cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 143 results. Next

A036561 Nicomachus triangle read by rows, T(n, k) = 2^(n - k)*3^k, for 0 <= k <= n.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 8, 12, 18, 27, 16, 24, 36, 54, 81, 32, 48, 72, 108, 162, 243, 64, 96, 144, 216, 324, 486, 729, 128, 192, 288, 432, 648, 972, 1458, 2187, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0

Views

Author

Keywords

Comments

The triangle pertaining to this sequence has the property that every row, every column and every diagonal contains a nontrivial geometric progression. More interestingly every line joining any two elements contains a nontrivial geometric progression. - Amarnath Murthy, Jan 02 2002
Kappraff states (pp. 148-149): "I shall refer to this as Nicomachus' table since an identical table of numbers appeared in the Arithmetic of Nicomachus of Gerasa (circa 150 A.D.)" The table was rediscovered during the Italian Renaissance by Leon Battista Alberti, who incorporated the numbers in dimensions of his buildings and in a system of musical proportions. Kappraff states "Therefore a room could exhibit a 4:6 or 6:9 ratio but not 4:9. This ensured that ratios of these lengths would embody musical ratios". - Gary W. Adamson, Aug 18 2003
After Nichomachus and Alberti several Renaissance authors described this table. See for instance Pierre de la Ramée in 1569 (facsimile of a page of his Arithmetic Treatise in Latin in the links section). - Olivier Gérard, Jul 04 2013
The triangle sums, see A180662 for their definitions, link Nicomachus's table with eleven different sequences, see the crossrefs. It is remarkable that these eleven sequences can be described with simple elegant formulas. The mirror of this triangle is A175840. - Johannes W. Meijer, Sep 22 2010
The diagonal sums Sum_{k} T(n - k, k) give A167762(n + 2). - Michael Somos, May 28 2012
Where d(n) is the divisor count function, then d(T(i,j)) = A003991, the rows of which sum to the tetrahedral numbers A000292(n+1). For example, the sum of the divisors of row 4 of this triangle (i = 4), gives d(16) + d(24) + d(36) + d(54) + d(81) = 5 + 8 + 9 + 8 + 5 = 35 = A000292(5). In fact, where p and q are distinct primes, the aforementioned relationship to the divisor function and tetrahedral numbers can be extended to any triangle of numbers in which the i-th row is of form {p^(i-j)*q^j, 0<=j<=i}; i >= 0 (e.g., A003593, A003595). - Raphie Frank, Nov 18 2012, corrected Dec 07 2012
Sequence (or tree) generated by these rules: 1 is in S, and if x is in S, then 2*x and 3*x are in S, and duplicates are deleted as they occur; see A232559. - Clark Kimberling, Nov 28 2013
Partial sums of rows produce Stirling numbers of the 2nd kind: A000392(n+2) = Sum_{m=1..(n^2+n)/2} a(m). - Fred Daniel Kline, Sep 22 2014
A permutation of A003586. - L. Edson Jeffery, Sep 22 2014
Form a word of length i by choosing a (possibly empty) word on alphabet {0,1} then concatenating a word of length j on alphabet {2,3,4}. T(i,j) is the number of such words. - Geoffrey Critzer, Jun 23 2016
Form of Zorach additive triangle (see A035312) where each number is sum of west and northwest numbers, with the additional condition that each number is GCD of the two numbers immediately below it. - Michel Lagneau, Dec 27 2018

Examples

			The start of the sequence as a triangular array read by rows:
   1
   2   3
   4   6   9
   8  12  18  27
  16  24  36  54  81
  32  48  72 108 162 243
  ...
The start of the sequence as a table T(n,k) n, k > 0:
    1    2    4    8   16   32 ...
    3    6   12   24   48   96 ...
    9   18   36   72  144  288 ...
   27   54  108  216  432  864 ...
   81  162  324  648 1296 2592 ...
  243  486  972 1944 3888 7776 ...
  ...
- _Boris Putievskiy_, Jan 08 2013
		

References

  • Jay Kappraff, Beyond Measure, World Scientific, 2002, p. 148.
  • Flora R. Levin, The Manual of Harmonics of Nicomachus the Pythagorean, Phanes Press, 1994, p. 114.

Crossrefs

Cf. A001047 (row sums), A000400 (central terms), A013620, A007318.
Triangle sums (see the comments): A001047 (Row1); A015441 (Row2); A005061 (Kn1, Kn4); A016133 (Kn2, Kn3); A016153 (Fi1, Fi2); A016140 (Ca1, Ca4); A180844 (Ca2, Ca3); A180845 (Gi1, Gi4); A180846 (Gi2, Gi3); A180847 (Ze1, Ze4); A016185 (Ze2, Ze3). - Johannes W. Meijer, Sep 22 2010, Sep 10 2011
Antidiagonal cumulative sum: A000392; square arrays cumulative sum: A160869. Antidiagonal products: 6^A000217; antidiagonal cumulative products: 6^A000292; square arrays products: 6^A005449; square array cumulative products: 6^A006002.

Programs

  • Haskell
    a036561 n k = a036561_tabf !! n !! k
    a036561_row n = a036561_tabf !! n
    a036561_tabf = iterate (\xs@(x:_) -> x * 2 : map (* 3) xs) [1]
    -- Reinhard Zumkeller, Jun 08 2013
    
  • Magma
    /* As triangle: */ [[(2^(i-j)*3^j)/3: j in [1..i]]: i in [1..10]]; // Vincenzo Librandi, Oct 17 2014
  • Maple
    A036561 := proc(n,k): 2^(n-k)*3^k end:
    seq(seq(A036561(n,k),k=0..n),n=0..9);
    T := proc(n,k) option remember: if k=0 then 2^n elif k>=1 then procname(n,k-1) + procname(n-1,k-1) fi: end: seq(seq(T(n,k),k=0..n),n=0..9);
    # Johannes W. Meijer, Sep 22 2010, Sep 10 2011
  • Mathematica
    Flatten[Table[ 2^(i-j) 3^j, {i, 0, 12}, {j, 0, i} ]] (* Flatten added by Harvey P. Dale, Jun 07 2011 *)
  • PARI
    for(i=0,9,for(j=0,i,print1(3^j<<(i-j)", "))) \\ Charles R Greathouse IV, Dec 22 2011
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, 2^(n - k) * 3^k)} /* Michael Somos, May 28 2012 */
    

Formula

T(n,k) = A013620(n,k)/A007318(n,k). - Reinhard Zumkeller, May 14 2006
T(n,k) = T(n,k-1) + T(n-1,k-1) for n>=1 and 1<=k<=n with T(n,0) = 2^n for n>=0. - Johannes W. Meijer, Sep 22 2010
T(n,k) = 2^(k-1)*3^(n-1), n, k > 0 read by antidiagonals. - Boris Putievskiy, Jan 08 2013
a(n) = 2^(A004736(n)-1)*3^(A002260(n)-1), n > 0, or a(n) = 2^(j-1)*3^(i-1) n > 0, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor[(-1+sqrt(8*n-7))/2]. - Boris Putievskiy, Jan 08 2013
G.f.: 1/((1-2x)(1-3yx)). - Geoffrey Critzer, Jun 23 2016
T(n,k) = (-1)^n * Sum_{q=0..n} (-1)^q * C(k+3*q, q) * C(n+2*q, n-q). - Marko Riedel, Jul 01 2024

A052952 a(n) = Fibonacci(n+2) - (1-(-1)^n)/2.

