula: a(n) = ((n+2)*a(n-2)+2*a(n-1)-n)/(n-2), a(1)=1, a(2)=2. - Gerry Martens, Jun 10 2018
E.g.f.: exp(-x)*(6 - 3*x + exp(2*x)*(18 + 39*x + 18*x^2 + 2*x^3))/24. - Stefano Spezia, Feb 23 2020
a(n) = Sum_{j=0..n/2} binomial(c+2*j-1,2*j)*binomial(c+n-2*j-1,n-2*j) where c=2. For other values of c we have: A008619 (c=1), A005995 (c=3), A018211 (c=4), A018213 (c=5), A062136 (c=6). - Miquel A. Fiol, Sep 24 2024

A193356 If n is even then 0, otherwise n.

Original entry on oeis.org

1, 0, 3, 0, 5, 0, 7, 0, 9, 0, 11, 0, 13, 0, 15, 0, 17, 0, 19, 0, 21, 0, 23, 0, 25, 0, 27, 0, 29, 0, 31, 0, 33, 0, 35, 0, 37, 0, 39, 0, 41, 0, 43, 0, 45, 0, 47, 0, 49, 0, 51, 0, 53, 0, 55, 0, 57, 0, 59, 0, 61, 0, 63, 0, 65, 0, 67, 0, 69, 0, 71, 0, 73, 0, 75
Offset: 1

Views

Author

Keywords

Comments

Multiplicative with a(2^e)=0 if e>0 and a(p^e)=p^e for odd primes p. - R. J. Mathar, Aug 01 2011
A005408 and A000004 interleaved (the usual OEIS policy is not to include sequences like this where alternate terms are zero; this is an exception). - Omar E. Pol, Feb 02 2013
Row sums of A057211. - Omar E. Pol, Mar 05 2014
Column k=2 of triangle A196020. - Omar E. Pol, Aug 07 2015
a(n) is the determinant of the (n+2) X (n+2) circulant matrix with the first row [0,0,1,1,...,1]. This matrix is closely linked with the famous ménage problem (see also comments of Vladimir Shevelev in sequence A000179). Namely it defines the class of permutations p of 1,2,...,n+2 such that p(i)<>i and p(i)<>i+1 for i=1,2,...,n+1, and p(n+2)<>1,n+2. And a(n) is also the difference between the number of even and odd such permutations. - Dmitry Efimov, Feb 02 2016

References

  • Franz Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer, 2000, p. 237, eq. (8.5).

Crossrefs

Programs

Formula

a(n) = n^k mod 2n, for any k>=2, also for k=n. [extended by Wolfdieter Lang, Dec 21 2011]
Dirichlet g.f.: (1-2^(1-s))*zeta(s-1). - R. J. Mathar, Aug 01 2011
G.f.: x*(1+x^2)/(1-x^2)^2. - Philippe Deléham, Feb 13 2012
a(n) = A027656(A042948(n-1)) = (1-(-1)^n)*n/2. - Bruno Berselli, Feb 19 2012
a(n) = n * (n mod 2). - Wesley Ivan Hurt, Jun 29 2013
G.f.: Sum_{n >= 1} A000010(n)*x^n/(1 + x^n). - Mircea Merca, Feb 22 2014
a(n) = 2*a(n-2)-a(n-4), for n>4. - Wesley Ivan Hurt, Aug 07 2015
E.g.f.: x*cosh(x). - Robert Israel, Feb 03 2016
a(n) = Product_{k=1..floor(n/2)}(sin(2*Pi*k/n))^2, for n >= 1 (with the empty product put to 1). Trivial for even n from the factor 0 for k = n/2. For odd n see, e.g., the Lemmermeyer reference, eq. (8.5) on p. 237. - Wolfdieter Lang, Aug 29 2016
a(n) = Sum_{k=1..n} (-1)^((n-k)*k). - Rick L. Shepherd, Sep 18 2020
a(n) = Sum_{k=1..n} (-1)^(1+gcd(k,n)) = Sum_{d | n} (-1)^(d+1)*phi(n/d), where phi(n) = A000010(n). - Peter Bala, Jan 14 2024
Dirichlet g.f.: DirichletLambda(s-1). - Michael Shamos, Jun 13 2025

A045891 First differences of A045623.

