cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 240 results. Next

A032766 Numbers that are congruent to 0 or 1 (mod 3).

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 42, 43, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 78, 79, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 102, 103
Offset: 0

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Omitting the initial 0, a(n) is the number of 1's in the n-th row of the triangle in A118111. - Hans Havermann, May 26 2002
Binomial transform is A053220. - Michael Somos, Jul 10 2003
Smallest number of different people in a set of n-1 photographs that satisfies the following conditions: In each photograph there are 3 women, the woman in the middle is the mother of the person on her left and is a sister of the person on her right and the women in the middle of the photographs are all different. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Sep 22 2006
Partial sums of A000034. - Richard Choulet, Jan 28 2010
Starting with 1 = row sums of triangle A171370. - Gary W. Adamson, Feb 15 2010
a(n) is the set of values for m in which 6k + m can be a perfect square (quadratic residues of 6 including trivial case of 0). - Gary Detlefs, Mar 19 2010
For n >= 2, a(n) is the smallest number with n as an anti-divisor. - Franklin T. Adams-Watters, Oct 28 2011
Sequence is also the maximum number of floors with 3 elevators and n stops in a "Convenient Building". See A196592 and Erich Friedman link below. - Robert Price, May 30 2013
a(n) is also the total number of coins left after packing 4-curves patterns (4c2) into a fountain of coins base n. The total number of 4c2 is A002620 and voids left is A000982. See illustration in links. - Kival Ngaokrajang, Oct 26 2013
Number of partitions of 6n into two even parts. - Wesley Ivan Hurt, Nov 15 2014
Number of partitions of 3n into exactly 2 parts. - Colin Barker, Mar 23 2015
Nonnegative m such that floor(2*m/3) = 2*floor(m/3). - Bruno Berselli, Dec 09 2015
For n >= 3, also the independence number of the n-web graph. - Eric W. Weisstein, Dec 31 2015
Equivalently, nonnegative numbers m for which m*(m+2)/3 and m*(m+5)/6 are integers. - Bruno Berselli, Jul 18 2016
Also the clique covering number of the n-Andrásfai graph for n > 0. - Eric W. Weisstein, Mar 26 2018
Maximum sum of degeneracies over all decompositions of the complete graph of order n+1 into three factors. The extremal decompositions are characterized in the Bickle link below. - Allan Bickle, Dec 21 2021
Also the Hadwiger number of the n-cocktail party graph. - Eric W. Weisstein, Apr 30 2022
The number of integer rectangles with a side of length n+1 and the property: the bisectors of the angles form a square within its limits. - Alexander M. Domashenko, Oct 17 2024
The maximum possible number of 5-cycles in an outerplanar graph on n+4 vertices. - Stephen Bartell, Jul 10 2025

Crossrefs

Cf. A006578 (partial sums), A000034 (first differences), A016789 (complement).
Essentially the same: A049624.
Column 1 (the second leftmost) of triangular table A026374.
Column 1 (the leftmost) of square array A191450.
Row 1 of A254051.
Row sums of A171370.
Cf. A066272 for anti-divisors.
Cf. A253888 and A254049 (permutations of this sequence without the initial zero).
Cf. A254103 and A254104 (pair of permutations based on this sequence and its complement).

Programs

  • Haskell
    a032766 n = div n 2 + n  -- Reinhard Zumkeller, Dec 13 2014
    (MIT/GNU Scheme) (define (A032766 n) (+ n (floor->exact (/ n 2)))) ;; Antti Karttunen, Jan 24 2015
    
  • Magma
    &cat[ [n, n+1]: n in [0..100 by 3] ]; // Vincenzo Librandi, Nov 16 2014
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+3 od: seq(a[n], n=0..69); # Zerinvary Lajos, Mar 16 2008
    seq(floor(n/2)+n, n=0..69); # Gary Detlefs, Mar 19 2010
    select(n->member(n mod 3,{0,1}), [$0..103]); # Peter Luschny, Apr 06 2014
  • Mathematica
    a[n_] := a[n] = 2a[n - 1] - 2a[n - 3] + a[n - 4]; a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 4; Array[a, 60, 0] (* Robert G. Wilson v, Mar 28 2011 *)
    Select[Range[0, 200], MemberQ[{0, 1}, Mod[#, 3]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
    Flatten[{#,#+1}&/@(3Range[0,40])] (* or *) LinearRecurrence[{1,1,-1}, {0,1,3}, 100] (* or *) With[{nn=110}, Complement[Range[0,nn], Range[2,nn,3]]] (* Harvey P. Dale, Mar 10 2013 *)
    CoefficientList[Series[x (1 + 2 x) / ((1 - x) (1 - x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Nov 16 2014 *)
    Floor[3 Range[0, 69]/2] (* L. Edson Jeffery, Jan 14 2017 *)
    Drop[Range[0,110],{3,-1,3}] (* Harvey P. Dale, Sep 02 2023 *)
  • PARI
    {a(n) = n + n\2}
    
  • PARI
    concat(0, Vec(x*(1+2*x)/((1-x)*(1-x^2)) + O(x^100))) \\ Altug Alkan, Dec 09 2015
    
  • SageMath
    [int(3*n//2) for n in range(101)] # G. C. Greubel, Jun 23 2024

Formula

G.f.: x*(1+2*x)/((1-x)*(1-x^2)).
a(-n) = -A007494(n).
a(n) = A049615(n, 2), for n > 2.
From Paul Barry, Sep 04 2003: (Start)
a(n) = (6n - 1 + (-1)^n)/4.
a(n) = floor((3n + 2)/2) - 1 = A001651(n) - 1.
a(n) = sqrt(2) * sqrt( (6n-1) (-1)^n + 18n^2 - 6n + 1 )/4.
a(n) = Sum_{k=0..n} 3/2 - 2*0^k + (-1)^k/2. (End)
a(n) = 3*floor(n/2) + (n mod 2) = A007494(n) - A000035(n). - Reinhard Zumkeller, Apr 04 2005
a(n) = 2 * A004526(n) + A004526(n+1). - Philippe Deléham, Aug 07 2006
a(n) = 1 + ceiling(3*(n-1)/2). - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Sep 22 2006
Row sums of triangle A133083. - Gary W. Adamson, Sep 08 2007
a(n) = (cos(Pi*n) - 1)/4 + 3*n/2. - Bart Snapp (snapp(AT)coastal.edu), Sep 18 2008
A004396(a(n)) = n. - Reinhard Zumkeller, Oct 30 2009
a(n) = floor(n/2) + n. - Gary Detlefs, Mar 19 2010
a(n) = 3n - a(n-1) - 2, for n>0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
a(n) = n + (n-1) - (n-2) + (n-3) - ... 1 = A052928(n) + A008619(n-1). - Jaroslav Krizek, Mar 22 2011
a(n) = a(n-1) + a(n-2) - a(n-3). - Robert G. Wilson v, Mar 28 2011
a(n) = Sum_{k>=0} A030308(n,k) * A003945(k). - Philippe Deléham, Oct 17 2011
a(n) = 2n - ceiling(n/2). - Wesley Ivan Hurt, Oct 25 2013
a(n) = A000217(n) - 2 * A002620(n-1). - Kival Ngaokrajang, Oct 26 2013
a(n) = Sum_{i=1..n} gcd(i, 2). - Wesley Ivan Hurt, Jan 23 2014
a(n) = 2n + floor((-n - (n mod 2))/2). - Wesley Ivan Hurt, Mar 31 2014
A092942(a(n)) = n for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n) = floor(3*n/2). - L. Edson Jeffery, Jan 18 2015
a(n) = A254049(A249745(n)) = (1+A007310(n)) / 2 for n >= 1. - Antti Karttunen, Jan 24 2015
E.g.f.: (3*x*exp(x) - sinh(x))/2. - Ilya Gutkovskiy, Jul 18 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) + log(3)/2. - Amiram Eldar, Dec 04 2021