Original entry on oeis.org

1, 1, 3, 4, 8, 12, 21, 33, 55, 88, 144, 232, 377, 609, 987, 1596, 2584, 4180, 6765, 10945, 17711, 28656, 46368, 75024, 121393, 196417, 317811, 514228, 832040, 1346268, 2178309, 3524577, 5702887, 9227464, 14930352, 24157816, 39088169, 63245985, 102334155
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals row sums of triangle A173284. - Gary W. Adamson, Feb 14 2010
The Kn21 sums (see A180662 for definition) of the 'Races with Ties' triangle A035317 produce this sequence. - Johannes W. Meijer, Jul 20 2011
a(n-1), for n >= 1, gives the number of compositions of n with relative prime parts, and parts not exceeding 2. See the row sums of triangle A030528 where for even n the leading 1 is missing. - Wolfdieter Lang, Jul 27 2023

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 8*x^4 + 12*x^5 + 21*x^6 + 33*x^7 + ...
		

Crossrefs

Partial sums of A008346, first differences of A129696.
Cf. also A000032, A000045, A030528.

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+2) -(1-(-1)^n)/2); # G. C. Greubel, Jul 10 2019
  • Haskell
    a052952 n = a052952_list !! n
    a052952_list = 1 : 1 : zipWith (+)
       a059841_list (zipWith (+) a052952_list $ tail a052952_list)
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Magma
    [Fibonacci(n+2)-(1-(-1)^n)/2: n in [0..40]]; // Vincenzo Librandi, Dec 02 2016
    
  • Maple
    A052952 :=proc(n)
        option remember;
        local t1;
        if n <= 1 then
            return 1 ;
        fi:
        if n mod 2 = 1 then
            t1:=0
        else
            t1:=1;
        fi:
        procname(n-1)+procname(n-2)+t1;
    end proc;
    seq(A052952(n), n=0..40) ; # N. J. A. Sloane, May 25 2008
  • Mathematica
    Table[Fibonacci[n+2] -(1-(-1)^n)/2, {n, 0, 40}] (* Vincenzo Librandi, Dec 02 2016 *)
    Sum[(-1)^k*Fibonacci[Range[2,41], 1-k], {k,0,1}] (* G. C. Greubel, Oct 21 2019 *)
    CoefficientList[Series[1/((1-x-x^2)*(1-x^2)),{x,0,40}],x] (* Harvey P. Dale, Sep 12 2020 *)
  • PARI
    {a(n) = fibonacci(n+2) - n%2};
    
  • Sage
    [fibonacci(n+2) -(1-(-1)^n)/2 for n in (0..40)] # G. C. Greubel, Jul 10 2019
    

Formula

G.f.: 1/((1-x-x^2)*(1-x^2)).
a(n) = A074331(n+1).
a(n) = A054450(n+1, 1) (second column of triangle).
a(n) = 2*a(n-2) + a(n-3) + 1, with a(0)=1, a(1)=1, a(2)=3.
a(n) = Sum_{alpha=RootOf(-1+z+z^2)} (3+alpha)*alpha^(-1-n)/3 - Sum_{beta=RootOf(-1+z^2)} beta^(-1-n)/2.
a(2*k) = Sum_{j=0..k} F(2*j+1) = F(2*(k+1)) for k >= 0; a(2*k-1) = Sum_{j=0..k} F(2*j) = F(2*k+1)-1 for k >= 1 (F = A000045, Fibonacci numbers).
a(n) = a(n-1) + a(n-2) + (1+(-1)^n)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+1, k). - Paul Barry, Oct 23 2004
a(n) = floor(phi^(n+2) / sqrt(5)), where phi is the golden ratio: phi = (1+sqrt(5))/2. - Reinhard Zumkeller, Apr 19 2005
a(n) = Fibonacci(n+1) + a(n-2) with n>1, a(0)=a(1)=1. - Zerinvary Lajos, Mar 17 2008
a(n) = floor(Fibonacci(n+3)^2/Fibonacci(n+4)). - Gary Detlefs, Nov 29 2010
a(n) = (A001595(n+3) - A066983(n+4))/2. - Gary Detlefs, Dec 19 2010
a(4*n) = F(4*n+2); a(4*n+1) = F(4*n+3) - 1; a(4*n+2) = F(4*n+4); a(4*n+3) = F(4*n+5) - 1. - Johannes W. Meijer, Jul 20 2011
a(n+1) = a(n) + a(n-1) + A059841(n+1). - Reinhard Zumkeller, Jan 06 2012
a(n) = floor(|F((1+i)*(n+2))|), n >= 0, with the complex Fibonacci function F: C -> C, z -> F(z) with F(z) := (exp(log(phi)*z) - exp(i*Pi*z)*exp(-log(phi)*z))/(2*phi-1) with the modulus |z|, the imaginary unit i and the golden section phi:=(1+sqrt(5))/2. A Conjecture: For F(z) see, e.g., the T. Koshy reference. ch. 45, p. 523, where F is called f, given in A000045. - Wolfdieter Lang, Jul 24 2012
5*a(n) = (L(n+3)-1)*(L(n+4)+3) -14 -Sum_{k=0..n} L(k+1)*L(k+5) = (L(n+3)-1)*(L(n+4)+3) -L(2*n+7) +A168309(n), where L=A000032. - J. M. Bergot, Jun 13 2014
a(n) = floor(phi*Fibonacci(n+1)), where phi is the golden section. - Michel Dekking, Dec 02 2016
a(n) = -(-1)^n * a(-4-n) for all n in Z. - Michael Somos, Dec 03 2016
a(n) = Sum_{k=0..n} Sum_{i=0..n} C(n-k-1,k-i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = floor(1/(Sum_{k>=n+4} 1/Fibonacci(k))) [Ohtsuka and Nakamura]. - Michel Marcus, Aug 09 2018
a(n) = floor(abs(chebyshevU(n/2, 3/2))). - Federico Provvedi, Feb 23 2022
E.g.f.: exp(x/2)*(5*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/5 - sinh(x). - Stefano Spezia, Mar 09 2024