Original entry on oeis.org

1, 1, 3, 7, 16, 36, 80, 176, 384, 832, 1792, 3840, 8192, 17408, 36864, 77824, 163840, 344064, 720896, 1507328, 3145728, 6553600, 13631488, 28311552, 58720256, 121634816, 251658240, 520093696, 1073741824, 2214592512, 4563402752
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the n X n matrix m_(i,j) = 3 + abs(i-j), then det(M_n) =(-1)^(n+1)*a(n+1). - Benoit Cloitre, May 28 2002
If X_1, X_2, ..., X_n are 2-blocks of a (2n+3)-set X then, for n>=1, a(n+2) is the number of (n+1)-subsets of X intersecting each X_i, (i=1..n). - Milan Janjic, Nov 18 2007
Equals row sums of triangle A152194. - Gary W. Adamson, Nov 28 2008
An elephant sequence, see A175655. For the central square 16 A[5] vectors, with decimal values between 19 and 400, lead to this sequence (without the first leading 1). For the corner squares these vectors lead to the companion sequence A045623. - Johannes W. Meijer, Aug 15 2010
a(n) is the total number of runs of 1 in the compositions of n+1. For example, a(3) = A045623(3) - A045623(2) = 12 - 5 = 7 runs of only 1 in the compositions of 4, enumerated "()" as follows: 3,(1); (1),3; 2,(1,1);(1),2,(1); (1,1),2; (1,1,1,1). More generally, the total number of runs of only part k in the compositions of n+k is A045623(n) - A045623(n-k). - Gregory L. Simay, May 02 2017
This is essentially the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S - S^2 + S^3; see A291000. - Clark Kimberling, Aug 24 2017

Examples

			G.f. = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 36*x^5 + 80*x^6 + ... - _Michael Somos_, Mar 26 2022
		

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n-2} (k+3)*binomial(n-2,k) for n >= 2. - N. J. A. Sloane, Jan 30 2008
a(n) = (n+4)*2^(n-3), n >= 2, with a(0) = a(1) = 1.
G.f.: (1-x)^3/(1-2*x)^2.
Equals binomial transform of A027656.
Starting 1, 3, 7, 16, ... this is ((n+5)*2^n - 0^n)/4, the binomial transform of (1, 2, 2, 3, 3, ...). - Paul Barry, May 20 2003
From Paul Barry, Nov 29 2004: (Start)
a(n) = ((n+4)*2^(n-1) + 3*C(0, n) - C(1, n))/4;
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k)*(k+1). (End)
a(n) = A045623(n-1) + 2^(n-2) = A034007(n+1) - 2^(n-2) for n>=2. - Philippe Deléham, Apr 20 2009
G.f.: 1 + Q(0)*x/(1-x)^2, where Q(k)= 1 + (k+1)*x/(1 - x - x*(1-x)/(x + (k+1)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 25 2013
a(n) = Sum_{k=0..n} (k+1)*C(n-2,n-k). Peter Luschny, Apr 20 2015
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=0} 1/a(n) = 128*log(2) - 1292/15.
Sum_{n>=0} (-1)^n/a(n) = 782/15 - 128*log(3/2). (End)
E.g.f.: (2 - x + exp(2*x)*(2 + x))/4. - Stefano Spezia, Mar 26 2022

A211343 Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists the positive integers interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2.