Extensions

Better description from N. J. A. Sloane, Aug 01 1998

A005867 a(0) = 1; for n > 0, a(n) = (prime(n)-1)*a(n-1).

Original entry on oeis.org

1, 1, 2, 8, 48, 480, 5760, 92160, 1658880, 36495360, 1021870080, 30656102400, 1103619686400, 44144787456000, 1854081073152000, 85287729364992000, 4434961926979584000, 257227791764815872000, 15433667505888952320000
Offset: 0

Views

Author

Keywords

Comments

Local minima of Euler's phi function. - Walter Nissen
Number of potential primes in a modulus primorial(n+1) sieve. - Robert G. Wilson v, Nov 20 2000
Let p=prime(n) and let p# be the primorial (A002110), then it can be shown that any p# consecutive numbers have exactly a(n-1) numbers whose lowest prime factor is p. For a proof, see the "Proofs Regarding Primorial Patterns" link. For example, if we let p=7 and consider the interval [101,310] containing 210 numbers, we find the 8 numbers 119, 133, 161, 203, 217, 259, 287, 301. - Dennis Martin (dennis.martin(AT)dptechnology.com), Jul 16 2006
From Gary W. Adamson, Apr 21 2009: (Start)
Equals (-1)^n * (1, 1, 1, 2, 8, 48, ...) dot (-1, 2, -3, 5, -7, 11, ...).
a(6) = 480 = (1, 1, 1, 2, 8, 48) dot (-1, 2, -3, 5, -7, 11) = (-1, 2, -3, 10, -56, 528). (End)
It can be proved that there are at least T prime numbers less than N, where the recursive function T is: T = N - N*Sum_{i=0..T(sqrt(N))} A005867(i)/A002110(i). This can show for example that at least 0.16*N numbers are primes less than N for 29^2 > N > 23^2. - Ben Paul Thurston, Aug 23 2010
First column of A096294. - Eric Desbiaux, Jun 20 2013
Conjecture: The g.f. for the prime(n+1)-rough numbers (A000027, A005408, A007310, A007775, A008364, A008365, A008366, A166061, A166063) is x*P(x)/(1-x-x^a(n)+x^(a(n)+1)), where P(x) is an order a(n) polynomial with symmetric coefficients (i.e., c(0)=c(n), c(1)=c(n-1), ...). - Benedict W. J. Irwin, Mar 18 2016
a(n)/A002110(n+1) (primorial(n+1)) is the ratio of natural numbers whose smallest prime factor is prime(n+1); i.e., prime(n+1) coprime to A002110(n). So the ratio of even numbers to natural numbers = 1/2; odd multiples of 3 = 1/6; multiples of 5 coprime to 6 (A084967) = 2/30 = 1/15; multiples of 7 coprime to 30 (A084968) = 8/210 = 4/105; etc. - Bob Selcoe, Aug 11 2016
The 2-adic valuation of a(n) is A057773(n), being sum of the 2-adic valuations of the product terms here. - Kevin Ryde, Jan 03 2023
For n > 1, a(n) is the number of prime(n+1)-rough numbers in [1, primorial(prime(n))]. - Alexandre Herrera, Aug 29 2023

Examples

			a(3): the mod 30 prime remainder set sieve representation yields the remainder set: {1, 7, 11, 13, 17, 19, 23, 29}, 8 elements.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A057773 (2-adic valuation).
Column 1 of A281890.

Programs

  • Haskell
    a005867 n = a005867_list !! n
    a005867_list = scanl (*) 1 a006093_list
    -- Reinhard Zumkeller, May 01 2013
  • Maple
    A005867 := proc(n)
        mul(ithprime(j)-1,j=1..n) ;
    end proc: # Zerinvary Lajos, Aug 24 2008, R. J. Mathar, May 03 2017
  • Mathematica
    Table[ Product[ EulerPhi[ Prime[ j ] ], {j, 1, n} ], {n, 1, 20} ]
    RecurrenceTable[{a[0]==1,a[n]==(Prime[n]-1)a[n-1]},a,{n,20}] (* Harvey P. Dale, Dec 09 2013 *)
    EulerPhi@ FoldList[Times, 1, Prime@ Range@ 18] (* Michael De Vlieger, Mar 18 2016 *)
  • PARI
    for(n=0, 22, print1(prod(k=1,n, prime(k)-1), ", "))
    

Formula

a(n) = phi(product of first n primes) = A000010(A002110(n)).
a(n) = Product_{k=1..n} (prime(k)-1) = Product_{k=1..n} A006093(n).
Sum_{n>=0} a(n)/A002110(n+1) = 1. - Bob Selcoe, Jan 09 2015
a(n) = A002110(n)-((1/A000040(n+1) - A038110(n+1)/A038111(n+1))*A002110(n+1)). - Jamie Morken, Mar 27 2019
a(n) = |Sum_{k=0..n} A070918(n,k)|. - Alois P. Heinz, Aug 18 2019
a(n) = A058251(n)/A060753(n+1). - Jamie Morken, Apr 25 2022
a(n) = A002110(n) - A016035(A002110(n)) - 1 for n >= 1. - David James Sycamore, Sep 07 2024
Sum_{n>=0} 1/a(n) = A345974. - Amiram Eldar, Jun 26 2025

Extensions

Offset changed to 0, Name changed, and Comments and Examples sections edited by T. D. Noe, Apr 04 2010