Extensions

Additional formulas and more terms from Wolfdieter Lang, May 02 2000
Better description from Olivier Gérard, Jun 05 2001

A159797 Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n-1.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 3, 5, 7, 9, 4, 7, 10, 13, 16, 5, 9, 13, 17, 21, 25, 6, 11, 16, 21, 26, 31, 36, 7, 13, 19, 25, 31, 37, 43, 49, 8, 15, 22, 29, 36, 43, 50, 57, 64, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101
Offset: 0

Views

Author

Omar E. Pol, Jul 09 2009

Keywords

Comments

Note that the last term of the n-th row is the n-th square A000290(n).
See also A162611, A162614 and A162622.
The triangle sums, see A180662 for their definitions, link the triangle A159797 with eleven sequences, see the crossrefs. - Johannes W. Meijer, May 20 2011
T(n,k) is the number of distinct sums in the direct sum of {1, 2, ... n} with itself k times for 1 <= k <= n+1, e.g., T(5,3) = the number of distinct sums in the direct sum {1,2,3,4,5} + {1,2,3,4,5} + {1,2,3,4,5}. The sums range from 1+1+1=3 to 5+5+5=15. So there are 13 distinct sums. - Derek Orr, Nov 26 2014

Examples

			Triangle begins:
0;
1, 1;
2, 3, 4;
3, 5, 7, 9;
4, 7,10,13,16;
5, 9,13,17,21,25;
6,11,16,21,26,31,36;
		

Crossrefs

Cf.: A006002 (row sums). - R. J. Mathar, Jul 17 2009
Cf. A163282, A163283, A163284, A163285. - Omar E. Pol, Nov 18 2009
From Johannes W. Meijer, May 20 2011: (Start)
Triangle sums (see the comments): A006002 (Row1), A050187 (Row2), A058187 (Related to Kn11, Kn12, Kn13, Fi1 and Ze1), A006918 (Related to Kn21, Kn22, Kn23, Fi2 and Ze2), A000330 (Kn3), A016061 (Kn4), A190717 (Related to Ca1 and Ze3), A144677 (Related to Ca2 and Ze4), A000292 (Related to Ca3, Ca4, Gi3 and Gi4) A190718 (Related to Gi1) and A144678 (Related to Gi2). (End)

Programs

Formula

Given m = floor( (sqrt(8*n+1)-1)/2 ), then a(n) = m + (n - m*(m+1)/2)*(m-1). - Carl R. White, Jul 24 2010

Extensions

Edited by Omar E. Pol, Jul 18 2009
More terms from Omar E. Pol, Nov 18 2009
More terms from Carl R. White, Jul 24 2010

A016061 a(n) = n*(n+1)*(4*n+5)/6.

Original entry on oeis.org

0, 3, 13, 34, 70, 125, 203, 308, 444, 615, 825, 1078, 1378, 1729, 2135, 2600, 3128, 3723, 4389, 5130, 5950, 6853, 7843, 8924, 10100, 11375, 12753, 14238, 15834, 17545, 19375, 21328, 23408, 25619, 27965, 30450, 33078, 35853, 38779, 41860
Offset: 0

Views

Author

Keywords

Comments

Number of ZnS molecules in cluster of n layers in zinc blende crystal.
(Zinc sulfide crystallizes in two different forms: wurtzite and zinc blende, the latter is also spelled zincblende.) - Jonathan Vos Post, Jan 22 2013
The Kn4 triangle sums of the Connell-Pol triangle A159797 lead to the sequence given above. For the definitions of the Kn4 and other triangle sums see A180662. - Johannes W. Meijer, May 20 2011
If one generated primitive Pythagorean triangles (2n+1, 2n+3) the collective sum of their perimeters for each n is four times the numbers listed in this sequence. - J. M. Bergot, Jul 18 2011
a(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and nA000292(n)+A000292(n+1)=n^3. - Clark Kimberling, Jun 04 2012
Degrees of the Hilbert polynomials for B_3 and C_3, per p. 13 of Gashi et al. - Jonathan Vos Post, Dec 14 2013
Number of solutions to a + b = c + d when 0 < a <= k, 0 <= b, c, d <= k, k = 0, 1, 2, 3.... Taken from Step 1 2007 problem #1(i) using 4 digit balanced numbers. - Bobby Milazzo, Mar 09 2013
From J. M. Bergot, Jun 18 2013: (Start)
Consider the lower half, including the main diagonal, of the array in A144216 as a triangle. The rows begin:
0;
1, 2;
3, 4, 6;
6, 7, 9, 12, ...
The sum of the terms in row(n) is a(n). (End)
This sequence is related to A008865 by a(n) = n*A008865(n+1) - Sum_{i=1..n} A008865(i) for n>0. - Bruno Berselli, Aug 06 2015

References

  • P. Jena and S. N. Behera, Clusters and Nanostructured Materials, Nova Science Publishers, 1996.

Crossrefs

Bisection of A002623.
Row sums of triangle A120070.

Programs

  • Magma
    I:=[0,3,13,34]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 25 2013
  • Maple
    A016061 := proc(n)
        n*(n+1)*(4*n+5)/6 ;
    end proc: # R. J. Mathar, Sep 26 2013
  • Mathematica
    CoefficientList[Series[x (3 + x) / (1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 25 2013 *)
    Table[n(n+1)(4*n+5)/6, {n,0,100}] (* Wesley Ivan Hurt, Sep 25 2013 *)
  • PARI
    v=vector(40,i,t(i)); s=0; forstep(i=2,40,2,s+=v[i]; print1(s","))
    

Formula

G.f.: x*(3+x)/(1-x)^4. - Paul Barry, Feb 27 2003
Partial sums of A014105. - Jon Perry, Jul 23 2003
a(n) = Sum_{i=0..n-1} 2*i^2 + i. - Jani Nurminen (slinky(AT)iki.fi), May 14 2006
a(n) = 2*n^3/3 +3*n^2/2 + 5*n/6. - Jonathan Vos Post, Dec 14 2013
a(n) = (4*n+5)/(2*n+1)*A000330(n). - Alexander R. Povolotsky, Mar 09 2013
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Bobby Milazzo, Mar 10 2013
Sum_{n>=1} 1/a(n) = 12*Pi/5 + 72*log(2)/5 - 426/25. - Amiram Eldar, Jan 04 2022
E.g.f.: exp(x)*x*(18 + 21*x + 4*x^2)/6. - Stefano Spezia, Jul 31 2022

A058187 Expansion of (1+x)/(1-x^2)^4: duplicated tetrahedral numbers.

