cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 160 results. Next

A029744 Numbers of the form 2^n or 3*2^n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304
Offset: 1

Views

Author

Keywords

Comments

This entry is a list, and so has offset 1. WARNING: However, in this entry several comments, formulas and programs seem to refer to the original version of this sequence which had offset 0. - M. F. Hasler, Oct 06 2014
Number of necklaces with n-1 beads and two colors that are the same when turned over and hence have reflection symmetry. [edited by Herbert Kociemba, Nov 24 2016]
The subset {a(1),...,a(2k)} contains all proper divisors of 3*2^k. - Ralf Stephan, Jun 02 2003
Let k = any nonnegative integer and j = 0 or 1. Then n+1 = 2k + 3j and a(n) = 2^k*3^j. - Andras Erszegi (erszegi.andras(AT)chello.hu), Jul 30 2005
Smallest number having no fewer prime factors than any predecessor, a(0)=1; A110654(n) = A001222(a(n)); complement of A116451. - Reinhard Zumkeller, Feb 16 2006
A093873(a(n)) = 1. - Reinhard Zumkeller, Oct 13 2006
a(n) = a(n-1) + a(n-2) - gcd(a(n-1), a(n-2)), n >= 3, a(1)=2, a(2)=3. - Ctibor O. Zizka, Jun 06 2009
Where records occur in A048985: A193652(n) = A048985(a(n)) and A193652(n) < A048985(m) for m < a(n). - Reinhard Zumkeller, Aug 08 2011
A002348(a(n)) = A000079(n-3) for n > 2. - Reinhard Zumkeller, Mar 18 2012
Without initial 1, third row in array A228405. - Richard R. Forberg, Sep 06 2013
Also positions of records in A048673. A246360 gives the record values. - Antti Karttunen, Sep 23 2014
Known in numerical mathematics as "Bulirsch sequence", used in various extrapolation methods for step size control. - Peter Luschny, Oct 30 2019
For n > 1, squares of the terms can be expressed as the sum of two powers of two: 2^x + 2^y. - Karl-Heinz Hofmann, Sep 08 2022

Crossrefs

Cf. A056493, A038754, A063759. Union of A000079 and A007283.
First differences are in A016116(n-1).
Row sums of the triangle in sequence A119963. - John P. McSorley, Aug 31 2010
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent. There may be minor differences from (s(n)) at the start, and a shift of indices. A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A060482 (s(n)-3); A136252 (s(n)-3); A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A354785 (3*s(n)), A061776 (3*s(n)-6); A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Haskell
    a029744 n = a029744_list !! (n-1)
    a029744_list = 1 : iterate
       (\x -> if x `mod` 3 == 0 then 4 * x `div` 3 else 3 * x `div` 2) 2
    -- Reinhard Zumkeller, Mar 18 2012
    
  • Maple
    1,seq(op([2^i,3*2^(i-1)]),i=1..100); # Robert Israel, Sep 23 2014
  • Mathematica
    CoefficientList[Series[(-x^2 - 2*x - 1)/(2*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
    Function[w, DeleteCases[Union@ Flatten@ w, k_ /; k > Max@ First@ w]]@ TensorProduct[{1, 3}, 2^Range[0, 22]] (* Michael De Vlieger, Nov 24 2016 *)
    LinearRecurrence[{0,2},{1,2,3},50] (* Harvey P. Dale, Jul 04 2017 *)
  • PARI
    a(n)=if(n%2,3/2,2)<<((n-1)\2)\1
    
  • Python
    def A029744(n):
        if n == 1: return 1
        elif n % 2 == 0: return 2**(n//2)
        else: return 3 * 2**((n-3)//2) # Karl-Heinz Hofmann, Sep 08 2022
  • Scheme
    (define (A029744 n) (cond ((<= n 1) n) ((even? n) (expt 2 (/ n 2))) (else (* 3 (expt 2 (/ (- n 3) 2)))))) ;; Antti Karttunen, Sep 23 2014
    

Formula

a(n) = 2*A000029(n) - A000031(n).
For n > 2, a(n) = 2*a(n - 2); for n > 3, a(n) = a(n - 1)*a(n - 2)/a(n - 3). G.f.: (1 + x)^2/(1 - 2*x^2). - Henry Bottomley, Jul 15 2001, corrected May 04 2007
a(0)=1, a(1)=1 and a(n) = a(n-2) * ( floor(a(n-1)/a(n-2)) + 1 ). - Benoit Cloitre, Aug 13 2002
(3/4 + sqrt(1/2))*sqrt(2)^n + (3/4 - sqrt(1/2))*(-sqrt(2))^n. a(0)=1, a(2n) = a(n-1)*a(n), a(2n+1) = a(n) + 2^floor((n-1)/2). - Ralf Stephan, Apr 16 2003 [Seems to refer to the original version with offset=0. - M. F. Hasler, Oct 06 2014]
Binomial transform is A048739. - Paul Barry, Apr 23 2004
E.g.f.: (cosh(x/sqrt(2)) + sqrt(2)sinh(x/sqrt(2)))^2.
a(1) = 1; a(n+1) = a(n) + A000010(a(n)). - Stefan Steinerberger, Dec 20 2007
u(2)=1, v(2)=1, u(n)=2*v(n-1), v(n)=u(n-1), a(n)=u(n)+v(n). - Jaume Oliver Lafont, May 21 2008
For n => 3, a(n) = sqrt(2*a(n-1)^2 + (-2)^(n-3)). - Richard R. Forberg, Aug 20 2013
a(n) = A064216(A246360(n)). - Antti Karttunen, Sep 23 2014
a(n) = sqrt((17 - (-1)^n)*2^(n-4)) for n >= 2. - Anton Zakharov, Jul 24 2016
Sum_{n>=1} 1/a(n) = 8/3. - Amiram Eldar, Nov 12 2020
a(n) = 2^(n/2) if n is even. a(n) = 3 * 2^((n-3)/2) if n is odd and for n>1. - Karl-Heinz Hofmann, Sep 08 2022

Extensions

Corrected and extended by Joe Keane (jgk(AT)jgk.org), Feb 20 2000

A006918 a(n) = binomial(n+3, 3)/4 for odd n, n*(n+2)*(n+4)/24 for even n.