A225546 Tek's flip: Write n as the product of distinct factors of the form prime(i)^(2^(j-1)) with i and j integers, and replace each such factor with prime(j)^(2^(i-1)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 256, 6, 9, 32, 65536, 12, 4294967296, 512, 64, 5, 18446744073709551616, 18, 340282366920938463463374607431768211456, 48, 1024, 131072, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 24, 81, 8589934592, 36, 768
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

This is a multiplicative self-inverse permutation of the integers.
A225547 gives the fixed points.
From Antti Karttunen and Peter Munn, Feb 02 2020: (Start)
This sequence operates on the Fermi-Dirac factors of a number. As arranged in array form, in A329050, this sequence reflects these factors about the main diagonal of the array, substituting A329050[j,i] for A329050[i,j], and this results in many relationships including significant homomorphisms.
This sequence provides a relationship between the operations of squaring and prime shift (A003961) because each successive column of the A329050 array is the square of the previous column, and each successive row is the prime shift of the previous row.
A329050 gives examples of how significant sets of numbers can be formed by choosing their factors in relation to rows and/or columns. This sequence therefore maps equivalent derived sets by exchanging rows and columns. Thus odd numbers are exchanged for squares, squarefree numbers for powers of 2 etc.
Alternative construction: For n > 1, form a vector v of length A299090(n), where each element v[i] for i=1..A299090(n) is a product of those distinct prime factors p(i) of n whose exponent e(i) has the bit (i-1) "on", or 1 (as an empty product) if no such exponents are present. a(n) is then Product_{i=1..A299090(n)} A000040(i)^A048675(v[i]). Note that because each element of vector v is squarefree, it means that each exponent A048675(v[i]) present in the product is a "submask" (not all necessarily proper) of the binary string A087207(n).
This permutation effects the following mappings:
A000035(a(n)) = A010052(n), A010052(a(n)) = A000035(n). [Odd numbers <-> Squares]
A008966(a(n)) = A209229(n), A209229(a(n)) = A008966(n). [Squarefree numbers <-> Powers of 2]
(End)
From Antti Karttunen, Jul 08 2020: (Start)
Moreover, we see also that this sequence maps between A016825 (Numbers of the form 4k+2) and A001105 (2*squares) as well as between A008586 (Multiples of 4) and A028983 (Numbers with even sum of the divisors).
(End)

Examples

			  7744  = prime(1)^2^(2-1)*prime(1)^2^(3-1)*prime(5)^2^(2-1).
a(7744) = prime(2)^2^(1-1)*prime(3)^2^(1-1)*prime(2)^2^(5-1) = 645700815.
		

Crossrefs

Cf. A225547 (fixed points) and the subsequences listed there.
Transposes A329050, A329332.
An automorphism of positive integers under the binary operations A059895, A059896, A059897, A306697, A329329.
An automorphism of A059897 subgroups: A000379, A003159, A016754, A122132.
Permutes lists where membership is determined by number of Fermi-Dirac factors: A000028, A050376, A176525, A268388.
Sequences f that satisfy f(a(n)) = f(n): A048675, A064179, A064547, A097248, A302777, A331592.
Pairs of sequences (f,g) that satisfy a(f(n)) = g(a(n)): (A000265,A008833), (A000290,A003961), (A005843,A334747), (A006519,A007913), (A008586,A334748).
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000040,A001146), (A000079,A019565).
Pairs of sequences (f,g) that satisfy f(a(n)) = g(n), possibly with offset change: (A000035, A010052), (A008966, A209229), (A007814, A248663), (A061395, A299090), (A087207, A267116), (A225569, A227291).
Cf. A331287 [= gcd(a(n),n)].
Cf. A331288 [= min(a(n),n)], see also A331301.
Cf. A331309 [= A000005(a(n)), number of divisors].
Cf. A331590 [= a(a(n)*a(n))].
Cf. A331591 [= A001221(a(n)), number of distinct prime factors], see also A331593.
Cf. A331740 [= A001222(a(n)), number of prime factors with multiplicity].
Cf. A331733 [= A000203(a(n)), sum of divisors].
Cf. A331734 [= A033879(a(n)), deficiency].
Cf. A331735 [= A009194(a(n))].
Cf. A331736 [= A000265(a(n)) = a(A008833(n)), largest odd divisor].
Cf. A335914 [= A038040(a(n))].
A self-inverse isomorphism between pairs of A059897 subgroups: (A000079,A005117), (A000244,A062503), (A000290\{0},A005408), (A000302,A056911), (A000351,A113849 U {1}), (A000400,A062838), (A001651,A252895), (A003586,A046100), (A007310,A000583), (A011557,A113850 U {1}), (A028982,A042968), (A053165,A065331), (A262675,A268390).
A bijection between pairs of sets: (A001248,A011764), (A007283,A133466), (A016825, A001105), (A008586, A028983).
Cf. also A336321, A336322 (compositions with another involution, A122111).

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    a(n) = {my(f=factor(n)); for (i=1, #f~, my(p=f[i,1]); f[i,1] = A019565(f[i,2]); f[i,2] = 2^(primepi(p)-1);); factorback(f);} \\ Michel Marcus, Nov 29 2019
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A225546(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,prime(i)^A048675(prods[i]))); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A225546(n): return prod(prod(prime(i) for i, v in enumerate(bin(e)[:1:-1],1) if v == '1')**(1<Chai Wah Wu, Mar 17 2023

Formula

Multiplicative, with a(prime(i)^j) = A019565(j)^A000079(i-1).
a(prime(i)) = 2^(2^(i-1)).
From Antti Karttunen and Peter Munn, Feb 06 2020: (Start)
a(A329050(n,k)) = A329050(k,n).
a(A329332(n,k)) = A329332(k,n).
Equivalently, a(A019565(n)^k) = A019565(k)^n. If n = 1, this gives a(2^k) = A019565(k).
a(A059897(n,k)) = A059897(a(n), a(k)).
The previous formula implies a(n*k) = a(n) * a(k) if A059895(n,k) = 1.
a(A000040(n)) = A001146(n-1); a(A001146(n)) = A000040(n+1).
a(A000290(a(n))) = A003961(n); a(A003961(a(n))) = A000290(n) = n^2.
a(A000265(a(n))) = A008833(n); a(A008833(a(n))) = A000265(n).
a(A006519(a(n))) = A007913(n); a(A007913(a(n))) = A006519(n).
A007814(a(n)) = A248663(n); A248663(a(n)) = A007814(n).
A048675(a(n)) = A048675(n) and A048675(a(2^k * n)) = A048675(2^k * a(n)) = k + A048675(a(n)).
(End)
From Antti Karttunen and Peter Munn, Jul 08 2020: (Start)
For all n >= 1, a(2n) = A334747(a(n)).
In particular, for n = A003159(m), m >= 1, a(2n) = 2*a(n). [Note that A003159 includes all odd numbers]
(End)

Extensions

Name edited by Peter Munn, Feb 14 2020
"Tek's flip" prepended to the name by Antti Karttunen, Jul 08 2020

A016969 a(n) = 6*n + 5.