Original entry on oeis.org

1, 1, 4, 4, 10, 10, 20, 20, 35, 35, 56, 56, 84, 84, 120, 120, 165, 165, 220, 220, 286, 286, 364, 364, 455, 455, 560, 560, 680, 680, 816, 816, 969, 969, 1140, 1140, 1330, 1330, 1540, 1540, 1771, 1771, 2024, 2024, 2300, 2300, 2600, 2600, 2925, 2925, 3276, 3276
Offset: 0

Views

Author

Henry Bottomley, Nov 20 2000

Keywords

Comments

For n >= i, i = 6,7, a(n - i) is the number of incongruent two-color bracelets of n beads, i of which are black (cf. A005513, A032280), having a diameter of symmetry. The latter means the following: if we imagine (0,1)-beads as points (with the corresponding labels) dividing a circumference of a bracelet into n identical parts, then a diameter of symmetry is a diameter (connecting two beads or not) such that a 180-degree turn of one of two sets of points around it (obtained by splitting the circumference by this diameter) leads to the coincidence of the two sets (including their labels). - Vladimir Shevelev, May 03 2011
From Johannes W. Meijer, May 20 2011: (Start)
The Kn11, Kn12, Kn13, Fi1 and Ze1 triangle sums, see A180662 for their definitions, of the Connell-Pol triangle A159797 are linear sums of shifted versions of the duplicated tetrahedral numbers, e.g., Fi1(n) = a(n-1) + 5*a(n-2) + a(n-3) + 5*a(n-4).
The Kn11, Kn12, Kn13, Kn21, Kn22, Kn23, Fi1, Fi2, Ze1 and Ze2 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above. (End)
The number of quadruples of integers [x, u, v, w] that satisfy x > u > v > w >= 0, n + 5 = x + u. - Michael Somos, Feb 09 2015
Also, this sequence is the fourth column in the triangle of the coefficients of the sum of two consecutive Fibonacci polynomials F(n+1, x) and F(n, x) (n>=0) in ascending powers of x. - Mohammad K. Azarian, Jul 18 2018

Crossrefs

Cf. A057884. Sum of 2 consecutive terms gives A006918, whose sum of 2 consecutive terms gives A002623, whose sum of 2 consecutive terms gives A000292, which is this sequence without the duplication. Continuing to sum 2 consecutive terms gives A000330, A005900, A001845, A008412 successively.

Programs

  • Haskell
    a058187 n = a058187_list !! n
    a058187_list = 1 : f 1 1 [1] where
       f x y zs = z : f (x + y) (1 - y) (z:zs) where
         z = sum $ zipWith (*) [1..x] [x,x-1..1]
    -- Reinhard Zumkeller, Dec 21 2011
    
  • Maple
    A058187:= proc(n) option remember; A058187(n):= binomial(floor(n/2)+3, 3) end: seq(A058187(n), n=0..51); # Johannes W. Meijer, May 20 2011
  • Mathematica
    a[n_]:= Length @ FindInstance[{x>u, u>v, v>w, w>=0, x+u==n+5}, {x, u, v, w}, Integers, 10^9]; (* Michael Somos, Feb 09 2015 *)
    With[{tetra=Binomial[Range[30]+2,3]},Riffle[tetra,tetra]] (* Harvey P. Dale, Mar 22 2015 *)
  • PARI
    {a(n) = binomial(n\2+3, 3)}; /* Michael Somos, Jun 07 2005 */
    
  • Sage
    [binomial((n//2)+3, 3) for n in (0..60)] # G. C. Greubel, Feb 18 2022

Formula

a(n) = A006918(n+1) - a(n-1).
a(2*n) = a(2*n+1) = A000292(n) = (n+1)*(n+2)*(n+3)/6.
a(n) = (2*n^3 + 21*n^2 + 67*n + 63)/96 + (n^2 + 7*n + 11)(-1)^n/32. - Paul Barry, Aug 19 2003
a(n) = A108299(n-3,n)*(-1)^floor(n/2) for n > 2. - Reinhard Zumkeller, Jun 01 2005
Euler transform of finite sequence [1, 3]. - Michael Somos, Jun 07 2005
G.f.: 1 / ((1 - x) * (1 - x^2)^3) = 1 / ((1 + x)^3 * (1 - x)^4). a(n) = -a(-7-n) for all n in Z.
a(n) = binomial(floor(n/2) + 3, 3). - Vladimir Shevelev, May 03 2011
a(-n) = -a(n-7); a(n) = A000292(A008619(n)). - Guenther Schrack, Sep 13 2018
Sum_{n>=0} 1/a(n) = 3. - Amiram Eldar, Aug 18 2022

A007477 Shifts 2 places left when convolved with itself.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 22, 44, 90, 187, 392, 832, 1778, 3831, 8304, 18104, 39666, 87296, 192896, 427778, 951808, 2124135, 4753476, 10664458, 23981698, 54045448, 122041844, 276101386, 625725936, 1420386363, 3229171828, 7351869690, 16760603722, 38258956928, 87437436916, 200057233386, 458223768512, 1050614664580
Offset: 0

Views

Author

Keywords

Comments

Words of length n in language defined by L = 1 + a + (L)L: L(0)=1, L(1)=a, L(2)=(), L(3)=(a)+()a, L(4)=(())+(a)a+()(), ...
Series reversion of x*A(x) is x*A082582(-x). - Michael Somos, Jul 22 2003
a(n) = number of Motzkin n-paths (A001006) in which no flatstep (F) is immediately followed by either an upstep (U) or a flatstep, in other words, each flatstep is either followed by a downstep (D) or ends the path. For example, a(4)=3 counts UDUD, UFDF, UUDD. - David Callan, Jun 07 2006
a(n) = number of Dyck (n+1)-paths (A000108) containing no UDUs and no subpaths of the form UUPDD where P is a nonempty Dyck path. For example, a(4)=3 counts UUUDDUUDDD, UUDDUUDDUD, UUUDDUDDUD. - David Callan, Sep 25 2006
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-1}*a_0 for n >= t. For example phi([1]) is the Catalan numbers A000108. The present sequence is (essentially) phi([0,1,1]). - Gary W. Adamson and R. J. Mathar, Oct 27 2008
The Kn21(n) triangle sums of A175136 lead to A007477(n+1), while the Kn22(n) = A007477(n+3)-1, Kn23(n) = A007477(n+5)-(4+n) and Kn3(n) = A007477(2*n+1) triangle sums of A175136 are related to the sequence given above. For the definition of these triangle sums see A180662. - Johannes W. Meijer, May 06 2011
For n>=2, a(n) gives number of possible, ways to parse an English sentence consisting of just n+1 copies of word "buffalo", with one particular "plausible" grammar. See the Wikipedia page and my Python source at OEIS Wiki. Whether these are really intelligible sentences is of course debatable. See A213705 for a more plausible example in the Finnish language. - Antti Karttunen, Sep 14 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007477 n = a007477_list !! n
    a007477_list = 1 : 1 : f [1,1] where
       f xs = y : f (y:xs) where y = sum $ zipWith (*) (tail xs) (reverse xs)
    -- Reinhard Zumkeller, Apr 09 2012
    