Original entry on oeis.org

0, 1, 2, 5, 8, 14, 20, 30, 40, 55, 70, 91, 112, 140, 168, 204, 240, 285, 330, 385, 440, 506, 572, 650, 728, 819, 910, 1015, 1120, 1240, 1360, 1496, 1632, 1785, 1938, 2109, 2280, 2470, 2660, 2870, 3080, 3311, 3542, 3795, 4048, 4324, 4600, 4900, 5200, 5525, 5850, 6201, 6552, 6930
Offset: 0

Views

Author

Keywords

Comments

Maximal number of inconsistent triples in a tournament on n+2 nodes [Kac]. - corrected by Leen Droogendijk, Nov 10 2014
a(n-4) is the number of aperiodic necklaces (Lyndon words) with 4 black beads and n-4 white beads.
a(n-3) is the maximum number of squares that can be formed from n lines, for n>=3. - Erich Friedman; corrected by Leen Droogendijk, Nov 10 2014
Number of trees with diameter 4 where at most 2 vertices 1 away from the graph center have degree > 2. - Jon Perry, Jul 11 2003
a(n+1) is the number of partitions of n into parts of two kinds, with at most two parts of each kind. Also a(n-3) is the number of partitions of n with Durfee square of size 2. - Franklin T. Adams-Watters, Jan 27 2006
Factoring the g.f. as x/(1-x)^2 times 1/(1-x^2)^2 we find that the sequence equals (1, 2, 3, 4, ...) convolved with (1, 0, 2, 0, 3, 0, 4, ...), A000027 convolved with its aerated variant. - Gary W. Adamson, May 01 2009
Starting with "1" = triangle A171238 * [1,2,3,...]. - Gary W. Adamson, Dec 05 2009
The Kn21, Kn22, Kn23, Fi2 and Ze2 triangle sums, see A180662 for their definitions, of the Connell-Pol triangle A159797 are linear sums of shifted versions of this sequence, e.g., Kn22(n) = a(n+1) + a(n) + 2*a(n-1) + a(n-2) and Fi2(n) = a(n) + 4*a(n-1) + a(n-2). - Johannes W. Meijer, May 20 2011
For n>3, a(n-4) is the number of (w,x,y,z) having all terms in {1,...,n} and w+x+y+z=|x-y|+|y-z|. - Clark Kimberling, May 23 2012
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w+x+y < |w-x|+|x-y|. - Clark Kimberling, Jun 13 2012
For n>0 number of inequivalent (n-1) X 2 binary matrices, where equivalence means permutations of rows or columns or the symbol set. - Alois P. Heinz, Aug 17 2014
Number of partitions p of n+5 such that p[3] = 2. Examples: a(1)=1 because we have (2,2,2); a(2)=2 because we have (2,2,2,1) and (3,2,2); a(3)=5 because we have (2,2,2,1,1), (2,2,2,2), (3,2,2,1), (3,3,2), and (4,2,2). See the R. P. Stanley reference. - Emeric Deutsch, Oct 28 2014
Sum over each antidiagonal of A243866. - Christopher Hunt Gribble, Apr 02 2015
Number of nonisomorphic outer planar graphs of order n>=3, size n+2, and maximum degree 3. - Christian Barrientos and Sarah Minion, Feb 27 2018
a(n) is the number of 2413-avoiding odd Grassmannian permutations of size n+1. - Juan B. Gil, Mar 09 2023

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 8*x^4 + 14*x^5 + 20*x^6 + 30*x^7 + 40*x^8 + 55*x^9 + ...
From _Gus Wiseman_, Apr 06 2019: (Start)
The a(4 - 3) = 1 through a(8 - 3) = 14 integer partitions with Durfee square of length 2 are the following (see Franklin T. Adams-Watters's second comment). The Heinz numbers of these partitions are given by A325164.
  (22)  (32)   (33)    (43)     (44)
        (221)  (42)    (52)     (53)
               (222)   (322)    (62)
               (321)   (331)    (332)
               (2211)  (421)    (422)
                       (2221)   (431)
                       (3211)   (521)
                       (22111)  (2222)
                                (3221)
                                (3311)
                                (4211)
                                (22211)
                                (32111)
                                (221111)
The a(0 + 1) = 1 through a(4 + 1) = 14 integer partitions of n into parts of two kinds with at most two parts of each kind are the following (see Franklin T. Adams-Watters's first comment).
  ()()  ()(1)  ()(2)   ()(3)    ()(4)
        (1)()  (2)()   (3)()    (4)()
               ()(11)  (1)(2)   (1)(3)
               (1)(1)  ()(21)   ()(22)
               (11)()  (2)(1)   (2)(2)
                       (21)()   (22)()
                       (1)(11)  ()(31)
                       (11)(1)  (3)(1)
                                (31)()
                                (11)(2)
                                (1)(21)
                                (2)(11)
                                (21)(1)
                                (11)(11)
The a(6 - 5) = 1 through a(10 - 5) = 14 integer partitions whose third part is 2 are the following (see Emeric Deutsch's comment). The Heinz numbers of these partitions are given by A307373.
  (222)  (322)   (332)    (432)     (442)
         (2221)  (422)    (522)     (532)
                 (2222)   (3222)    (622)
                 (3221)   (3321)    (3322)
                 (22211)  (4221)    (4222)
                          (22221)   (4321)
                          (32211)   (5221)
                          (222111)  (22222)
                                    (32221)
                                    (33211)
                                    (42211)
                                    (222211)
                                    (322111)
                                    (2221111)
(End)
		

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 147.
  • M. Kac, An example of "counting without counting", Philips Res. Reports, 30 (1975), 20*-22* [Special issue in honour of C. J. Bouwkamp].
  • E. V. McLaughlin, Numbers of factorizations in non-unique factorial domains, Senior Thesis, Allegeny College, Meadville, PA, 2004.
  • K. B. Reid and L. W. Beineke "Tournaments", pp. 169-204 in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, p. 186, Theorem 6.11.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 2nd ed., 2012, Exercise 4.16, pp. 530, 552.
  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 33.

Crossrefs

Cf. A000031, A001037, A028723, A051168. a(n) = T(n,4), array T as in A051168.
Cf. A000094.
Cf. A171238. - Gary W. Adamson, Dec 05 2009
Row sums of A173997. - Gary W. Adamson, Mar 05 2010
Column k=2 of A242093. Column k=2 of A115720 and A115994.

Programs

  • Haskell
    a006918 n = a006918_list !! n
    a006918_list = scanl (+) 0 a008805_list
    -- Reinhard Zumkeller, Feb 01 2013
    
  • Magma
    [Floor(Binomial(n+4, 4)/(n+4))-Floor((n+2)/8)*(1+(-1)^n)/2: n in [0..60]]; // Vincenzo Librandi, Nov 10 2014
  • Maple
    with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card=r),U=Sequence(Z,card>=3)}, unlabeled]: subs(r=1,stack): seq(count(subs(r=2,ZL),size=m),m=11..58) ; # Zerinvary Lajos, Mar 09 2007
    A006918 := proc(n)
        if type(n,'even') then
            n*(n+2)*(n+4)/24 ;
        else
            binomial(n+3,3)/4 ;
        fi ;
    end proc: # R. J. Mathar, May 17 2016
  • Mathematica
    f[n_]:=If[EvenQ[n],(n(n+2)(n+4))/24,Binomial[n+3,3]/4]; Join[{0},Array[f,60]]  (* Harvey P. Dale, Apr 20 2011 *)
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    Table[Length[Select[IntegerPartitions[n],durf[#]==2&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)
  • PARI
    { parttrees(n)=local(pt,k,nk); if (n%2==0, pt=(n/2+1)^2, pt=ceil(n/2)*(ceil(n/2)+1)); pt+=floor(n/2); for (x=1,floor(n/2),pt+=floor(x/2)+floor((n-x)/2)); if (n%2==0 && n>2, pt-=floor(n/4)); k=1; while (3*k<=n, for (x=k,floor((n-k)/2), pt+=floor(k/2); if (x!=k, pt+=floor(x/2)); if ((n-x-k)!=k && (n-x-k)!=x, pt+=floor((n-x-k)/2))); k++); pt }
    
