cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 155 results. Next

A001840 Expansion of g.f. x/((1 - x)^2*(1 - x^3)).

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247, 260, 273, 287, 301, 315, 330, 345, 360, 376, 392, 408, 425, 442, 459, 477, 495, 513, 532, 551, 570, 590
Offset: 0

Views

Author

Keywords

Comments

a(n-3) is the number of aperiodic necklaces (Lyndon words) with 3 black beads and n-3 white beads.
Number of triangular partitions (see Almkvist).
Consists of arithmetic progression quadruples of common difference n+1 starting at A045943(n). Refers to the least number of coins needed to be rearranged in order to invert the pattern of a (n+1)-rowed triangular array. For instance, a 5-rowed triangular array requires a minimum of a(4)=5 rearrangements (shown bracketed here) for it to be turned upside down.
.....{*}..................{*}*.*{*}{*}
.....*.*....................*.*.*.{*}
....*.*.*....---------\......*.*.*
..{*}*.*.*...---------/.......*.*
{*}{*}*.*{*}..................{*}
- Lekraj Beedassy, Oct 13 2003
Partial sums of 1,1,1,2,2,2,3,3,3,4,4,4,... - Jon Perry, Mar 01 2004
Sum of three successive terms is a triangular number in natural order starting with 3: a(n)+a(n+1)+a(n+2) = T(n+2) = (n+2)*(n+3)/2. - Amarnath Murthy, Apr 25 2004
Apply Riordan array (1/(1-x^3),x) to n. - Paul Barry, Apr 16 2005
Absolute values of numbers that appear in A145919. - Matthew Vandermast, Oct 28 2008
In the Moree definition, (-1)^n*a(n) is the 3rd Witt transform of A033999 and (-1)^n*A004524(n) with 2 leading zeros dropped is the 2nd Witt transform of A033999. - R. J. Mathar, Nov 08 2008
Column sums of:
1 2 3 4 5 6 7 8 9.....
1 2 3 4 5 6.....
1 2 3.....
........................
----------------------
1 2 3 5 7 9 12 15 18 - Jon Perry, Nov 16 2010
a(n) is the sum of the positive integers <= n that have the same residue modulo 3 as n. They are the additive counterpart of the triple factorial numbers. - Peter Luschny, Jul 06 2011
a(n+1) is the number of 3-tuples (w,x,y) with all terms in {0,...,n} and w=3*x+y. - Clark Kimberling, Jun 04 2012
a(n+1) is the number of pairs (x,y) with x and y in {0,...,n}, x-y = (1 mod 3), and x+y < n. - Clark Kimberling, Jul 02 2012
a(n+1) is the number of partitions of n into two sorts of part(s) 1 and one sort of (part) 3. - Joerg Arndt, Jun 10 2013
Arrange A004523 in rows successively shifted to the right two spaces and sum the columns:
1 2 2 3 4 4 5 6 6...
1 2 2 3 4 4 5...
1 2 2 3 4...
1 2 2...
1...
------------------------------
1 2 3 5 7 9 12 15 18... - L. Edson Jeffery, Jul 30 2014
a(n) = A258708(n+1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
Also the number of triples of positive integers summing to n + 4, the first less than each of the other two. Also the number of triples of positive integers summing to n + 2, the first less than or equal to each of the other two. - Gus Wiseman, Oct 11 2020
Also the lower matching number of the (n+1)-triangular honeycomb king graph = n-triangular grid graph (West convention). - Eric W. Weisstein, Dec 14 2024

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 9*x^6 + 12*x^7 + 15*x^8 + 18*x^9 + ...
1+2+3=6=t(3), 2+3+5=t(4), 5+7+9=t(5).
[n] a(n)
--------
[1] 1
[2] 2
[3] 3
[4] 1 + 4
[5] 2 + 5
[6] 3 + 6
[7] 1 + 4 + 7
[8] 2 + 5 + 8
[9] 3 + 6 + 9
a(7) = floor(2/3) +floor(3/3) +floor(4/3) +floor(5/3) +floor(6/3) +floor(7/3) +floor(8/3) +floor(9/3) = 12. - _Bruno Berselli_, Aug 29 2013
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 73, problem 25.
  • Ulrich Faigle, Review of Gerhard Post and G.J. Woeginger, Sports tournaments, home-away assignments and the break minimization problem, MR2224983(2007b:90134), 2007.
  • Hansraj Gupta, Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
  • Richard K. Guy, A problem of Zarankiewicz, in P. Erdős and G. Katona, editors, Theory of Graphs (Proceedings of the Colloquium, Tihany, Hungary), Academic Press, NY, 1968, pp. 119-150, (p. 126, divided by 2).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Ordered union of triangular matchstick numbers A045943 and generalized pentagonal numbers A001318.
Cf. A058937.
A column of triangle A011847.
Cf. A258708.
A001399 counts 3-part partitions, ranked by A014612.
A337483 counts either weakly increasing or weakly decreasing triples.
A337484 counts neither strictly increasing nor strictly decreasing triples.
A014311 ranks 3-part compositions, with strict case A337453.