  • Maple
    A007477 := proc(n) option remember; local k; if n <= 1 then 1 else add(A007477(k)*A007477(n-k-2),k=0..n-2); fi; end;
    unprotect(phi);
    phi:=proc(t,u,M) local i,a;
    a:=Array(0..M); for i from 0 to t-1 do a[i]:=u[i+1]; od:
    for i from t to M do a[i]:=add(a[j]*a[i-1-j],j=0..i-1); od:
    [seq(a[i],i=0..M)]; end;
    phi(3,[0,1,1],30);
    # N. J. A. Sloane, Nov 02 2008
  • Mathematica
    f[x_] := (1 - Sqrt[1 - 4x^2 - 4x^3])/2; Drop[ CoefficientList[ Series[f[x], {x, 0, 32}], x], 2] (* Jean-François Alcover, Nov 22 2011, after Pari *)
    a[n_] := Sum[Binomial[2*k+2, n-k-2]*Binomial[n-k-2, k]/(k+1), {k, 0, n-2}]; a[0] = a[1] = 1; Array[a, 40, 0] (* Jean-François Alcover, Mar 04 2016, after Vladimir Kruchinin *)
  • Maxima
    a(n):=if n<2 then 1 else sum((binomial(2*k+2,n-k-2)*binomial(n-k-2,k))/(k+1),k,0,n-2); /* Vladimir Kruchinin, Nov 22 2014 */
  • PARI
    a(n)=polcoeff((1-sqrt(1-4*x^2-4*x^3+x^3*O(x^n)))/2,n+2)
    

Formula

a(n) = sum( a(k) * a(n-2-k) ), n>1.
G.f. A(x) satisfies the equation 0 = 1 + x - A(x) + (x*A(x))^2.
The g.f. satisfies A(x)-x^2*A(x)^2 = 1+x. - Ralf Stephan, Jun 30 2003
G.f.: (1-sqrt(1-4x^2-4x^3))/(2x^2).
G.f.: (1+x)c(x^2(1+x)) where c(x) is g.f. of A000108. - Paul Barry, May 31 2006
G.f.: 1/(1-x/(1-x^2/(1-x^2/(1-x/(1-x^2/(1-x^2/(1-x/(1-x^2/(1-x^2/(1-... (continued fraction). - Paul Barry, Jul 30 2010
D-finite with recurrence: (n+2)*a(n) +(n+1)*a(n-1) +4*(-n+1)*a(n-2) +2*(-4*n+9)*a(n-3) +2*(-2*n+7)*a(n-4)=0. - R. J. Mathar, Dec 02 2012
a(n) = Sum_{k=0..n-2} binomial(2*k+2,n-k-2)*binomial(n-k-2,k)/(k+1), n>1, a(0)=1, a(1)=1. - Vladimir Kruchinin, Nov 22 2014
a(n) = Sum_{k=0..n-1} (-1)^(n-1-k)*binomial(n-1,k)*A082582(k+2), for n>0. - Thomas Baruchel, Jan 22 2015
a(n) ~ sqrt(3 - 4*r^2) * (4*r)^n * (1+r)^(n+1) / (sqrt(Pi)*n^(3/2)), where r = 0.41964337760708056627592628232664330021208937304879612338939... is the root of the equation 4*r^2*(1+r) = 1. - Vaclav Kotesovec, Jul 03 2021

Extensions

Additional comments from Michael Somos, Aug 03 2000

A035607 Table a(d,m) of number of points of L1 norm m in cubic lattice Z^d, read by antidiagonals (d >= 1, m >= 0).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 6, 8, 2, 1, 8, 18, 12, 2, 1, 10, 32, 38, 16, 2, 1, 12, 50, 88, 66, 20, 2, 1, 14, 72, 170, 192, 102, 24, 2, 1, 16, 98, 292, 450, 360, 146, 28, 2, 1, 18, 128, 462, 912, 1002, 608, 198, 32, 2, 1, 20, 162, 688, 1666, 2364, 1970, 952, 258, 36, 2, 1, 22, 200, 978, 2816
Offset: 0

Views

Author

Keywords

Comments

Table also gives coordination sequences of same lattices.
Rows sums are given by A001333. Rising and falling diagonals are the tribonacci numbers A000213, A001590. - Paul Barry, Feb 13 2003
a(d,m) also gives the number of ways to choose m squares from a 2 X (d-1) grid so that no two squares in the selection are (horizontally or vertically) adjacent. - Jacob A. Siehler, May 13 2006
Mirror image of triangle A113413. - Philippe Deléham, Oct 15 2006
The Ca1 sums lead to A126116 and the Ca2 sums lead to A070550, see A180662 for the definitions of these triangle sums. - Johannes W. Meijer, Aug 05 2011
A035607 is jointly generated with the Delannoy triangle A008288 as an array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1) and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 05 2012
Also, the polynomial v(n,x) above is x + (x + 1)*f(n-1,x), where f(0,x) = 1. - Clark Kimberling, Oct 24 2014
Rows also give the coefficients of the independence polynomial of the n-ladder graph. - Eric W. Weisstein, Dec 29 2017
Considering both sequences as square arrays (offset by one row), the rows of A035607 are the first differences of the rows of A008288, and the rows of A008288 are the partial sums of the rows of A035607. - Shel Kaphan, Feb 23 2023
Considering only points with nonnegative coordinates, the number of points at L1 distance = m in d dimensions is the same as the number of ways of putting m indistinguishable balls into d distinguishable urns, binomial(m+d-1, d-1). This is one facet of the cross-polytope. Allowing for + and - coordinates, there are binomial(d,i)*2^i facets containing points with up to i nonzero coordinates. Eliminating double counting of points with any coordinates = 0, there are Sum_{i=1..d} (-1)^(d-i)*binomial(m+i-1,i-1)*binomial(d,i)*2^i points at distance m in d dimensions. One may avoid the alternating sum by using binomial(m-1,i-1) to count only the points per facet with exactly i nonzero coordinates, avoiding any double counting, but the result is the same. - Shel Kaphan, Mar 04 2023