Original entry on oeis.org

5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 203, 209, 215, 221, 227, 233, 239, 245, 251, 257, 263, 269, 275, 281, 287, 293, 299, 305, 311, 317, 323, 329, 335
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(18).
Exponents e such that x^e + x - 1 is reducible.
First differences of A141631. - Paul Curtz, Sep 12 2008
a(n-1), n >= 1, appears as first column in the triangle A239127 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014
Odd unlucky numbers in A050505. - Fred Daniel Kline, Feb 25 2017
Intersection of A005408 and A016789. - Bruno Berselli, Apr 26 2018
Numbers that are not divisible by their digital root in base 4. - Amiram Eldar, Nov 24 2022

Crossrefs

Cf. A050505 (unlucky numbers).
Cf. A000217.

Programs

Formula

a(n) = A003415(A003415(A125200(n+1)))/2. - Reinhard Zumkeller, Nov 24 2006
A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008
a(n) = A007310(2*n+1); complement of A016921 with respect to A007310. - Reinhard Zumkeller, Oct 02 2008
From Klaus Brockhaus, Jan 04 2009: (Start)
G.f.: (5+x)/(1-x)^2.
a(0) = 5; for n > 0, a(n) = a(n-1)+6. (End)
a(n) = A016921(n)+4 = A016933(n)+3 = A016945(n)+2 = A016957(n)+1. - Klaus Brockhaus, Jan 04 2009
a(n) = floor((12n-1)/2) with offset 1..a(1)=5. - Gary Detlefs, Mar 07 2010
a(n) = 4*(3*n+1) - a(n-1) (with a(0) = 5). - Vincenzo Librandi, Nov 20 2010
a(n) = floor(1/(1/sin(1/n) - n)). - Clark Kimberling, Feb 19 2010
a(n) = 3*Sum_{k = 0..n} binomial(6*n+5, 6*k+2)*Bernoulli(6*k+2). - Michel Marcus, Jan 11 2016
a(n) = A049452(n+1) / (n+1). - Torlach Rush, Nov 23 2018
a(n) = 2*A000217(n+2) - 1 - 2*A000217(n-1). See Twin Triangular Frames illustration. - Leo Tavares, Aug 25 2021
Sum_{n>=0} (-1)^n/a(n) = Pi/6 - sqrt(3)*arccoth(sqrt(3))/3. - Amiram Eldar, Dec 10 2021
E.g.f.: exp(x)*(5 + 6*x). - Stefano Spezia, Feb 14 2025

Extensions

More terms from Klaus Brockhaus, Jan 04 2009

A007775 Numbers not divisible by 2, 3 or 5.

Original entry on oeis.org

1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 133, 137, 139, 143, 149, 151, 157, 161, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 203, 209
Offset: 1

Views

Author

Keywords

Comments

Also numbers n such that the sum of the 4th powers of the first n positive integers is divisible by n, or A000538(n) = n*(n+1)(2*n+1)(3*n^2+3*n-1)/30 is divisible by n. - Alexander Adamchuk, Jan 04 2007
Also the 7-rough numbers: positive integers that have no prime factors less than 7. - Michael B. Porter, Oct 09 2009
a(n) mod 3 has period 8, repeating [1,1,2,1,2,1,2,2] = (n mod 2) + floor(((n-1) mod 8)/7) - floor(((n-2) mod 8)/7) + 1. floor(a(n)/3) is the set of numbers k such that k is congruent to {0,2,3,4,5,6,7,9} mod 10 = floor((5*n-2)/4)-floor((n mod 8)/6). - Gary Detlefs, Jan 08 2012
Numbers k such that C(k+3,3)==1 (mod k) and C(k+5,5)==1 (mod k). - Gary Detlefs, Sep 15 2013
a(n) mod 30 has period 8 repeating [1, 7, 11, 13, 17, 19, 23, 29]. The mean of these 8 numbers is 120/8 = 15. (a(n)-15) mod 30 has period 8 repeating [-14, -8, -4, -2, 2, 4, 8, 14]. One half of the absolute value produces the symmetric sequence [7, 4, 2, 1, 1, 2, 4, 7] = A061501(((n-1) + 16) mod 8). - Gary Detlefs, Sep 24 2013
a(n) are exactly those positive integers m such that the sequence b(n) = n*(n + m)*(n + 2*m)*(n + 3*m)(n + 4*m)/120 is integral. Cf. A007310. - Peter Bala, Nov 13 2015
The asymptotic density of this sequence is 4/15. - Amiram Eldar, Sep 30 2020
If a(n) + a(n+1) = 0 (mod 30), then a(n-j) + a(n+j+1) = a(n) + a(n+1) for each j in [1, n-1]. - Alexandre Herrera, Jun 27 2023

Crossrefs

Cf. A000538, A054403, A145011 (first differences).
For k-rough numbers with other values of k, see A000027, A005408, A007310, A007775, A008364, A008365, A008366, A166061, A166063.
Complement is A080671.
For digital root of Fibonacci numbers indexed by this sequence, see A227896.

Programs

  • Haskell
    a007775 n = a007775_list !! (n-1)
    a007775_list = 1 : filter ((> 5) . a020639) [1..]
    -- Reinhard Zumkeller, Jan 06 2013
    
  • Magma
    I:=[1, 7, 11, 13, 17, 19, 23, 29, 31]; [n le 9 select I[n] else Self(n-1) +Self(n-8) - Self(n-9): n in [1..80]]; // G. C. Greubel, Oct 22 2018
    
  • Maple
    for i from 1 to 500 do if gcd(i,30) = 1 then print(i); fi; od;
    for k from 1 to 300 do if ((k^2 mod 48=1) or (k^2 mod 48=25)) and ((k^2 mod 120=1) or (k^2 mod 120=49)) then print(k) fi od. # Gary Detlefs, Dec 30 2011
  • Mathematica
    Select[ Range[ 300 ], GCD[ #1, 30 ]==1& ]
    Select[Range[250], Mod[#, 2]>0&&Mod[#, 3]>0&&Mod[#, 5]>0&] (* Vincenzo Librandi, Feb 08 2014 *)
    a[ n_] := Quotient[ n, 8, 1] 30 + {1, 7, 11, 13, 17, 19, 23, 29}[[Mod[n, 8, 1]]]; (* Michael Somos, Jun 02 2014 *)
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 7, 11, 13, 17, 19, 23, 29, 31}, 100] (* Mikk Heidemaa, Dec 07 2017 *)
    Cases[Range@1000, x_ /; NoneTrue[Array[Prime, 3], Divisible[x, #] &]] (* Mikk Heidemaa, Dec 07 2017 *)
    CoefficientList[ Series[(x^8 + 6x^7 + 4x^6 + 2x^5 + 4x^4 + 2x^3 + 4x^2 + 6x + 1)/((x - 1)^2 (x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)), {x, 0, 55}], x] (* Robert G. Wilson v, Dec 07 2017 *)
  • PARI
    isA007775(n) = gcd(n,30)==1 \\ Michael B. Porter, Oct 09 2009
    