  • PARI
    {a(n) = n += 2; (n^3 - n * (2-n%2)^2) / 24}; /* Michael Somos, Aug 15 2009 */
    

Formula

G.f.: x/((1-x)^2*(1-x^2)^2) = x/((1+x)^2*(1-x)^4).
0, 0, 0, 1, 2, 5, 8, 14, ... has a(n) = (Sum_{k=0..n} floor(k(n-k)/2))/2. - Paul Barry, Sep 14 2003
0, 0, 0, 0, 0, 1, 2, 5, 8, 14, 20, 30, 40, 55, ... has a(n) = binomial(floor(1/2 n), 3) + binomial(floor(1/2 n + 1/2), 3) [Eke]. - N. J. A. Sloane, May 12 2012
a(0)=0, a(1)=1, a(n) = (2/(n-1))*a(n-1) + ((n+3)/(n-1))*a(n-2). - Benoit Cloitre, Jun 28 2004
a(n) = floor(binomial(n+4, 4)/(n+4)) - floor((n+2)/8)(1+(-1)^n)/2. - Paul Barry, Jan 01 2005
a(n+1) = a(n) + binomial(floor(n/2)+2,2), i.e., first differences are A008805. Convolution of A008619 with itself, then shifted right (or A004526 with itself, shifted left by 3). - Franklin T. Adams-Watters, Jan 27 2006
a(n+1) = (A027656(n) + A003451(n+5))/2 with a(1)=0. - Yosu Yurramendi, Sep 12 2008
Linear recurrence: a(n) = 2a(n-1) + a(n-2) - 4a(n-3) + a(n-4) + 2a(n-5) - a(n-6). - Jaume Oliver Lafont, Dec 05 2008
Euler transform of length 2 sequence [2, 2]. - Michael Somos, Aug 15 2009
a(n) = -a(-4-n) for all n in Z.
a(n+1) + a(n) = A002623(n). - Johannes W. Meijer, May 20 2011
a(n) = (n+2)*(2*n*(n+4)-3*(-1)^n+3)/48. - Bruno Berselli, May 21 2011
a(2n) = A007290(n+2). - Jon Perry, Nov 10 2014
G.f.: (1/(1-x)^4-1/(1-x^2)^2)/4. - Herbert Kociemba, Oct 23 2016
E.g.f.: (x*(18 + 9*x + x^2)*cosh(x) + (6 + 15*x + 9*x^2 + x^3)*sinh(x))/24. - Stefano Spezia, Dec 07 2021
From Amiram Eldar, Mar 20 2022: (Start)
Sum_{n>=1} 1/a(n) = 75/4 - 24*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 69/4 - 24*log(2). (End)

A014580 Binary irreducible polynomials (primes in the ring GF(2)[X]), evaluated at X=2.

Original entry on oeis.org

2, 3, 7, 11, 13, 19, 25, 31, 37, 41, 47, 55, 59, 61, 67, 73, 87, 91, 97, 103, 109, 115, 117, 131, 137, 143, 145, 157, 167, 171, 185, 191, 193, 203, 211, 213, 229, 239, 241, 247, 253, 283, 285, 299, 301, 313, 319, 333, 351, 355, 357, 361, 369, 375
Offset: 1

Views

Author

David Petry (petry(AT)accessone.com)

Keywords

Comments

Or, binary irreducible polynomials, interpreted as binary vectors, then written in base 10.
The numbers {a(n)} are a subset of the set {A206074}. - Thomas Ordowski, Feb 21 2014
2^n - 1 is a term if and only if n = 2 or n is a prime and 2 is a primitive root modulo n. - Jianing Song, May 10 2021
For odd k, k is a term if and only if binary_reverse(k) = A145341((k+1)/2) is. - Joerg Arndt and Jianing Song, May 10 2021

Examples

			x^4 + x^3 + 1 -> 16+8+1 = 25. Or, x^4 + x^3 + 1 -> 11001 (binary) = 25 (decimal).
		

Crossrefs

Written in binary: A058943.
Number of degree-n irreducible polynomials: A001037, see also A000031.
Multiplication table: A048720.
Characteristic function: A091225. Inverse: A091227. a(n) = A091202(A000040(n)). Almost complement of A091242. Union of A091206 & A091214 and also of A091250 & A091252. First differences: A091223. Apart from a(1) and a(2), a subsequence of A092246 and hence A000069.
Table of irreducible factors of n: A256170.
Irreducible polynomials satisfying particular conditions: A071642, A132447, A132449, A132453, A162570.
Factorization sentinel: A278239.
Sequences analyzing the difference between factorization into GF(2)[X] irreducibles and ordinary prime factorization of the corresponding integer: A234741, A234742, A235032, A235033, A235034, A235035, A235040, A236850, A325386, A325559, A325560, A325563, A325641, A325642, A325643.
Factorization-preserving isomorphisms: A091203, A091204, A235041, A235042.
See A115871 for sequences related to cross-domain congruences.
Functions based on the irreducibles: A305421, A305422.

Programs

  • Mathematica
    fQ[n_] := Block[{ply = Plus @@ (Reverse@ IntegerDigits[n, 2] x^Range[0, Floor@ Log2@ n])}, ply == Factor[ply, Modulus -> 2] && n != 2^Floor@ Log2@ n]; fQ[2] = True; Select[ Range@ 378, fQ] (* Robert G. Wilson v, Aug 12 2011 *)
    Reap[Do[If[IrreduciblePolynomialQ[IntegerDigits[n, 2] . x^Reverse[Range[0, Floor[Log[2, n]]]], Modulus -> 2], Sow[n]], {n, 2, 1000}]][[2, 1]] (* Jean-François Alcover, Nov 21 2016 *)
  • PARI
    is(n)=polisirreducible(Pol(binary(n))*Mod(1,2)) \\ Charles R Greathouse IV, Mar 22 2013

A027375 Number of aperiodic binary strings of length n; also number of binary sequences with primitive period n.