Examples

			From _Clark Kimberling_, Oct 24 2014: (Start)
As a triangle of coefficients in polynomials v(n,x) in Comments, the first 6 rows are
  1
  1   2
  1   4   2
  1   6   8   2
  1   8  18  12   2
  1  10  32  38  16   2
  ... (End)
From _Shel Kaphan_, Mar 04 2023: (Start)
For d=3, m=4:
There are binomial(3,1)*2^1 = 6 facets (vertices) of binomial(4+1-1,1-1) = 1 point with <= one nonzero coordinate.
There are binomial(3,2)*2^2 = 12 facets (edges) of binomial(4+2-1,2-1) = 5 points with <= two nonzero coordinates.
There are binomial(3,3)*2^3 = 8 facets (faces) of binomial(4+3-1,3-1) = 15 points with <= three nonzero coordinates.
a(3,4) = 8*15 - 12*5 + 6*1 = 120 - 60 + 6 = 66. (End)
		

Crossrefs

Other versions: A113413, A119800, A122542, A266213.
Cf. A008288, which has g.f. 1/(1-x-x*y-x^2*y).
Cf. A078057 (row sums), A050146 (central terms).
Cf. A050146.

Programs

  • Haskell
    a035607 n k = a035607_tabl !! n !! k
    a035607_row n = a035607_tabl !! n
    a035607_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 2])
    -- Reinhard Zumkeller, Jul 20 2013
    
  • Maple
    A035607 := proc(d,m) local j: add(binomial(floor((d-1+j)/2),d-m-1)*binomial(d-m-1, floor((d-1-j)/2)),j=0..d-1) end: seq(seq(A035607(d,m),m=0..d-1),d=1..11); # d=dimension, m=norm # Johannes W. Meijer, Aug 05 2011
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A008288 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A035607 *)
    (* Clark Kimberling, Mar 09 2012 *)
    Reverse /@ CoefficientList[CoefficientList[Series[(1 + x)/(1 - x - x y - x^2 y), {x, 0, 10}], x], y] // Flatten (* Eric W. Weisstein, Dec 29 2017 *)
  • PARI
    T(n, k) = if (k==0, 1, sum(i=0, k-1, binomial(n-k,i+1)*binomial(k-1,i)*2^(i+1)));
    tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(T(n, k), ", ")); print); \\ as a triangle; Michel Marcus, Feb 27 2018
  • Sage
    def A035607_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, n-k) for k in (0..n-1)]
    for n in (1..10): print(A035607_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

From Johannes W. Meijer, Aug 05 2011: (Start)
f(d,m) = Sum_{j=0..d-1} binomial(floor((d-1+j)/2), d-m-1)*binomial(d-m-1, floor((d-1-j)/2)), d >= 1 and 0 <= m <= d-1.
f(d,m) = f(d-1,m-1) + f(d-1,m) + f(d-2,m-1) (d >= 3 and 1 <= m <= d-1) with f(d,0) = 1 (d >= 1) and f(d,d-1) = 2 (d>=2). (End)
From Roger Cuculière, Apr 10 2006: (Start)
The generating function G(x,y) of this double sequence is the sum of a(n,p)*x^n*y^p, n=1..oo, p=0..oo, which is G(x,y) = x*(1+y)/(1-x-y-x*y).
The horizontal generating function H_n(y), which generates the rows of the table: (1, 2, 2, 2, 2, ...), (1, 4, 8, 12, 16, ...), (1, 6, 18, 38, 66, ...), is the sum of a(n,p)*y^p, p=0..oo, for each fixed n. This is H_n(y) = ((1+y)^n)/((1-y)^n).
The vertical generating function V_p(x), which generates the columns of the table: (1, 1, 1, 1, 1, ...), (2, 4, 6, 8, 10, ...), (2, 8, 18, 32, 50, ...), is the sum of a(n,p)*x^n, n=1..oo, for each fixed p. This is V_p(x) = 2*((1+x)^(p-1))/((1-x)^(p+1)) for p >= 1 and V_0(x) = x/(1-x). (End)
G.f.: (1+x)/(1-x-x*y-x^2*y). - Vladeta Jovovic, Apr 02 2002 (But see previous lines!)
T(2*n,n) = A050146(n+1). - Reinhard Zumkeller, Jul 20 2013
Seen as a triangle read by rows: T(n,0) = 1, for n > 1: T(n,n-1) = 2, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1), 0 < k < n. - Reinhard Zumkeller, Jul 20 2013
Seen as a triangle T(n,k) with 0 <= k < n read by rows: T(n,0)=1 for n > 0 and T(n,k) = Sum_{i=0..k-1} binomial(n-k,i+1)*binomial(k-1,i)*2^(i+1) for k > 0. - Werner Schulte, Feb 22 2018
With p >= 1 and q >= 0, as a square array a(p,q) = T(p+q-1,q) = 2*p*Hypergeometric2F1[1-p, 1-q, 2, 2] for q >= 1. Consequently, a(p,q) = a(q,p)*p/q. - Shel Kaphan, Feb 14 2023
For n >= 1, T(2*n,n) = A002003(n), T(3*n,2*n) = A103885(n) and T(4*n,3*n) = A333715(n). - Peter Bala, Jun 15 2023

Extensions

More terms from David W. Wilson
Maple program corrected and information added by Johannes W. Meijer, Aug 05 2011

A004525 One even followed by three odd.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 7, 8, 9, 9, 9, 10, 11, 11, 11, 12, 13, 13, 13, 14, 15, 15, 15, 16, 17, 17, 17, 18, 19, 19, 19, 20, 21, 21, 21, 22, 23, 23, 23, 24, 25, 25, 25, 26, 27, 27, 27, 28, 29, 29, 29, 30, 31, 31, 31, 32, 33, 33, 33, 34, 35, 35, 35, 36, 37, 37, 37
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the composition length of the n-th symmetric power of the natural representation of a finite subgroup of SL(2,C) of type E_6 (binary tetrahedral group). - Paul Boddington, Oct 23 2003
(1 + x + x^2 + x^3 + x^4 + x^5) / ( (1-x^3)*(1- x^4)) is the Poincaré series [or Poincare series] (or Molien series) for H^*(GL_2(F_3)). - N. J. A. Sloane, Jun 12 2004
The Fi1 and Fi2 sums, see A180662 for the definition of these sums, of triangle A101950 equal the terms of this sequence without the first term. - Johannes W. Meijer, Aug 06 2011
Also the domination number of the n X n black bishop graph. - Eric W. Weisstein, Jun 26 2017
Also the domination number of the (n-1)-Moebius laddder. - Eric W. Weisstein, Jun 30 2017
Also the rook domination number of the hexagonal hexagon board B_n [Harborth and Nienborg] - N. J. A. Sloane, Aug 31 2021
Two players play a game, the object of which is to determine a score. Player 1 prefers larger scores, while player 2 prefers smaller scores. The game begins with a set of potential scores {1,2,3, ... n}. Player 1 divides this set into two nonempty sets, one of which player 2 chooses. Player 2 the divides their chosen set into two nonempty sets, one of which player 1 chooses, and so on, until the final score is arrived at. a(n+1) is the final score when both players play optimally. - Thomas Anton, Jul 14 2023

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...
		