  • PARI
    {a(n) = n\8 * 30 + [ -1, 1, 7, 11, 13, 17, 19, 23][n%8 + 1]} /* Michael Somos, Feb 05 2011 */
    
  • PARI
    {a(n) = n\8 * 6 + 9 + 3 * (n+1)\2 * 2 - max(5, (n-2)%8) * 2} /* Michael Somos, Jun 02 2014 */
    
  • PARI
    Vec(x*(1+6*x+4*x^2+2*x^3+4*x^4+2*x^5+4*x^6+6*x^7+x^8)/((1+x)*(x^2+1)*(x^4+1)*( x-1)^2) + O(x^100)) \\ Altug Alkan, Nov 16 2015
    
  • Python
    def A007775(n): return ((m:=n-1)<<2|1)-(m>>2&-2)+(2,0,-2,0)[m-1>>1&3] # Chai Wah Wu, Feb 02 2025
  • Sage
    a = lambda n: ((((n-1)<< 2)-((n-1)>>2))|1) + ((((n-1)<<1)-((n-1)>> 1)) & 2)
    print([a(n) for n in (1..56)]) # after Andrew Lelechenko, Peter Luschny, Jul 08 2017
    

Formula

A141256(a(n)) = n+1. - Reinhard Zumkeller, Jun 17 2008
From R. J. Mathar, Feb 27 2009: (Start)
a(n+8) = a(n) + 30.
a(n) = a(n-1) + a(n-8) - a(n-9).
G.f.: x*(1 + 6*x + 4*x^2 + 2*x^3 + 4*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + x^8)/((1 + x)*(x^2 + 1)*(x^4 + 1)*(x-1)^2). (End)
a(n) = 4*n - 3 - 2*floor((n-1)/8) + (1 + (-1)^floor((n-2)/2))*(-1)^floor((n-2)/4), n >= 1. - Timothy Hopper, Mar 14 2010
a(1 - n) = -a(n). - Michael Somos, Feb 05 2011
Numbers k such that ((k^2 mod 48=1) or (k^2 mod 48=25)) and ((k^2 mod 120=1) or (k^2 mod 120=49)). - Gary Detlefs, Dec 30 2011
Numbers k such that k^2 mod 30 is 1 or 19. - Gary Detlefs, Dec 31 2011
a(n) = 3*(floor((5*n-2)/4) - floor((n mod 8)/6)) + (n mod 2) + floor(((n-1) mod 8)/7) - floor(((n-2) mod 8)/7) + 1. - Gary Detlefs, Jan 08 2012
a(n) = 4*n - 3 + 2*(floor((n+6)/8) - floor((n+4)/8) - floor((n+2)/8) + floor(n/8) - floor((n-1)/8)), n >= 1. From the o.g.f. given above by R. J. Mathar (with the denominator written as (1-x^8)*(1-x)), and a two-step reduction of the floor functions. Compare with Hopper's and Detlefs's formulas above. - Wolfdieter Lang, Jan 26 2012
a(n) = (6*f(n) - 3 + (-1)^f(n))/2, where f(n)= n + floor(n/4)+ floor(((n+4) mod 8)/6). - Gary Detlefs, Sep 15 2013
a(n) = 30*floor((n-1)/8) + 15 + 2*f((n-1) mod 8 + 16)*(-1)^floor(((n+3) mod 8)/4), where f(n) = (n*(n+1)/2+1) mod 10. - Gary Detlefs, Sep 24 2013
a(n) = 3*n + 6*floor(n/8) + (n mod 2) - 2*floor(((n-2) mod 8)/6) - 2*floor(((n-2) mod 8)/7) + 1. - Gary Detlefs, Jun 01 2014
a(n+1) = ((n << 2 - n >> 2) || 1) + ((n << 1 - n >> 1) && 2), where << and >> are bitwise left and right shifts, || and && are bitwise "or" and "and". - Andrew Lelechenko, Jul 08 2017
a(n) = 2*n + 2*floor(1/2 + (7*n)/8) + 2*(91 mod (2 - ((3*n)/4 + n^2/4) mod 2)) - 3 (n > 0). - Mikk Heidemaa, Dec 06 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(23 + sqrt(5) - sqrt(6*(5 + sqrt(5))))*Pi/15. - Amiram Eldar, Dec 13 2021

A004006 a(n) = C(n,1) + C(n,2) + C(n,3), or n*(n^2 + 5)/6.

Original entry on oeis.org

0, 1, 3, 7, 14, 25, 41, 63, 92, 129, 175, 231, 298, 377, 469, 575, 696, 833, 987, 1159, 1350, 1561, 1793, 2047, 2324, 2625, 2951, 3303, 3682, 4089, 4525, 4991, 5488, 6017, 6579, 7175, 7806, 8473, 9177, 9919, 10700, 11521, 12383, 13287, 14234, 15225
Offset: 0

Views

Author

Albert D. Rich (Albert_Rich(AT)msn.com)

Keywords

Comments

3-dimensional analog of centered polygonal numbers.
The Burnside group B(3,n) has order 3^a(n).
Answer to the question: if you have a tall building and 3 plates and you need to find the highest story, a plate thrown from which does not break, what is the number of stories you can handle given n tries? - Leonid Broukhis, Oct 24 2000
Equals row sums of triangle A144329 starting with "1". - Gary W. Adamson, Sep 18 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=4, a(n-1)=-coeff(charpoly(A,x),x^(n-3)). - Milan Janjic, Jan 24 2010
From J. M. Bergot, Aug 03 2011: (Start)
If one formed the 3 X 3 square
| n | n+1 | n+2 |
| n+3 | n+4 | n+5 |
| n+6 | n+7 | n+8 |
and found the sum of the horizontal products n*(n + 1)*(n + 2) + (n + 3)*(n + 4)*(n + 5) + (n + 6)*(n + 7)*(n + 8) and added the sum of the vertical products n*(n + 3)*(n + 6) + (n + 1)*(n + 4)*(n + 7) + (n + 2)*(n + 5)(n + 8) one gets 6*n^3 + 72*n^2 + 318*n + 504. This will give 36 times the values of all the terms in this sequence. (End)
a(n) is divisible by n for n congruent to {1,5} mod 6. (see A007310). - Gary Detlefs, Dec 08 2011
From Beimar Naranjo, Feb 22 2024: (Start)
Number of compositions with at most three parts and sum at most n.
Also the number of compositions with at most one part distinct from 1 and with a sum at most n. (End)
a(n) is the number of strings of length n defined on {0, 1, 2, 3} that contain one 1 and any number of 0's, or two 2's and any number of 0's, or three 3's and any number of 0's. For example, a(6) = 41 since the strings are the 20 permutations of 333000, the 15 permutations of 220000 and the 6 permutations of 100000. - Enrique Navarrete, Jun 18 2025