Original entry on oeis.org

0, 2, 2, 6, 12, 30, 54, 126, 240, 504, 990, 2046, 4020, 8190, 16254, 32730, 65280, 131070, 261576, 524286, 1047540, 2097018, 4192254, 8388606, 16772880, 33554400, 67100670, 134217216, 268419060, 536870910, 1073708010, 2147483646, 4294901760
Offset: 0

Views

Author

Keywords

Comments

A sequence S is aperiodic if it is not of the form S = T^k with k>1. - N. J. A. Sloane, Oct 26 2012
Equivalently, number of output sequences with primitive period n from a simple cycling shift register. - Frank Ruskey, Jan 17 2000
Also, the number of nonempty subsets A of the set of the integers 1 to n such that gcd(A) is relatively prime to n (for n>1). - R. J. Mathar, Aug 13 2006; range corrected by Geoffrey Critzer, Dec 07 2014
Without the first term, this sequence is the Moebius transform of 2^n (n>0). For n > 0, a(n) is also the number of periodic points of period n of the transform associated to the Kolakoski sequence A000002. This transform changes a sequence of 1's and 2's by the sequence of the lengths of its runs. The Kolakoski sequence is one of the two fixed points of this transform, the other being the same sequence without the initial term. A025142 and A025143 are the 2 periodic points of period 2. A001037(n) = a(n)/n gives the number of orbits of size n. - Jean-Christophe Hervé, Oct 25 2014
From Bernard Schott, Jun 19 2019: (Start)
There are 2^n strings of length n that can be formed from the symbols 0 and 1; in the example below with a(3) = 6, the last two strings that are not aperiodic binary strings are { 000, 111 }, corresponding to 0^3 and 1^3, using the notation of the first comment.
Two properties mentioned by Krusemeyer et al. are:
1) For any n > 2, a(n) is divisible by 6.
2) Lim_{n->oo} a(n+1)/a(n) = 2. (End)

Examples

			a(3) = 6 = |{ 001, 010, 011, 100, 101, 110 }|. - corrected by _Geoffrey Critzer_, Dec 07 2014
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 13. - From N. J. A. Sloane, Oct 26 2012
  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • Blanchet-Sadri, Francine. Algorithmic combinatorics on partial words. Chapman & Hall/CRC, Boca Raton, FL, 2008. ii+385 pp. ISBN: 978-1-4200-6092-8; 1-4200-6092-9 MR2384993 (2009f:68142). See p. 164.
  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
  • Mark I. Krusemeyer, George T. Gilbert, Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 128, pp. 225-227.

Crossrefs

A038199 and A056267 are essentially the same sequence with different initial terms.
Column k=2 of A143324.

Programs

  • Haskell
    a027375 n = n * a001037 n  -- Reinhard Zumkeller, Feb 01 2013
    
  • Maple
    with(numtheory): A027375 :=n->add( mobius(d)*2^(n/d), d = divisors(n)); # N. J. A. Sloane, Sep 25 2012
  • Mathematica
    Table[ Apply[ Plus, MoebiusMu[ n / Divisors[n] ]*2^Divisors[n] ], {n, 1, 32} ]
    a[0]=0; a[n_] := DivisorSum[n, MoebiusMu[n/#]*2^#&]; Array[a, 40, 0] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    a(n) = sumdiv(n,d,moebius(n\d)*2^d);
    
  • Python
    from sympy import mobius, divisors
    def a(n): return sum(mobius(d)*2**(n//d) for d in divisors(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 28 2017

Formula

a(n) = Sum_{d|n} mu(d)*2^(n/d).
a(n) = 2*A000740(n).
a(n) = n*A001037(n).
Sum_{d|n} a(n) = 2^n.
a(p) = 2^p - 2 for p prime. - R. J. Mathar, Aug 13 2006
a(n) = 2^n - O(2^(n/2)). - Charles R Greathouse IV, Apr 28 2016
a(n) = 2^n - A152061(n). - Bernard Schott, Jun 20 2019
G.f.: 2 * Sum_{k>=1} mu(k)*x^k/(1 - 2*x^k). - Ilya Gutkovskiy, Nov 11 2019

A000048 Number of n-bead necklaces with beads of 2 colors and primitive period n, when turning over is not allowed but the two colors can be interchanged.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 9, 16, 28, 51, 93, 170, 315, 585, 1091, 2048, 3855, 7280, 13797, 26214, 49929, 95325, 182361, 349520, 671088, 1290555, 2485504, 4793490, 9256395, 17895679, 34636833, 67108864, 130150493, 252645135, 490853403, 954437120, 1857283155
Offset: 0

Views

Author

Keywords

Comments

Also, for any m which is a multiple of n, the number of 2m-bead balanced binary necklaces of fundamental period 2n that are equivalent to their complements. [Clarified by Aaron Meyerowitz, Jun 01 2024]
Also binary Lyndon words of length n with an odd number of 1's (for n>=1).
Also number of binary irreducible polynomials of degree n having trace 1.
Also number of binary irreducible polynomials of degree n having linear coefficient 1 (this is the same as the trace-1 condition, as the reciprocal of an irreducible polynomial is again irreducible).
Also number of binary irreducible self-reciprocal polynomials of degree 2*n; there is no such polynomial for odd degree except for x+1.
Also number of binary vectors (x_1,...x_n) satisfying Sum_{i=1..n} i*x_i = 1 (mod n+1) = size of Varshamov-Tenengolts code VT_1(n).
Also the number of dynamical cycles of period 2n of a threshold Boolean automata network which is a quasi-minimal negative circuit of size nq where q is odd and which is updated in parallel. - Mathilde Noual (mathilde.noual(AT)ens-lyon.fr), Mar 03 2009
Also the number of 3-elements orbits of the symmetric group S3 action on irreducible polynomials of degree 2n, n>1, over GF(2). - Jean Francis Michon, Philippe Ravache (philippe.ravache(AT)univ-rouen.fr), Oct 04 2009
Conjecture: Also the number of caliber-n cycles of Zagier-reduced indefinite binary quadratic forms with sum invariant equal to s, where (s-1)/n is an odd integer. - Barry R. Smith, Dec 14 2014
The Metropolis, Stein, Stein (1973) reference on page 31 Table II lists a(k) for k = 2 to 15 and is actually for sequence A056303 since there a(k) = 0 for k<2. - Michael Somos, Dec 20 2014

Examples

			a(5) = 3 corresponding to the necklaces 00001, 00111, 01011.
a(6) = 5 from 000001, 000011, 000101, 000111, 001011.
		