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 247.
  • Y. Ito, I. Nakamura, Hilbert schemes and simple singularities, New trends in algebraic geometry (Warwick, 1996), 151-233, Cambridge University Press, 1999.

Crossrefs

Programs

  • Haskell
    a004525 n = a004525_list !! n
    a004525_list = 0 : 1 : 1 : zipWith3 (\x y z -> x - y + z + 1)
                   a004525_list (tail a004525_list) (drop 2 a004525_list)
    -- Reinhard Zumkeller, Jul 14 2012
    
  • Magma
    [Floor(n/4) + Ceiling(n/4): n in [0..70]]; // Vincenzo Librandi, Aug 07 2011
    
  • Maple
    A004525 := proc(n): floor(n/4) + ceil(n/4) end: seq(A004525(n), n=0..75); # Johannes W. Meijer, Aug 06 2011
  • Mathematica
    Table[Floor[n/4] + Ceiling[n/4], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 22 2013 *)
    Table[(n + Sin[n Pi/2])/2, {n, 0, 30}] (* Eric W. Weisstein, Jun 30 2017 *)
    LinearRecurrence[{2, -2, 2, -1}, {1, 1, 1, 2}, {0, 20}] (* Eric W. Weisstein, Jun 30 2017 *)
    Table[{n - 1, n, n, n}, {n, 1, 41, 2}] // Flatten (* Harvey P. Dale, Oct 18 2019 *)
  • Maxima
    makelist((1/4)*(2*n-(1-(-1)^n)*(-1)^(n*(n+1)/2)), n, 0, 75); /* Bruno Berselli, Mar 13 2012 */
    
  • PARI
    {a(n) = n\4 + (n+3)\4}; /* Michael Somos, Jul 19 2003 */
    
  • Python
    def A004525(n): return ((n>>1)&-2)+bool(n&3) # Chai Wah Wu, Jan 27 2023

Formula

a(n) = a(n-1) - a(n-2) + a(n-3) + 1 = n - A004524(n+1). - Henry Bottomley, Mar 08 2000
G.f.: x*(1-x+x^2)/((1-x)^2*(1+x^2)) = x*(1-x^6)/((1-x)*(1-x^3)*(1-x^4)). - Michael Somos, Jul 19 2003
a(n) = -a(-n) for all n in Z. - Michael Somos, Jul 19 2003
a(n) = floor(n/4) + ceiling(n/4). See also A004396, one even followed by two odd and A002620, quarter-squares: floor(n/2)*ceiling(n/2). - Jonathan Vos Post, Mar 19 2006
a(n) = Sum_{k=0..n-1} (1 + (-1)^binomial(k+1, 2))/2. - Paul Barry, Mar 31 2008
E.g.f: A(x) = (x*exp(x) + sin(x))/2. - Vladimir Kruchinin, Feb 20 2011
a(n) = (1/4)*(2*n - (1 - (-1)^n)*(-1)^(n*(n+1)/2)). - Bruno Berselli, Mar 13 2012
a(n) = (n - floor(cos(Pi*(n+1)/2)))/2. - Wesley Ivan Hurt, Oct 22 2013
Euler transform of length 6 sequence [1, 0, 1, 1, 0, -1]. - Michael Somos, Apr 03 2017
a(n) = (n + sin(n*Pi/2))/2. - Wesley Ivan Hurt, Oct 02 2017
a(n) = n-1-a(n-2) for n >= 2. - Kritsada Moomuang, Oct 29 2019

A033877 Triangular array read by rows associated with Schroeder numbers: T(1,k) = 1; T(n,k) = 0 if k < n; T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k).

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 6, 16, 22, 1, 8, 30, 68, 90, 1, 10, 48, 146, 304, 394, 1, 12, 70, 264, 714, 1412, 1806, 1, 14, 96, 430, 1408, 3534, 6752, 8558, 1, 16, 126, 652, 2490, 7432, 17718, 33028, 41586, 1, 18, 160, 938, 4080, 14002, 39152, 89898, 164512, 206098
Offset: 1

Views

Author

Keywords

Comments

A106579 is in some ways a better version of this sequence, but since this was entered first it will be the main entry for this triangle.
The diagonals of this triangle are self-convolutions of the main diagonal A006318: 1, 2, 6, 22, 90, 394, 1806, ... . - Philippe Deléham, May 15 2005
From Johannes W. Meijer, Sep 22 2010, Jul 15 2013: (Start)
Note that for the terms T(n,k) of this triangle n indicates the column and k the row.
The triangle sums, see A180662, link Schroeder's triangle with several sequences, see the crossrefs. The mirror of this triangle is A080247.
Quite surprisingly the Kn1p sums, p >= 1, are all related to A026003 and crystal ball sequences for n-dimensional cubic lattices (triangle offset is 0): Kn11(n) = A026003(n), Kn12(n) = A026003(n+2) - 1, Kn13(n) = A026003(n+4) - A005408(n+3), Kn14(n) = A026003(n+6) - A001844(n+4), Kn15(n) = A026003(n+8) - A001845(n+5), Kn16(n) = A026003(n+10) - A001846(n+6), Kn17(n) = A026003(n+12) - A001847(n+7), Kn18(n) = A026003(n+14) - A001848(n+8), Kn19(n) = A026003(n+16) - A001849(n+9), Kn110(n) = A026003(n+18) - A008417(n+10), Kn111(n) = A026003(n+20) - A008419(n+11), Kn112(n) = A026003(n+22) - A008421(n+12). (End)
T(n,k) is the number of normal semistandard Young tableaux with two columns, one of height k and one of height n. The recursion can be seen by performing jeu de taquin deletion on all instances of the smallest value. (If there are two instances of the smallest value, jeu de taquin deletion will always shorten the right column first and the left column second.) - Jacob Post, Jun 19 2018

Examples

			Triangle starts:
  1;
  1,    2;
  1,    4,    6;
  1,    6,   16,   22;
  1,    8,   30,   68,   90;
  1,   10,   48,  146,  304,  394;
  1,   12,   70,  264,  714, 1412, 1806;
  ... - _Joerg Arndt_, Sep 29 2013
		

Crossrefs

Essentially same triangle as A080247 and A080245 but with rows read in reversed order. Also essentially the same triangle as A106579.
Cf. A001003 (row sums), A026003 (antidiagonal sums).
Triangle sums (see the comments): A001003 (Row1, Row2), A026003 (Kn1p, p >= 1), A006603 (Kn21), A227504 (Kn22), A227505 (Kn23), A006603(2*n) (Kn3), A001850 (Kn4), A227506 (Fi1), A010683 (Fi2).