Original entry on oeis.org

1, 2, 3, 1, 4, 0, 5, 2, 6, 0, 1, 7, 3, 0, 8, 0, 0, 9, 4, 2, 10, 0, 0, 1, 11, 5, 0, 0, 12, 0, 3, 0, 13, 6, 0, 0, 14, 0, 0, 2, 15, 7, 4, 0, 1, 16, 0, 0, 0, 0, 17, 8, 0, 0, 0, 18, 0, 5, 3, 0, 19, 9, 0, 0, 0, 20, 0, 0, 0, 2, 21, 10, 6, 0, 0, 1, 22, 0, 0, 4, 0, 0, 23, 11, 0, 0, 0, 0, 24, 0, 7, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Feb 05 2013

Keywords

Comments

The number of positive terms in row n is A001227(n).
If n = 2^j then the only positive integer in row n is T(n,1) = n
If n is an odd prime then the only two positive integers in row n are T(n,1) = n and T(n,2) = (n - 1)/2.
From Omar E. Pol, Apr 30 2017: (Start)
Conjecture 1: T(n,k) is the smallest part of the partition of n into k consecutive parts, if T(n,k) > 0.
Conjecture 2: the last positive integer in the row n is in the column A109814(n). (End)

Examples

			Triangle begins:
   1;
   2;
   3,  1;
   4,  0;
   5,  2;
   6,  0,  1;
   7,  3,  0;
   8,  0,  0;
   9,  4,  2;
  10,  0,  0,  1;
  11,  5,  0,  0;
  12,  0,  3,  0;
  13,  6,  0,  0;
  14,  0,  0,  2;
  15,  7,  4,  0,  1;
  16,  0,  0,  0,  0;
  17,  8,  0,  0,  0;
  18,  0,  5,  3,  0;
  19,  9,  0,  0,  0;
  20,  0,  0,  0,  2;
  21, 10,  6,  0,  0,  1;
  22,  0,  0,  4,  0,  0;
  23, 11,  0,  0,  0,  0;
  24,  0,  7,  0,  0,  0;
  25, 12,  0,  0,  3,  0;
  26,  0,  0,  5,  0,  0;
  27, 13,  8,  0,  0,  2;
  28,  0,  0,  0,  0,  0,  1;
  ...
In accordance with the conjectures, for n = 15 there are four partitions of 15 into consecutive parts: [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1]. The smallest parts of these partitions are 15, 7, 4, 1, respectively, so the 15th row of the triangle is [15, 7, 4, 0, 1]. - _Omar E. Pol_, Apr 30 2017
		

Crossrefs

Columns 1-3: A000027, A027656, A175676.
Column k starts in row A000217(k).
Row n has length A003056(n).

Programs

  • Mathematica
    a196020[n_, k_]:=If[Divisible[n - k(k + 1)/2, k], 2n/k - k, 0]; T[n_, k_]:= Floor[(1 + a196020[n, k])/2]; Table[T[n, k], {n, 28}, {k, Floor[(Sqrt[8n+1]-1)/2]}] // Flatten (* Indranil Ghosh, Apr 30 2017 *)
  • Python
    from sympy import sqrt
    import math
    def a196020(n, k):return 2*n/k - k if (n - k*(k + 1)/2)%k == 0 else 0
    def T(n, k): return int((1 + a196020(n, k))/2)
    for n in range(1, 29): print([T(n, k) for k in range(1, int((sqrt(8*n + 1) - 1)/2) + 1)]) # Indranil Ghosh, Apr 30 2017

Formula

T(n,k) = floor((1 + A196020(n,k))/2).
T(n,k) = A237048(n,k)*A286001(n,k). - Omar E. Pol, Aug 13 2018

A168380 Row sums of A168281.