Examples

			G.f. = x + 3*x^2 + 7*x^3 + 14*x^4 + 25*x^5 + 41*x^6 + 63*x^7 + 92*x^8 + ... - _Michael Somos_, Dec 29 2019
		

References

  • W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley, 1966, see p. 380.

Crossrefs

Cf. A051576, A055795, A006552. Differences give A000217 + 1 or A000124.
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Programs

Formula

G.f.: x*(1-x+x^2)/(1-x)^4.
E.g.f.: x*(1 + x/2 + x^2/6) * exp(x).
a(-n) = -a(n).
a(n) = binomial(n+2,n-1) - binomial(n,n-2). - Zerinvary Lajos, May 11 2006
Euler transform of length 6 sequence [3, 1, 1, 0, 0, -1]. - Michael Somos, May 04 2007
Starting (1, 3, 7, 14, ...) = binomial transform of [1, 2, 2, 1, 0, 0, 0, ...]. - Gary W. Adamson, Apr 24 2008
a(0)=0, a(1)=1, a(2)=3, a(3)=7, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Aug 21 2011
a(n+1) = A000292(n) + n + 1. - Reinhard Zumkeller, Mar 31 2012
a(n) = 2*a(n-1) + (n-1) - a(n-2) with a(0) = 0, a(1) = 1. - Richard R. Forberg, Jan 23 2014
a(n) = Sum_{i=1..n} binomial(n-2i,2). - Wesley Ivan Hurt, Nov 18 2017
a(n) = n + Sum_{k=0..n} k*(n-k). - Gionata Neri, May 19 2018
a(n) = Sum_{k=0..n-1} A000124(k). - Torlach Rush, Aug 05 2018
G.f.: ((1 - x^5)/(1 - x)^5 - 1)/5. - Michael Somos, Dec 29 2019
G.f.: g(f(x)), where g is g.f. of A001477 and f is g.f. of A128834. - Oboifeng Dira, Jun 21 2020
Sum_{n>0} 1/a(n) = 3*(2*gamma + polygamma(0, 1-i*sqrt(5)) + polygamma(0, 1+i*sqrt(5)))/5 = 1.6787729555834452106286261834348972248... where i denotes the imaginary unit. - Stefano Spezia, Aug 31 2023

A047209 Numbers that are congruent to {1, 4} mod 5.

Original entry on oeis.org

1, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26, 29, 31, 34, 36, 39, 41, 44, 46, 49, 51, 54, 56, 59, 61, 64, 66, 69, 71, 74, 76, 79, 81, 84, 86, 89, 91, 94, 96, 99, 101, 104, 106, 109, 111, 114, 116, 119, 121, 124, 126, 129, 131, 134, 136, 139, 141, 144, 146, 149, 151, 154
Offset: 1

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 72 ).
Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2 - 1 == 0 (mod h); in our case, a(n)^2 - 1 == 0 (mod 5). - Bruno Berselli, Nov 17 2010
The sum of the alternating series (-1)^(n+1)/a(n) from n=1 to infinity is (Pi/5)*cot(Pi/5), that is (1/5)*sqrt(1 + 2/sqrt(5))*Pi. - Jean-François Alcover, May 03 2013
These numbers appear in the product of a Rogers-Ramanujan identity. See A003114 also for references. - Wolfdieter Lang, Oct 29 2016
Let m be a product of any number of terms of this sequence. Then m - 1 or m + 1 is divisible by 5. Closed under multiplication. - David A. Corneth, May 11 2018

Crossrefs

Cf. A005408 (n=1 or 3 mod 4), A007310 (n=1 or 5 mod 6).
Cf. A045468 (primes), A032527 (partial sums).

Programs

Formula

G.f.: (1+3x+x^2)/((1-x)(1-x^2)).
a(n) = floor((5n-2)/2). [corrected by Reinhard Zumkeller, Jul 19 2013]
a(1) = 1, a(n) = 5(n-1) - a(n-1). - Benoit Cloitre, Apr 12 2003
From Bruno Berselli, Nov 17 2010: (Start)
a(n) = (10*n + (-1)^n - 5)/4.
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
a(n) = a(n-2) + 5 for n > 2.
a(n) = 5*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1.
a(n)^2 = 5*A036666(n) + 1 (cf. also Comments). (End)
a(n) = 5*floor(n/2) + (-1)^(n+1). - Gary Detlefs, Dec 29 2011
E.g.f.: 1 + ((10*x - 5)*exp(x) + exp(-x))/4. - David Lovler, Aug 23 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = phi (A001622).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/5) * cosec(Pi/5) (A352324). (End)

Extensions

Edited by Michael Somos, Sep 22 2002

A038509 Composite numbers congruent to +-1 mod 6.

Original entry on oeis.org

25, 35, 49, 55, 65, 77, 85, 91, 95, 115, 119, 121, 125, 133, 143, 145, 155, 161, 169, 175, 185, 187, 203, 205, 209, 215, 217, 221, 235, 245, 247, 253, 259, 265, 275, 287, 289, 295, 299, 301, 305, 319, 323, 325, 329, 335, 341, 343, 355, 361, 365, 371, 377, 385
Offset: 1

Views

Author

Keywords

Comments

Or, composite numbers with smallest prime factor >= 5.
Or, nonprime numbers n such that binomial(n+3, 3) mod n == 1. - Hieronymus Fischer, Sep 30 2007
Note that the primes > 3 are congruent to +-1 mod 6.
This sequence differs from A067793 (composite n such that phi(n) > 2n/3) starting at 385. Numbers in this sequence but not in A067793 are 385, 455, 595, 665, 805, 1015, 1085, 1925, 2275, 2695, etc. See A069043. - R. J. Mathar, Jun 08 2008 and Zak Seidov, Nov 02 2011
Intersection of A002808 and A007310. - Reinhard Zumkeller, Jun 30 2012
The product (24/25) * (36/35) * (48/49) * (54/55) * (66/65) * (78/77) * (84/85) * (90/91) * ... * ((6*k)/a(n)) * ... = Pi^2/(6*sqrt(3)), where 6*k is the nearest number to a(n), with k in A067611 but not in A002822. (See A258414.) - Dimitris Valianatos, Mar 27 2017

Crossrefs

Cf. A171993 (nonprimes of the form 3*k+-1).
Cf. A069043, A067793 (composite n such that phi(n) > 2n/3).