Programs

  • Haskell
    a033877 n k = a033877_tabl !! n !! k
    a033877_row n = a033877_tabl !! n
    a033877_tabl = iterate
       (\row -> scanl1 (+) $ zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Apr 17 2013
    
  • Magma
    function t(n,k)
      if k le 0 or k gt n then return 0;
      elif k eq 1 then return 1;
      else return t(n,k-1) + t(n-1,k-1) + t(n-1,k);
      end if;
    end function;
    [t(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 23 2023
  • Maple
    T := proc(n, k) option remember; if n=1 then return(1) fi; if kJohannes W. Meijer, Sep 22 2010, revised Jul 17 2013
  • Mathematica
    T[1, ]:= 1; T[n, k_]/;(k
    				
  • Sage
    def A033877_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)-2*sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^k*prec(n, n-k) for k in (0..n-1)]
    for n in (1..10): print(A033877_row(n)) # Peter Luschny, Mar 16 2016
    
  • SageMath
    @CachedFunction
    def t(n, k): # t = A033847
        if (k<0 or k>n): return 0
        elif (k==1): return 1
        else: return t(n, k-1) + t(n-1, k-1) + t(n-1, k)
    flatten([[t(n,k) for k in range(1,n+1)] for n in range(1, 16)]) # G. C. Greubel, Mar 23 2023
    

Formula

As an upper right triangle: a(n, k) = a(n, k-1) + a(n-1, k-1) + a(n-1, k) if k >= n >= 0 and a(n, k) = 0 otherwise.
G.f.: Sum T(n, k)*x^n*y^k = (1-x*y-(x^2*y^2-6*x*y+1)^(1/2)) / (x*(2*y+x*y-1+(x^2*y^2-6*x*y+1)^(1/2))). - Vladeta Jovovic, Feb 16 2003
Another version of A000007 DELTA [0, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] = 1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 16, 22, 0, 1, ..., where DELTA is Deléham's operator defined in A084938.
Sum_{n=1..floor((k+1)/2)} T(n+p-1, k-n+p) = A026003(2*p+k-3) - A008288(2*p+k-3, p-2), p >= 2, k >= 1. - Johannes W. Meijer, Sep 28 2013
From G. C. Greubel, Mar 23 2023: (Start)
(t(n, k) as a lower triangle)
t(n, k) = t(n, k-1) + t(n-1, k-1) + t(n-1, k) with t(n, 1) = 1.
t(n, n) = A006318(n-1).
t(2*n-1, n) = A330801(n-1).
t(2*n-2, n) = A103885(n-1), n > 1.
Sum_{k=1..n-1} t(n, k) = A238112(n), n > 1.
Sum_{k=1..n} t(n, k) = A001003(n).
Sum_{k=1..n-1} (-1)^(k-1)*t(n, k) = (-1)^n*A001003(n-1), n > 1.
Sum_{k=1..n} (-1)^(k-1)*t(n, k) = A080243(n-1).
Sum_{k=1..floor((n+1)/2)} t(n-k+1, k) = A026003(n-1). (End)

Extensions

More terms from David W. Wilson

A002663 a(n) = 2^n - C(n,0) - C(n,1) - C(n,2) - C(n,3).

Original entry on oeis.org

0, 0, 0, 0, 1, 6, 22, 64, 163, 382, 848, 1816, 3797, 7814, 15914, 32192, 64839, 130238, 261156, 523128, 1047225, 2095590, 4192510, 8386560, 16774891, 33551806, 67105912, 134214424, 268431773, 536866822, 1073737298
Offset: 0

Views

Author

Keywords

Comments

Starting with "1" = eigensequence of a triangle with bin(n,4), A000332 as the left border: (1, 5, 15, 35, 70, ...) and the rest 1's. - Gary W. Adamson, Jul 24 2010
The Kn25 sums, see A180662, of triangle A065941 equal the terms (doubled) of this sequence minus the four leading zeros. - Johannes W. Meijer, Aug 14 2011
(1 + 6x + 22x^2 + 64x^3 + ...) = (1 + 3x + 6x^2 + 10x^3 + ...) * (1 + 3x + 7x^2 + 15x^3 + ...). - Gary W. Adamson, Mar 14 2012
The sequence starting (1, 6, 22, ...) is the binomial transform of A171418 and starting (0, 0, 0, 1, 6, 22, ...) is the binomial transform of (0, 0, 0, 1, 2, 2, 2, 2, 2, ...). - Gary W. Adamson, Jul 27 2015
Number of binary sequences with at least four 0's. - Enrique Navarrete, Jul 23 2025

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)= A055248(n, 4). Partial sums of A002662.

Programs

  • Haskell
    a002663 n = a002663_list !! n
    a002663_list = map (sum . drop 4) a007318_tabl
    -- Reinhard Zumkeller, Jun 20 2015
    
  • Magma
    [2^n - Binomial(n,0)- Binomial(n,1) - Binomial(n,2) - Binomial(n,3): n in [0..35]]; // Vincenzo Librandi, May 20 2011
    
  • Maple
    A002663 := proc(n): 2^n - add(binomial(n,k),k=0..3) end: seq(A002663(n), n=0..30); # Johannes W. Meijer, Aug 14 2011
  • Mathematica
    a=1;lst={};s1=s2=s3=s4=0;Do[s1+=a;s2+=s1;s3+=s2;s4+=s3;AppendTo[lst,s4];a=a*2,{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 10 2009 *)
    Table[Sum[ Binomial[n + 4, k + 4], {k, 0, n}], {n, -4, 26}] (* Zerinvary Lajos, Jul 08 2009 *)
  • PARI
    a(n)=(6*2^n-n^3-5*n-6)/6 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = 2^n - A000125(n).
G.f.: x^4/((1-2*x)*(1-x)^4). - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{k=0..n} binomial(n,k+4) = Sum_{k=4..n} binomial(n,k). - Paul Barry, Aug 23 2004
a(n) = 2*a(n-1) + binomial(n-1,3). - Paul Barry, Aug 23 2004
a(n) = (6*2^n - n^3 - 5*n - 6)/6. - Mats Granvik, Gary W. Adamson, Feb 17 2010
From Enrique Navarrete, Jul 23 2025: (Start)
a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 9*a(n-4) + 2*a(n-5).
E.g.f.: exp(x)*(exp(x) - 1 - x - x^2/2 - x^3/6). (End)
Previous Showing 31-40 of 143 results. Next