Original entry on oeis.org

2, 4, 12, 20, 38, 56, 88, 120, 170, 220, 292, 364, 462, 560, 688, 816, 978, 1140, 1340, 1540, 1782, 2024, 2312, 2600, 2938, 3276, 3668, 4060, 4510, 4960, 5472, 5984, 6562, 7140, 7788, 8436, 9158, 9880, 10680, 11480, 12362, 13244, 14212, 15180, 16238, 17296, 18448, 19600, 20850, 22100
Offset: 1

Views

Author

Paul Curtz, Nov 24 2009

Keywords

Comments

The atomic numbers of the augmented alkaline earth group in Charles Janet's spiral periodic table are 0 and the first eight terms of this sequence (see Stewart reference). - Alonso del Arte, May 13 2011
Maximum number of 123 patterns in an alternating permutation of length n+3. - Lara Pudwell, Jun 09 2019

Examples

			From _Lara Pudwell_, Jun 09 2019: (Start)
a(1)=2. The alternating permutation of length 1+3=4 with the maximum number of copies of 123 is 1324.  The two copies are 124 and 134.
a(2)=4.  The alternating permutation of length 2+3=5 with the maximum number of copies of 123 is 13254.  The four copies are 124, 125, 134, and 135.
a(3)=12. The alternating permutation of length 3+3=6 with the maximum number of copies of 123 is 132546.  The twelve copies are 124, 125, 126, 134, 135, 136, 146, 156, 246, 256, 346, and 356. (End)
		

Programs

  • Magma
    [(n+1)*(3+2*n^2+4*n-3*(-1)^n)/12: n in [1..50] ]; // Vincenzo Librandi, Aug 06 2011
    
  • Mathematica
    LinearRecurrence[{2,1,-4,1,2,-1},{2, 4, 12, 20, 38, 56},50] (* G. C. Greubel, Jul 19 2016 *)
    Table[(n + 1) (3 + 2 n^2 + 4 n - 3 (-1)^n)/12, {n, 50}] (* Michael De Vlieger, Jul 20 2016 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,2,1,-4,1,2]^(n-1)*[2;4;12;20;38;56])[1,1] \\ Charles R Greathouse IV, Jul 21 2016

Formula

a(n) = 2*A005993(n-1).
a(n) = (n+1)*(3 + 2*n^2 + 4*n - 3*(-1)^n)/12.
a(n+1) - a(n) = A093907(n) = A137583(n+1).
a(2n+1) = A035597(n+1), a(2n) = A002492(n).
a(n) = A099956(n-1), 2 <= n <= 7.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: 2*x*(1 + x^2) / ( (1+x)^2*(x-1)^4 ).
a(n) = A000292(n) + A027656(n-1). - Paul Curtz, Oct 26 2012
E.g.f.: (1/12)*(3*(x - 1) + (3 + 15*x + 12*x^2 + 2*x^3)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 19 2016

A057979 a(n) = 1 for even n and (n-1)/2 for odd n.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41, 1, 42, 1, 43, 1
Offset: 0

Views

Author

Labos Elemer, Nov 13 2000

Keywords

Comments

a(n) = b(n)/c(n) where b(n) = A001405(n+1) - A001405(n), c(n) = gcd(A001405(n+1), A001405(n)).
Also the minimal number of disjoint edge-paths into which the complete graph on n edges can be partitioned - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jan 19 2001
For n >= 2, number of partitions of n-2 into parts that are distinct mod 2. - Giovanni Resta, Feb 06 2006
Sequence starting with a(3) obeys the rule "smallest positive value such that the ordered pair (a(n-1),a(n)) has not occurred previously", or the rule "smallest positive value such that the ratio a(n-1)/a(n) has not occurred previously". The same subsequence has its ordinal transform equal to itself, shifted left. (The ordinal transform has as its n-th term the number of values in a(1),...,a(n) that are equal to a(n).) - Franklin T. Adams-Watters, Dec 13 2006
Numerators of floor(n/2)/n, n > 0. - Wesley Ivan Hurt, Jun 14 2013
Number of nonisomorphic outer planar graphs of order n >= 3, maximum degree 3, and largest possible size. The size is (3n-2)/2 when n is even and (3n-3)/2 when n is odd. - Christian Barrientos and Sarah Minion, Feb 27 2018

Examples

			For n=12, C(12,6) - C(11,5) = 924 - 462 = 462, gcd(C(12,6), C(11,5)) = 462, and the quotient is 1.
For n=13, C(13,6) - C(12,6) = 792, gcd(C(13,6), C(12,6)) = 132, and the quotient is 6.
		