References

  • B. D. Ginsburg, On a number theory function applicable in coding theory, Problemy Kibernetiki, No. 19 (1967), pp. 249-252.
  • H. Kawakami, Table of rotation sequences of x_{n+1} = x_n^2 - lambda, pp. 73-92 of G. Ikegami, Editor, Dynamical Systems and Nonlinear Oscillations, Vol. 1, World Scientific, 1986.
  • Robert M. May, "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Like A000013, but primitive necklaces. Half of A064355.
Equals A042981 + A042982.
Cf. also A001037, A056303.
Very close to A006788 [Fisher, 1989].
bisection (odd terms) is A131203

Programs

  • Maple
    with(numtheory); A000048 := proc(n) local d,t1; if n = 0 then RETURN(1) else t1 := 0; for d from 1 to n do if n mod d = 0 and d mod 2 = 1 then t1 := t1+mobius(d)*2^(n/d)/(2*n); fi; od; RETURN(t1); fi; end;
  • Mathematica
    a[n_] := Total[ MoebiusMu[#]*2^(n/#)& /@ Select[ Divisors[n], OddQ]]/(2n); a[0] = 1; Table[a[n], {n,0,35}] (* Jean-François Alcover, Jul 21 2011 *)
    a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, MoebiusMu[#] 2^(n/#) &, OddQ] / (2 n)]; (* Michael Somos, Dec 20 2014 *)
  • PARI
    A000048(n) = sumdiv(n,d,(d%2)*(moebius(d)*2^(n/d)))/(2*n) \\ Michael B. Porter, Nov 09 2009
    
  • PARI
    L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) );
    a(n) = sum(k=0, n, if( (n+k)%2==1, L(n, k), 0 ) ) / n;
    vector(55,n,a(n)) \\ Joerg Arndt, Jun 28 2012
    
  • Python
    from sympy import divisors, mobius
    def a(n): return 1 if n<1 else sum(mobius(d)*2**(n//d) for d in divisors(n) if d%2)//(2*n) # Indranil Ghosh, Apr 28 2017

Formula

a(n) = (1/(2*n)) * Sum_{odd d divides n} mu(d)*2^(n/d), where mu is the Mobius function A008683.
a(n) = A056303(n) for all integer n>=2. - Michael Somos, Dec 20 2014
Sum_{k dividing m for which m/k is odd} k*a(k) = 2^(m-1). (This explains the observation that the sequence is very close to A006788. Unless m has some nontrivial odd divisors that are small relative to m, the term m*a(m) will dominate the sum. Thus, we see for instance that a(n) = A006788(n) when n has one of the forms 2^m or 2^m*p where p is an odd prime with a(2^m) < p.) - Barry R. Smith, Oct 24 2015
A000013(n) = Sum_{d|n} a(d). - Robert A. Russell, Jun 09 2019
G.f.: 1 + Sum_{k>=1} mu(2*k)*log(1 - 2*x^k)/(2*k). - Ilya Gutkovskiy, Nov 11 2019

Extensions

Additional comments from Frank Ruskey, Dec 13 1999

A001840 Expansion of g.f. x/((1 - x)^2*(1 - x^3)).

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247, 260, 273, 287, 301, 315, 330, 345, 360, 376, 392, 408, 425, 442, 459, 477, 495, 513, 532, 551, 570, 590
Offset: 0

Views

Author

Keywords

Comments

a(n-3) is the number of aperiodic necklaces (Lyndon words) with 3 black beads and n-3 white beads.
Number of triangular partitions (see Almkvist).
Consists of arithmetic progression quadruples of common difference n+1 starting at A045943(n). Refers to the least number of coins needed to be rearranged in order to invert the pattern of a (n+1)-rowed triangular array. For instance, a 5-rowed triangular array requires a minimum of a(4)=5 rearrangements (shown bracketed here) for it to be turned upside down.
.....{*}..................{*}*.*{*}{*}
.....*.*....................*.*.*.{*}
....*.*.*....---------\......*.*.*
..{*}*.*.*...---------/.......*.*
{*}{*}*.*{*}..................{*}
- Lekraj Beedassy, Oct 13 2003
Partial sums of 1,1,1,2,2,2,3,3,3,4,4,4,... - Jon Perry, Mar 01 2004
Sum of three successive terms is a triangular number in natural order starting with 3: a(n)+a(n+1)+a(n+2) = T(n+2) = (n+2)*(n+3)/2. - Amarnath Murthy, Apr 25 2004
Apply Riordan array (1/(1-x^3),x) to n. - Paul Barry, Apr 16 2005
Absolute values of numbers that appear in A145919. - Matthew Vandermast, Oct 28 2008
In the Moree definition, (-1)^n*a(n) is the 3rd Witt transform of A033999 and (-1)^n*A004524(n) with 2 leading zeros dropped is the 2nd Witt transform of A033999. - R. J. Mathar, Nov 08 2008
Column sums of:
1 2 3 4 5 6 7 8 9.....
1 2 3 4 5 6.....
1 2 3.....
........................
----------------------
1 2 3 5 7 9 12 15 18 - Jon Perry, Nov 16 2010
a(n) is the sum of the positive integers <= n that have the same residue modulo 3 as n. They are the additive counterpart of the triple factorial numbers. - Peter Luschny, Jul 06 2011
a(n+1) is the number of 3-tuples (w,x,y) with all terms in {0,...,n} and w=3*x+y. - Clark Kimberling, Jun 04 2012
a(n+1) is the number of pairs (x,y) with x and y in {0,...,n}, x-y = (1 mod 3), and x+y < n. - Clark Kimberling, Jul 02 2012
a(n+1) is the number of partitions of n into two sorts of part(s) 1 and one sort of (part) 3. - Joerg Arndt, Jun 10 2013
Arrange A004523 in rows successively shifted to the right two spaces and sum the columns:
1 2 2 3 4 4 5 6 6...
1 2 2 3 4 4 5...
1 2 2 3 4...
1 2 2...
1...
------------------------------
1 2 3 5 7 9 12 15 18... - L. Edson Jeffery, Jul 30 2014
a(n) = A258708(n+1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
Also the number of triples of positive integers summing to n + 4, the first less than each of the other two. Also the number of triples of positive integers summing to n + 2, the first less than or equal to each of the other two. - Gus Wiseman, Oct 11 2020
Also the lower matching number of the (n+1)-triangular honeycomb king graph = n-triangular grid graph (West convention). - Eric W. Weisstein, Dec 14 2024

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 9*x^6 + 12*x^7 + 15*x^8 + 18*x^9 + ...
1+2+3=6=t(3), 2+3+5=t(4), 5+7+9=t(5).
[n] a(n)
--------
[1] 1
[2] 2
[3] 3
[4] 1 + 4
[5] 2 + 5
[6] 3 + 6
[7] 1 + 4 + 7
[8] 2 + 5 + 8
[9] 3 + 6 + 9
a(7) = floor(2/3) +floor(3/3) +floor(4/3) +floor(5/3) +floor(6/3) +floor(7/3) +floor(8/3) +floor(9/3) = 12. - _Bruno Berselli_, Aug 29 2013
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 73, problem 25.
  • Ulrich Faigle, Review of Gerhard Post and G.J. Woeginger, Sports tournaments, home-away assignments and the break minimization problem, MR2224983(2007b:90134), 2007.
  • Hansraj Gupta, Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
  • Richard K. Guy, A problem of Zarankiewicz, in P. Erdős and G. Katona, editors, Theory of Graphs (Proceedings of the Colloquium, Tihany, Hungary), Academic Press, NY, 1968, pp. 119-150, (p. 126, divided by 2).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Ordered union of triangular matchstick numbers A045943 and generalized pentagonal numbers A001318.
Cf. A058937.
A column of triangle A011847.
Cf. A258708.
A001399 counts 3-part partitions, ranked by A014612.
A337483 counts either weakly increasing or weakly decreasing triples.
A337484 counts neither strictly increasing nor strictly decreasing triples.
A014311 ranks 3-part compositions, with strict case A337453.

