A308344 a(n) = (A001359(n+1)^2 - 1)/24, where A001359 = lesser of twin primes; or: pentagonal numbers (A000326) whose indices are twin ranks (A002822).
1, 5, 12, 35, 70, 145, 210, 425, 477, 782, 925, 1335, 1520, 1617, 2147, 2380, 3015, 3290, 4030, 5017, 7315, 7740, 8855, 11310, 13490, 14950, 15862, 17120, 18095, 27270, 28085, 28497, 30602, 32340, 43265, 44290, 45850, 46905, 49595, 55200, 62935, 67947, 69230, 70525
Offset: 1
Keywords
Examples
Sequence A001359 = {3, 5, 11, 17, 29, ...} lists the lesser members of pairs of twin primes, (3, 5), (5, 7), (11, 13), (17, 19), ... We ignore the first and start with the second pair, (5, 7). We have (5^2 - 1)/24 = 1 = a(1). Next comes the pair (11, 13), whence (11^2 - 1)/24 = 120/24 = 5 = a(2), etc.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..10000
- A. Dinculescu, On the Numbers that Determine the Distribution of Twin Primes, Surveys in Mathematics and its Applications, 13 (2018), 171-181.
Programs
-
Mathematica
(#^2-1)/24&/@Rest[Select[Partition[Prime[Range[300]],2,1],#[[2]]-#[[1]] == 2&][[All,1]]] (* Harvey P. Dale, Sep 05 2020 *)
-
PARI
a(n)=A000326(A002822(n))
-
PARI
a(n)=(A001359(n+1)^2-1)/24 \\ or implemented as follows: p=0;forprime(q=5,oo,p+2==q&&print1(p^2\24",");p=q)
Comments