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a057979 n = 1 - rest * (1 - n') where (n', rest) = divMod n 2
    a057979_list = concat $ transpose [repeat 1, [0..]]
    -- Reinhard Zumkeller, Aug 11 2014
    
  • Magma
    [Floor(n/2)^(n mod 2): n in [0..100]]; // Vincenzo Librandi, Mar 17 2015
    
  • Maple
    A057979:=n->(n+1)/4+(3-n)*(-1)^n/4; seq(A057979(k), k=0..100); # Wesley Ivan Hurt, Oct 14 2013
  • Mathematica
    With[{no=45},Riffle[Table[1,{no}],Range[0,no-1]]] (* Harvey P. Dale, Feb 18 2011 *)
  • PARI
    a(n)=if(n%2,n-1,2)/2 \\ Charles R Greathouse IV, Sep 02 2015
    
  • Python
    def A057979(n): return n>>1 if n&1 else 1 # Chai Wah Wu, Jan 04 2024

Formula

a(n) = (n+1)/4+(3-n)*(-1)^n/4. - Paul Barry, Mar 21 2003, corrected by Hieronymus Fischer, Sep 25 2007
a(n) = (a(n-2) + a(n-3)) / a(n-1).
From Paul Barry, Oct 21 2004: (Start)
G.f.: (1-x^2+x^3)/((1+x)^2(1-x)^2);
a(n) = 2*a(n-2) - a(n-4);
a(n) = 0^n + Sum_{k=0..floor((n-2)/2)} C(n-k-2,k) * C(1,n-2k-2). (End)
a(n) = gcd(n-1, floor((n-1)/2)). - Paul Barry, May 02 2005
a(n) = binomial((2n-3)/4-(-1)^n/4, (1-(-1)^n)/2). - Paul Barry, Jun 29 2006
G.f.: (x^3-x^2+1)/(1-x^2)^2 = 1 + x^2*G(0) where G(k) = 1 + x*(k+1)/(1 - x/(x + (k+1)/G(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 29 2012
a(n) = binomial(floor(n/2), n mod 2). - Wesley Ivan Hurt, Oct 14 2013
a(n) = 1 - n mod 2 * (1 - floor(n/2)). - Reinhard Zumkeller, Aug 11 2014
a(n) = floor(n/2)^(n mod 2). - Wesley Ivan Hurt, Mar 16 2015
E.g.f.: ((2 + x)*cosh(x) - sinh(x))/2. - Stefano Spezia, Mar 26 2022

A006584 If n mod 2 = 0 then n*(n^2-4)/12 else n*(n^2-1)/12.

Original entry on oeis.org

0, 0, 0, 2, 4, 10, 16, 28, 40, 60, 80, 110, 140, 182, 224, 280, 336, 408, 480, 570, 660, 770, 880, 1012, 1144, 1300, 1456, 1638, 1820, 2030, 2240, 2480, 2720, 2992, 3264, 3570, 3876, 4218, 4560, 4940, 5320
Offset: 0

Views

Author

Keywords

Comments

Graded dimension of L''/[L',L''] for the free Lie algebra on 2 generators. Let L be a free Lie algebra with 2 generators graded by the total degree. Set L'=[L,L] and L''=[L',L']. Then a(n) is equal to the dimension of the homogeneous subspace of degree n+2 in the quotient L''/[L',L'']. - Sergei Duzhin, Mar 15 2004
Also the 2nd Witt transform of A000027. - R. J. Mathar, Nov 08 2008
Also the number of 3-element subsets of {1..n+1} whose elements sum up to an odd integer, i.e., the third column of A159916: e.g. a(3)=2 corresponds to the two subsets {1,2,4} and {2,3,4} of {1..4}. - M. F. Hasler, May 01 2009
The set of magic numbers for an idealized harmonic oscillator nucleus with a biaxially deformed prolate ellipsoid shape and an oscillator ratio of 2:1. - Jess Tauber, May 13 2013
Quasipolynomial of order 2. - Charles R Greathouse IV, May 14 2013

References

  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 33.