Programs

  • Haskell
    a001840 n = a001840_list !! n
    a001840_list = scanl (+) 0 a008620_list
    -- Reinhard Zumkeller, Apr 16 2012
  • Magma
    [ n le 2 select n else n*(n+1)/2-Self(n-1)-Self(n-2): n in [1..58] ];  // Klaus Brockhaus, Oct 01 2009
    
  • Maple
    A001840 := n->floor((n+1)*(n+2)/6);
    A001840:=-1/((z**2+z+1)*(z-1)**3); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
    seq(floor(binomial(n-1,2)/3), n=3..61); # Zerinvary Lajos, Jan 12 2009
    A001840 :=  n -> add(k, k = select(k -> k mod 3 = n mod 3, [$1 .. n])): seq(A001840(n), n = 0 .. 58); # Peter Luschny, Jul 06 2011
  • Mathematica
    a[0]=0; a[1]=1; a[n_]:= a[n]= n(n+1)/2 -a[n-1] -a[n-2]; Table[a[n], {n,0,100}]
    f[n_] := Floor[(n + 1)(n + 2)/6]; Array[f, 59, 0] (* Or *)
    CoefficientList[ Series[ x/((1 + x + x^2)*(1 - x)^3), {x, 0, 58}], x] (* Robert G. Wilson v *)
    a[ n_] := With[{m = If[ n < 0, -3 - n, n]}, SeriesCoefficient[ x /((1 - x^3) (1 - x)^2), {x, 0, m}]]; (* Michael Somos, Jul 11 2011 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,1,2,3,5},60] (* Harvey P. Dale, Jul 25 2011 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n+4,{3}],#[[1]]<#[[2]]&&#[[1]]<#[[3]]&]],{n,0,15}] (* Gus Wiseman, Oct 05 2020 *)
  • PARI
    {a(n) = (n+1) * (n+2) \ 6}; /* Michael Somos, Feb 11 2004 */
    
  • Sage
    [binomial(n, 2) // 3 for n in range(2, 61)] # Zerinvary Lajos, Dec 01 2009
    

Formula

a(n) = (A000217(n+1) - A022003(n-1))/3;
a(n) = (A016754(n+1) - A010881(A016754(n+1)))/24;
a(n) = (A033996(n+1) - A010881(A033996(n+1)))/24.
Euler transform of length 3 sequence [2, 0, 1].
a(3*k-1) = k*(3*k + 1)/2;
a(3*k) = 3*k*(k + 1)/2;
a(3*k+1) = (k + 1)*(3*k + 2)/2.
a(n) = floor( (n+1)*(n+2)/6 ) = floor( A000217(n+1)/3 ).
a(n+1) = a(n) + A008620(n) = A002264(n+3). - Reinhard Zumkeller, Aug 01 2002
From Michael Somos, Feb 11 2004: (Start)
G.f.: x / ((1-x)^2 * (1-x^3)).
a(n) = 1 + a(n-1) + a(n-3) - a(n-4).
a(-3-n) = a(n). (End)
a(n) = a(n-3) + n for n > 2; a(0)=0, a(1)=1, a(2)=2. - Paul Barry, Jul 14 2004
a(n) = binomial(n+3, 3)/(n+3) + cos(2*Pi*(n-1)/3)/9 + sqrt(3)sin(2*Pi*(n-1)/3)/9 - 1/9. - Paul Barry, Jan 01 2005
From Paul Barry, Apr 16 2005: (Start)
a(n) = Sum_{k=0..n} k*(cos(2*Pi*(n-k)/3 + Pi/3)/3 + sqrt(3)*sin(2*Pi*(n-k)/3 + Pi/3)/3 + 1/3).
a(n) = Sum_{k=0..floor(n/3)} n-3*k. (End)
For n > 1, a(n) = A000217(n) - a(n-1) - a(n-2); a(0)=0, a(1)=1.
G.f.: x/(1 + x + x^2)/(1 - x)^3. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = (4 + 3*n^2 + 9*n)/18 + ((n mod 3) - ((n-1) mod 3))/9. - Klaus Brockhaus, Oct 01 2009
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5), with n>4, a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=5. - Harvey P. Dale, Jul 25 2011
a(n) = A214734(n + 2, 1, 3). - Renzo Benedetti, Aug 27 2012
G.f.: x*G(0), where G(k) = 1 + x*(3*k+4)/(3*k + 2 - 3*x*(k+2)*(3*k+2)/(3*(1+x)*k + 6*x + 4 - x*(3*k+4)*(3*k+5)/(x*(3*k+5) + 3*(k+1)/G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jun 10 2013
Empirical: a(n) = floor((n+3)/(e^(6/(n+3))-1)). - Richard R. Forberg, Jul 24 2013
a(n) = Sum_{i=0..n} floor((i+2)/3). - Bruno Berselli, Aug 29 2013
0 = a(n)*(a(n+2) + a(n+3)) + a(n+1)*(-2*a(n+2) - a(n+3) + a(n+4)) + a(n+2)*(a(n+2) - 2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Jan 22 2014
a(n) = n/2 + floor(n^2/3 + 2/3)/2. - Bruno Berselli, Jan 23 2017
a(n) + a(n+1) = A000212(n+2). - R. J. Mathar, Jan 14 2021
Sum_{n>=1} 1/a(n) = 20/3 - 2*Pi/sqrt(3). - Amiram Eldar, Sep 27 2022
E.g.f.: (exp(x)*(4 + 12*x + 3*x^2) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/18. - Stefano Spezia, Apr 05 2023

A328596 Numbers whose reversed binary expansion is a Lyndon word (aperiodic necklace).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 14, 16, 20, 24, 26, 28, 30, 32, 40, 44, 48, 52, 56, 58, 60, 62, 64, 72, 80, 84, 88, 92, 96, 100, 104, 106, 108, 112, 116, 118, 120, 122, 124, 126, 128, 144, 152, 160, 164, 168, 172, 176, 180, 184, 188, 192, 200, 208, 212, 216, 218, 220, 224
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2019

Keywords

Comments

First differs from A091065 in lacking 50.
A Lyndon word is a finite sequence that is lexicographically strictly less than all of its cyclic rotations.

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
   1:      1 ~ {1}
   2:     10 ~ {2}
   4:    100 ~ {3}
   6:    110 ~ {2,3}
   8:   1000 ~ {4}
  12:   1100 ~ {3,4}
  14:   1110 ~ {2,3,4}
  16:  10000 ~ {5}
  20:  10100 ~ {3,5}
  24:  11000 ~ {4,5}
  26:  11010 ~ {2,4,5}
  28:  11100 ~ {3,4,5}
  30:  11110 ~ {2,3,4,5}
  32: 100000 ~ {6}
  40: 101000 ~ {4,6}
  44: 101100 ~ {3,4,6}
  48: 110000 ~ {5,6}
  52: 110100 ~ {3,5,6}
  56: 111000 ~ {4,5,6}
  58: 111010 ~ {2,4,5,6}
		

Crossrefs

A similar concept is A275692.
Aperiodic words are A328594.
Necklaces are A328595.
Binary Lyndon words are A001037.
Lyndon compositions are A059966.