Programs

  • Haskell
    a038509 n = a038509_list !! (n-1)
    a038509_list = [x | x <- a002808_list, gcd x 6 == 1]
    -- Reinhard Zumkeller, Aug 05 2014, Jun 30 2012
    
  • Maple
    A038509 := proc(n)
        option remember;
        if n = 1 then
            25;
        else
            for a from procname(n-1)+1 do
                if not isprime(a) and modp(a,6) in {1,5} then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A038509(n),n=1..30) ; # R. J. Mathar, Feb 28 2020
  • Mathematica
    Select[Range[1000], FactorInteger[#][[1,1]] >= 5 && ! PrimeQ[#] &] (* Robert G. Wilson v, Dec 19 2009 *)
    With[{nn=400},Select[Rest[Complement[Range[nn],Prime[Range[ PrimePi[ nn]]]]], MemberQ[ {1,5},Mod[#,6]]&]] (* Harvey P. Dale, Feb 21 2013 *)
    Select[Range[400],CompositeQ[#]&&MemberQ[{1,5},Mod[#,6]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 13 2019 *)
  • PARI
    is(n)=gcd(n,6)==1 && !isprime(n) && n>7 \\ Charles R Greathouse IV, Nov 20 2012

Formula

a(n) ~ 3n. - Charles R Greathouse IV, Nov 20 2012

Extensions

More terms from Robert G. Wilson v, Dec 19 2009
Entry revised by N. J. A. Sloane, Dec 31 2011, at the suggestion of Gary Detlefs

A008364 11-rough numbers: not divisible by 2, 3, 5 or 7.

Original entry on oeis.org

1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209, 211, 221, 223, 227, 229, 233, 239, 241, 247
Offset: 1

Views

Author

Keywords

Comments

The first A005867(4) = 48 terms give the reduced residue system for the 4th primorial number 210 = A002110(4).
This sequence is closed under multiplication: any product of terms is also a term. - Labos Elemer, Feb 26 2003
Conjecture: these are numbers n such that (Sum_{k=1..n} k^4) mod n = 0 and (Sum_{k=1..n} k^6) mod n = 0. - Gary Detlefs, Dec 20 2011
From Peter Bala, May 03 2018: (Start)
The above conjecture is true. Let m be even and let the m-th Bernoulli number be written in reduced form as Bernoulli(m) = N(m)/D(m). Apply Ireland and Rosen, Proposition 15.2.2, to show the congruence D(m)*( Sum_{k = 1..n} k^m )/n = N(m) (mod n) holds for all n >= 1. It follows easily from this congruence that ( Sum_{k = 1..n} k^m )/n is integral iff n is coprime to D(m). Now Bernoulli(4) = -1/(2*3*5) and Bernoulli(6) = 1/(2*3*7) so the numbers n such that both (Sum_{k=1..n} k^4) mod n = 0 and (Sum_{k=1..n} k^6) mod n = 0 are exactly those numbers coprime to the primes 2, 3, 5 and 7, that is, the 11-rough numbers. (End)
Conjecture: these are numbers n such that (n^6 mod 210 = 1) or (n^6 mod 210 = 169). - Gary Detlefs, Dec 30 2011
The second Detlefs conjecture above is true and extremely easy to verify with some basic properties of congruences: take the terms of this sequence up to 209 and compute their sixth powers modulo 210: there should only be 1's and 169's there. Then take the complement of this sequence up to 210, where you will see no instances of 1 or 169. - Alonso del Arte, Jan 12 2014
It is well-known that the product of 7 consecutive integers is divisible by 7!. Conjecture: This sequence is exactly the set of positive values of r such that ( Product_{k = 0..6} n + k*r )/7! is an integer for all n. - Peter Bala, Nov 14 2015
From Ruediger Jehn, Nov 05 2020: (Start)
This conjecture is true. The first part of the proof deals with numbers not in A008364, i.e., numbers which are divisible by p (p either 2, 3, 5, 7). Let r = p*s and n = 1, then (Product_{k = 0..6} n + k*r) is not divisible by p, because none of the factors 1 + k*p*s are divisible by p. Hence dividing the product by 7! does not return an integer.
The second part deals with numbers in A008364. If r and q are coprime, then for any i < q there exists k < q with (k*r mod q) = i. From this, it also follows that for any n there exists k < q with ((n + k*r) mod q) = 0. But this means that Product_{k = 0..6} n + k*r is divisible by all numbers from 2 to 7 because there is always a factor that is divisible. We still have to show that the product is also divisible by 2 times 3 times 4 times 6. If the k_1 with ((n + k_1*r) mod 4) = 0 is even, then (n mod 2) = ((n + 2*r) mod 2) = ((n + 4*r) mod 2) = ((n + 6*r) mod 2) = 0. If this k_1 is odd, then ((n + r) mod 2) = ((n + 3*r) mod 2) = ((n + 5*r) mod 2) = 0. In both cases there are at least 2 other factors divisible by 2. If the k_2 with ((n + k_2*r) mod 6) = 0 is smaller than 4, then ((n + (k_2 + 3)*r) mod 3) = 0. Otherwise, ((n + (k_2 - 3)*r) mod 3) = 0. In both cases there is at least 1 other factor divisible by 3. And therefore Product_{k = 0..6} n + k*r is divisible by 7! for any n.
(End)

References

  • Diatomic sequence of 4th prime: A. de Polignac (1849), J. Dechamps (1907).
  • Dickson L. E., History of the Theory of Numbers, Vol. 1, p. 439, Chelsea, 1952.
  • K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1980.

Crossrefs

First differences give A049296. Cf. A002110, A048597.
For k-rough numbers with other values of k, see A000027, A005408, A007310, A007775, A008364, A008365, A008366, A166061, A166063. - Michael B. Porter, Oct 10 2009
Cf. A005867, A092695, A210679, A080672 (complement).