Crossrefs

Partial sums of A110660.

Programs

Formula

a(n+3) = A003451(n) + A027656(n). - Yosu Yurramendi, Aug 07 2008
G.f.: 2*x^3/((1-x)^4*(1+x)^2). a(n) = 2*A006918(n-2). - R. J. Mathar, Nov 08 2008
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6). - Jaume Oliver Lafont, Dec 05 2008
a(n) = n*(2*n^2-5-3*(-1)^n)/24. - Luce ETIENNE, Apr 03 2015
a(n) = Sum_{i=1..n} floor(i*(n-i)/2). - Wesley Ivan Hurt, May 07 2016
E.g.f.: x*(x*(x + 3)*exp(x) - 3*sinh(x))/12. - Ilya Gutkovskiy, May 08 2016
Sum_{n>=3} 1/a(n) = 75/8 - 12*log(2). - Amiram Eldar, Sep 17 2022

A092092 Back and Forth Summant S(n, 3): a(n) = Sum{i=0..floor(2n/3)} (n-3i).

Original entry on oeis.org

1, 1, 0, 3, 2, 0, 5, 3, 0, 7, 4, 0, 9, 5, 0, 11, 6, 0, 13, 7, 0, 15, 8, 0, 17, 9, 0, 19, 10, 0, 21, 11, 0, 23, 12, 0, 25, 13, 0, 27, 14, 0, 29, 15, 0, 31, 16, 0, 33, 17, 0, 35, 18, 0, 37, 19, 0, 39, 20, 0, 41, 21, 0, 43, 22, 0, 45, 23, 0, 47, 24, 0, 49, 25, 0, 51, 26, 0, 53, 27, 0, 55, 28
Offset: 1

Views

Author

Jahan Tuten (jahant(AT)indiainfo.com), Mar 29 2004

Keywords

Comments

The terms for n>1 can also be defined by: a(n)=0 if n==0 (mod 3), and otherwise a(n) equals the inverse of 3 in Z/nZ*. - José María Grau Ribas, Jun 18 2013
The subsequence of nonzero terms is essentially the same as A026741. - Giovanni Resta, Jun 18 2013

References

  • F. Smarandache, Back and Forth Summants, Arizona State Univ., Special Collections, 1972.

Crossrefs

Other values of k: A000004 (k = 1, 2), A027656 (k = 4), A092093 (k = 5).
Cf. A226782 - A226787 for inverses of 4,5,6,.. in Z/nZ*.

Programs

  • Maple
    f:= proc(n) local t;
    t:= n mod 3;
    if t = 0 then 0 elif t = 1 then 2/3*(n+1/2) else (n+1)/3 fi
    end proc:
    map(f, [$1..100]); # Robert Israel, May 19 2016
  • Mathematica
    LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 1, 0, 3, 2, 0}, 100] (* Jean-François Alcover, Jun 04 2020 *)
  • PARI
    S(n, k=3) = local(s, x); s = n; x = n - k; while (x >= -n, s = s + x; x = x - k); s;

Formula

a(3n) = 0; a(3n+1) = 2n+1; a(3n+2) = n+1.
G.f.: x*(1+x+x^3) / ( (x-1)^2*(1+x+x^2)^2 ). - R. J. Mathar, Jun 26 2013
a(n) = Sum_{k=1..n} k*( floor((3k-1)/n)-floor((3k-2)/n) ). - Anthony Browne, May 17 2016

Extensions

Edited and extended by David Wasserman, Dec 19 2005
Previous Showing 11-20 of 31 results. Next