Programs

  • Mathematica
    aperQ[q_]:=Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Select[Range[100],aperQ[Reverse[IntegerDigits[#,2]]]&&neckQ[Reverse[IntegerDigits[#,2]]]&]

Formula

Intersection of A328594 and A328595.

A275692 Numbers k such that every rotation of the binary digits of k is less than k.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 12, 14, 16, 20, 24, 26, 28, 30, 32, 40, 48, 50, 52, 56, 58, 60, 62, 64, 72, 80, 84, 96, 98, 100, 104, 106, 108, 112, 114, 116, 118, 120, 122, 124, 126, 128, 144, 160, 164, 168, 192, 194, 196, 200, 202, 208, 210, 212, 216, 218, 224, 226, 228
Offset: 1

Views

Author

Robert Israel, Aug 05 2016

Keywords

Comments

0, and terms of A065609 that are not in A121016.
Number of terms with d binary digits is A001037(d).
Take the binary representation of a(n), reverse it, add 1 to each digit. The result is the decimal representation of A102659(n).
From Gus Wiseman, Apr 19 2020: (Start)
Also numbers k such that the k-th composition in standard order (row k of A066099) is a Lyndon word. For example, the sequence of all Lyndon words begins:
0: () 52: (1,2,3) 118: (1,1,2,1,2)
1: (1) 56: (1,1,4) 120: (1,1,1,4)
2: (2) 58: (1,1,2,2) 122: (1,1,1,2,2)
4: (3) 60: (1,1,1,3) 124: (1,1,1,1,3)
6: (1,2) 62: (1,1,1,1,2) 126: (1,1,1,1,1,2)
8: (4) 64: (7) 128: (8)
12: (1,3) 72: (3,4) 144: (3,5)
14: (1,1,2) 80: (2,5) 160: (2,6)
16: (5) 84: (2,2,3) 164: (2,3,3)
20: (2,3) 96: (1,6) 168: (2,2,4)
24: (1,4) 98: (1,4,2) 192: (1,7)
26: (1,2,2) 100: (1,3,3) 194: (1,5,2)
28: (1,1,3) 104: (1,2,4) 196: (1,4,3)
30: (1,1,1,2) 106: (1,2,2,2) 200: (1,3,4)
32: (6) 108: (1,2,1,3) 202: (1,3,2,2)
40: (2,4) 112: (1,1,5) 208: (1,2,5)
48: (1,5) 114: (1,1,3,2) 210: (1,2,3,2)
50: (1,3,2) 116: (1,1,2,3) 212: (1,2,2,3)
(End)

Examples

			6 is in the sequence because its binary representation 110 is greater than all the rotations 011 and 101.
10 is not in the sequence because its binary representation 1010 is unchanged under rotation by 2 places.
From _Gus Wiseman_, Oct 31 2019: (Start)
The sequence of terms together with their binary expansions and binary indices begins:
    1:       1 ~ {1}
    2:      10 ~ {2}
    4:     100 ~ {3}
    6:     110 ~ {2,3}
    8:    1000 ~ {4}
   12:    1100 ~ {3,4}
   14:    1110 ~ {2,3,4}
   16:   10000 ~ {5}
   20:   10100 ~ {3,5}
   24:   11000 ~ {4,5}
   26:   11010 ~ {2,4,5}
   28:   11100 ~ {3,4,5}
   30:   11110 ~ {2,3,4,5}
   32:  100000 ~ {6}
   40:  101000 ~ {4,6}
   48:  110000 ~ {5,6}
   50:  110010 ~ {2,5,6}
   52:  110100 ~ {3,5,6}
   56:  111000 ~ {4,5,6}
   58:  111010 ~ {2,4,5,6}
(End)
		

Crossrefs

A similar concept is A328596.
Numbers whose binary expansion is aperiodic are A328594.
Numbers whose reversed binary expansion is a necklace are A328595.
Binary necklaces are A000031.
Binary Lyndon words are A001037.
Lyndon compositions are A059966.
Length of Lyndon factorization of binary expansion is A211100.
Length of co-Lyndon factorization of binary expansion is A329312.
Length of Lyndon factorization of reversed binary expansion is A329313.
Length of co-Lyndon factorization of reversed binary expansion is A329326.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692 (this sequence).
- Co-Lyndon compositions are A326774.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Co-Lyndon factorizations are counted by A333765.
- Lyndon factorizations are counted by A333940.
- Reversed necklaces are A333943.

Programs

  • Maple
    filter:= proc(n) local L, k;
      L:= convert(convert(n,binary),string);
      for k from 1 to length(L)-1 do
        if lexorder(L,StringTools:-Rotate(L,k)) then return false fi;
      od;
      true
    end proc:
    select(filter, [$0..1000]);
  • Mathematica
    filterQ[n_] := Module[{bits, rr}, bits = IntegerDigits[n, 2]; rr = NestList[RotateRight, bits, Length[bits]-1] // Rest; AllTrue[rr, FromDigits[#, 2] < n&]];
    Select[Range[0, 1000], filterQ] (* Jean-François Alcover, Apr 29 2019 *)
  • Python
    def ok(n):
        b = bin(n)[2:]
        return all(b[i:] + b[:i] < b for i in range(1, len(b)))
    print([k for k in range(230) if ok(k)]) # Michael S. Branicky, May 26 2022

A000016 a(n) is the number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the last stage.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 10, 16, 30, 52, 94, 172, 316, 586, 1096, 2048, 3856, 7286, 13798, 26216, 49940, 95326, 182362, 349536, 671092, 1290556, 2485534, 4793492, 9256396, 17895736, 34636834, 67108864, 130150588, 252645136, 490853416
Offset: 0

Views

Author

Keywords

Comments

Also a(n+1) = number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the sum of its contents. E.g., for n=5 there are 6 such sequences.
Also a(n+1) = number of binary vectors (x_1,...x_n) satisfying Sum_{i=1..n} i*x_i = 0 (mod n+1) = size of Varshamov-Tenengolts code VT_0(n). E.g., |VT_0(5)| = 6 = a(6).
Number of binary necklaces with an odd number of zeros. - Joerg Arndt, Oct 26 2015
Also, number of subsets of {1,2,...,n-1} which sum to 0 modulo n (cf. A063776). - Max Alekseyev, Mar 26 2016
From Gus Wiseman, Sep 14 2019: (Start)
Also the number of subsets of {1..n} containing n whose mean is an element. For example, the a(1) = 1 through a(8) = 16 subsets are:
1 2 3 4 5 6 7 8
123 234 135 246 147 258
345 456 357 468
12345 1236 567 678
1456 2347 1348
23456 2567 1568
12467 3458
13457 3678
34567 12458
1234567 14578
23578
24568
45678
123468
135678
2345678
(End)
Number of self-dual binary necklaces with 2n beads (cf. A263768, A007147). - Bernd Mulansky, Apr 25 2023

Examples

			For n=3 the 2 output sequences are 000111000111... and 010101...
For n=5 the 4 output sequences are those with periodic parts {0000011111, 0001011101, 0010011011, 01}.
For n=6 there are 6 such sequences.
		