Programs

  • Haskell
    a008364 n = a008364_list !! (n-1)
    a008364_list = 1 : filter ((> 7) . a020639) [1..]
    -- Reinhard Zumkeller, Mar 26 2012
  • Maple
    for i from 1 to 500 do if gcd(i,210) = 1 then print(i); fi; od;
    t1:=[]; for i from 1 to 1000 do if gcd(i,210) = 1 then t1:=[op(t1),i]; fi; od: t1;
    S:= (j,n)-> sum(k^j,k=1..n): for n from 1 to 247 do if (S(4,n) mod n = 0) and (S(6,n) mod n = 0) then print(n) fi od; # Gary Detlefs, Dec 20 2011
  • Mathematica
    Select[ Range[ 300 ], GCD[ #1, 210 ] == 1 & ]
    Select[Range[250], Mod[#, 2]>0 && Mod[#, 3]>0 && Mod[#, 5]>0 && Mod[#, 7]>0 &] (* Vincenzo Librandi, Nov 16 2015 *)
    Cases[Range@1000, x_ /; NoneTrue[Array[Prime, 4], Divisible[x, #] &]] (* Mikk Heidemaa, Dec 07 2017 *)
    Select[Range[250],Union[Divisible[#,{2,3,5,7}]]=={False}&] (* Harvey P. Dale, Sep 24 2021 *)
  • PARI
    isA008364(n) = gcd(n,210)==1 \\ Michael B. Porter, Oct 10 2009
    

Formula

Starting with a(49) = 211, a(n) = a(n-48) + 210. - Zak Seidov, Apr 11 2011
a(n) = a(n-1) + a(n-48) - a(n-49). - Charles R Greathouse IV, Dec 21 2011
A020639(a(n)) > 7. - Reinhard Zumkeller, Mar 26 2012
G.f.: x*(x^48 + 10*x^47 + 2*x^46 + 4*x^45 + 2*x^44 + 4*x^43 + 6*x^42 + 2*x^41 + 6*x^40 + 4*x^39 + 2*x^38 + 4*x^37 + 6*x^36 + 6*x^35 + 2*x^34 + 6*x^33 + 4*x^32 + 2*x^31 + 6*x^30 + 4*x^29 + 6*x^28 + 8*x^27 + 4*x^26 + 2*x^25 + 4*x^24 + 2*x^23 + 4*x^22 + 8*x^21 + 6*x^20 + 4*x^19 + 6*x^18 + 2*x^17 + 4*x^16 + 6*x^15 + 2*x^14 + 6*x^13 + 6*x^12 + 4*x^11 + 2*x^10 + 4*x^9 + 6*x^8 + 2*x^7 + 6*x^6 + 4*x^5 + 2*x^4 + 4*x^3 + 2*x^2 + 10*x + 1) / (x^49 - x^48 - x + 1). - Colin Barker, Sep 27 2013
a(n) = 35*n/8 + O(1). - Charles R Greathouse IV, Sep 14 2015
A007775 INTERSECT A206547. - R. J. Mathar, Apr 10 2024

Extensions

New name from Charles R Greathouse IV, Dec 21 2011 based on comment from Michael B. Porter, Oct 10 2009

A032528 Concentric hexagonal numbers: floor(3*n^2/2).

Original entry on oeis.org

0, 1, 6, 13, 24, 37, 54, 73, 96, 121, 150, 181, 216, 253, 294, 337, 384, 433, 486, 541, 600, 661, 726, 793, 864, 937, 1014, 1093, 1176, 1261, 1350, 1441, 1536, 1633, 1734, 1837, 1944, 2053, 2166, 2281, 2400, 2521, 2646, 2773, 2904, 3037, 3174, 3313, 3456, 3601, 3750
Offset: 0

Views

Author

Keywords

Comments

From Omar E. Pol, Aug 20 2011: (Start)
Cellular automaton on the hexagonal net. The sequence gives the number of "ON" cells in the structure after n-th stage. A007310 gives the first differences. For a definition without words see the illustration of initial terms in the example section. Note that the cells become intermittent. A083577 gives the primes of this sequences.
A033581 and A003154 interleaved.
Row sums of an infinite square array T(n,k) in which column k lists 2*k-1 zeros followed by the numbers A008458 (see example). (End)
Sequence found by reading the line from 0, in the direction 0, 1, ... and the same line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Main axis perpendicular to A045943 in the same spiral. - Omar E. Pol, Sep 08 2011

Examples

			From _Omar E. Pol_, Aug 20 2011: (Start)
Using the numbers A008458 we can write:
  0, 1, 6, 12, 18, 24, 30, 36, 42,  48,  54, ...
  0, 0, 0,  1,  6, 12, 18, 24, 30,  36,  42, ...
  0, 0, 0,  0,  0,  1,  6, 12, 18,  24,  30, ...
  0, 0, 0,  0,  0,  0,  0,  1,  6,  12,  18, ...
  0, 0, 0,  0,  0,  0,  0,  0,  0,   1,   6, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 6, 13, 24, 37, 54, 73, 96, 121, 150, ...
...
Illustration of initial terms as concentric hexagons:
.
.                                         o o o o o
.                         o o o o        o         o
.             o o o      o       o      o   o o o   o
.     o o    o     o    o   o o   o    o   o     o   o
. o  o   o  o   o   o  o   o   o   o  o   o   o   o   o
.     o o    o     o    o   o o   o    o   o     o   o
.             o o o      o       o      o   o o o   o
.                         o o o o        o         o
.                                         o o o o o
.
. 1    6        13           24               37
.
(End)
		

Crossrefs

Programs

Formula

From Joerg Arndt, Aug 22 2011: (Start)
G.f.: (x+4*x^2+x^3)/(1-2*x+2*x^3-x^4) = x*(1+4*x+x^2)/((1+x)*(1-x)^3).
a(n) = +2*a(n-1) -2*a(n-3) +1*a(n-4). (End)
a(n) = (6*n^2+(-1)^n-1)/4. - Bruno Berselli, Aug 22 2011
a(n) = A184533(n), n >= 2. - Clark Kimberling, Apr 20 2012
First differences of A011934: a(n) = A011934(n) - A011934(n-1) for n>0. - Franz Vrabec, Feb 17 2013
From Paul Curtz, Mar 31 2019: (Start)
a(-n) = a(n).
a(n) = a(n-2) + 6*(n-1) for n > 1.
a(2*n) = A033581(n).
a(2*n+1) = A003154(n+1). (End)
E.g.f.: (3*x*(x + 1)*cosh(x) + (3*x^2 + 3*x - 1)*sinh(x))/2. - Stefano Spezia, Aug 19 2022
Sum_{n>=1} 1/a(n) = Pi^2/36 + tan(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)). - Amiram Eldar, Jan 16 2023

Extensions

New name and more terms a(41)-a(50) from Omar E. Pol, Aug 20 2011
Previous Showing 31-40 of 240 results. Next