References

  • B. D. Ginsburg, On a number theory function applicable in coding theory, Problemy Kibernetiki, No. 19 (1967), pp. 249-252.
  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 172.
  • J. Hedetniemi and K. R. Hutson, Equilibrium of shortest path load in ring network, Congressus Numerant., 203 (2010), 75-95. See p. 83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. Stoffer, Delay equations with rapidly oscillating stable periodic solutions, J. Dyn. Diff. Eqs. 20 (1) (2008) 201, eq. (39)

Crossrefs

The main diagonal of table A068009, the left edge of triangle A053633.
Subsets whose mean is an element are A065795.
Dominated by A082550.
Partitions containing their mean are A237984.
Subsets containing n but not their mean are A327477.

Programs

  • Haskell
    a000016 0 = 1
    a000016 n = (`div` (2 * n)) $ sum $
       zipWith (*) (map a000010 oddDivs) (map ((2 ^) . (div n)) $ oddDivs)
       where oddDivs = a182469_row n
    -- Reinhard Zumkeller, May 01 2012
    
  • Maple
    A000016 := proc(n) local d, t; if n = 0 then return 1 else t := 0; for d from 1 to n do if n mod d = 0 and d mod 2 = 1 then t := t + NumberTheory:-Totient(d)* 2^(n/d)/(2*n) fi od; return t fi end:
  • Mathematica
    a[0] = 1; a[n_] := Sum[Mod[k, 2] EulerPhi[k]*2^(n/k)/(2*n), {k, Divisors[n]}]; Table[a[n], {n, 0, 35}](* Jean-François Alcover, Feb 17 2012, after Pari *)
  • PARI
    a(n)=if(n<1,n >= 0,sumdiv(n,k,(k%2)*eulerphi(k)*2^(n/k))/(2*n));
    
  • Python
    from sympy import totient, divisors
    def A000016(n): return sum(totient(d)<>(~n&n-1).bit_length(),generator=True))//n if n else 1 # Chai Wah Wu, Feb 21 2023

Formula

a(n) = Sum_{odd d divides n} (phi(d)*2^(n/d))/(2*n), n>0.
a(n) = A063776(n)/2.
a(n) = 2^(n-1) - A327477(n). - Gus Wiseman, Sep 14 2019

Extensions

More terms from Michael Somos, Dec 11 1999

A000013 Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 10, 20, 30, 56, 94, 180, 316, 596, 1096, 2068, 3856, 7316, 13798, 26272, 49940, 95420, 182362, 349716, 671092, 1290872, 2485534, 4794088, 9256396, 17896832, 34636834, 67110932, 130150588, 252648992, 490853416, 954444608, 1857283156, 3616828364
Offset: 0

Views

Author

Keywords

Comments

Definition (2): Equivalently, number of different output sequences from an n-stage pure cycling shift register when 2 sequences are considered the same if one is the complement of the other.
Definition (3): Also number of different output sequences from an n-stage pure cycling shift register constrained so contents have even weight.
Definition (4): Also number of output sequences from (n-1)-stage shift register which feeds back the mod 2 sum of the contents of the register.
The equivalence of definitions (1) and (2) follows at once from the definitions.
If u is an output sequence of type (2) then its derivative is of type (3) - so (2) and (3) count the same things.
If we have a shift register of type (4), append a new cell which contains the mod 2 sum of the contents to get a shift register of type (3). So (3) and (4) count the same things.
If n is even, a(n) = A000116(n/2). If 2^(n+1)-1 is prime, then a(n) = A128976(n+1), the number of cycles in the digraph of the Lucas-Lehmer operator LL(x) = x^2 - 2 acting on Z/(2^(n+1)-1). - M. F. Hasler, May 19 2007
Also number of 2n-bead balanced binary necklaces that are equivalent to their complements. - Andrew Howroyd, Sep 29 2017

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 8*x^6 + 10*x^7 + 20*x^8 + ...
		

References

  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 172.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000013 0 = 1
    a000013 n = sum (zipWith (*)
       (map (a000010 . (* 2)) ds) (map (2 ^) $ reverse ds)) `div` (2 * n)
       where ds = a027750_row n
    -- Reinhard Zumkeller, Jul 08 2013
    
  • Maple
    with(numtheory): A000013 := proc(n) local s,d; if n = 0 then RETURN(1) else s := 0; for d in divisors(n) do s := s+(phi(2*d)*2^(n/d))/(2*n); od; RETURN(s); fi; end;
  • Mathematica
    a[n_] := Fold[ #1 + EulerPhi[2#2]2^(n/#2)/(2n) &, 0, Divisors[n]]
    a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, EulerPhi[2 #] 2^(n/#) &] / (2 n)]; (* Michael Somos, Dec 19 2014 *)
    mx=40;CoefficientList[Series[1-Sum[EulerPhi[2i] Log[1-2*x^i]/(2i),{i,1,mx}],{x,0,mx}],x] (* Herbert Kociemba, Nov 01 2016 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, k, eulerphi(2*k) * 2^(n/k)) / (2*n))}; /* Michael Somos, Oct 20 1999 */
    
  • Python
    from sympy import divisors, totient
    def a(n): return 1 if n<1 else sum([totient(2*d)*2**(n//d) for d in divisors(n)])//(2*n) # Indranil Ghosh, Apr 28 2017

Formula

a(n) = Sum_{ d divides n } (phi(2*d)*2^(n/d))/(2*n) for n>0. - Michael Somos, Oct 20 1999
G.f.: 1 - Sum_{i>=1} phi(2*i)*log(1-2*x^i)/(2*i). - Herbert Kociemba, Nov 01 2016
From Richard L. Ollerton, May 11 2021: (Start)
For n >= 1:
a(n) = (1/(2*n))*Sum_{k=1..n} phi(2*gcd(n,k))*2^(n/gcd(n,k))/phi(n/gcd(n,k)), where phi = A000010.
a(n) = (1/(2*n))*Sum_{k=1..n} phi(2*n/gcd(n,k))*2^gcd(n,k)/phi(n/gcd(n,k)). (End)
a(n) ~ 2^(n-1)/n. - Cedric Lorand, Apr 24 2022
a(n) = Sum_{k=1..n} A385665(n,k) = Sum_{d|n} A000048(d). - Tilman Piesk, Jul 31 2025
Previous Showing 11-20 of 160 results. Next