Programs

  • Haskell
    a001840 n = a001840_list !! n
    a001840_list = scanl (+) 0 a008620_list
    -- Reinhard Zumkeller, Apr 16 2012
  • Magma
    [ n le 2 select n else n*(n+1)/2-Self(n-1)-Self(n-2): n in [1..58] ];  // Klaus Brockhaus, Oct 01 2009
    
  • Maple
    A001840 := n->floor((n+1)*(n+2)/6);
    A001840:=-1/((z**2+z+1)*(z-1)**3); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
    seq(floor(binomial(n-1,2)/3), n=3..61); # Zerinvary Lajos, Jan 12 2009
    A001840 :=  n -> add(k, k = select(k -> k mod 3 = n mod 3, [$1 .. n])): seq(A001840(n), n = 0 .. 58); # Peter Luschny, Jul 06 2011
  • Mathematica
    a[0]=0; a[1]=1; a[n_]:= a[n]= n(n+1)/2 -a[n-1] -a[n-2]; Table[a[n], {n,0,100}]
    f[n_] := Floor[(n + 1)(n + 2)/6]; Array[f, 59, 0] (* Or *)
    CoefficientList[ Series[ x/((1 + x + x^2)*(1 - x)^3), {x, 0, 58}], x] (* Robert G. Wilson v *)
    a[ n_] := With[{m = If[ n < 0, -3 - n, n]}, SeriesCoefficient[ x /((1 - x^3) (1 - x)^2), {x, 0, m}]]; (* Michael Somos, Jul 11 2011 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,1,2,3,5},60] (* Harvey P. Dale, Jul 25 2011 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n+4,{3}],#[[1]]<#[[2]]&&#[[1]]<#[[3]]&]],{n,0,15}] (* Gus Wiseman, Oct 05 2020 *)
  • PARI
    {a(n) = (n+1) * (n+2) \ 6}; /* Michael Somos, Feb 11 2004 */
    
  • Sage
    [binomial(n, 2) // 3 for n in range(2, 61)] # Zerinvary Lajos, Dec 01 2009
    

Formula

a(n) = (A000217(n+1) - A022003(n-1))/3;
a(n) = (A016754(n+1) - A010881(A016754(n+1)))/24;
a(n) = (A033996(n+1) - A010881(A033996(n+1)))/24.
Euler transform of length 3 sequence [2, 0, 1].
a(3*k-1) = k*(3*k + 1)/2;
a(3*k) = 3*k*(k + 1)/2;
a(3*k+1) = (k + 1)*(3*k + 2)/2.
a(n) = floor( (n+1)*(n+2)/6 ) = floor( A000217(n+1)/3 ).
a(n+1) = a(n) + A008620(n) = A002264(n+3). - Reinhard Zumkeller, Aug 01 2002
From Michael Somos, Feb 11 2004: (Start)
G.f.: x / ((1-x)^2 * (1-x^3)).
a(n) = 1 + a(n-1) + a(n-3) - a(n-4).
a(-3-n) = a(n). (End)
a(n) = a(n-3) + n for n > 2; a(0)=0, a(1)=1, a(2)=2. - Paul Barry, Jul 14 2004
a(n) = binomial(n+3, 3)/(n+3) + cos(2*Pi*(n-1)/3)/9 + sqrt(3)sin(2*Pi*(n-1)/3)/9 - 1/9. - Paul Barry, Jan 01 2005
From Paul Barry, Apr 16 2005: (Start)
a(n) = Sum_{k=0..n} k*(cos(2*Pi*(n-k)/3 + Pi/3)/3 + sqrt(3)*sin(2*Pi*(n-k)/3 + Pi/3)/3 + 1/3).
a(n) = Sum_{k=0..floor(n/3)} n-3*k. (End)
For n > 1, a(n) = A000217(n) - a(n-1) - a(n-2); a(0)=0, a(1)=1.
G.f.: x/(1 + x + x^2)/(1 - x)^3. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = (4 + 3*n^2 + 9*n)/18 + ((n mod 3) - ((n-1) mod 3))/9. - Klaus Brockhaus, Oct 01 2009
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5), with n>4, a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=5. - Harvey P. Dale, Jul 25 2011
a(n) = A214734(n + 2, 1, 3). - Renzo Benedetti, Aug 27 2012
G.f.: x*G(0), where G(k) = 1 + x*(3*k+4)/(3*k + 2 - 3*x*(k+2)*(3*k+2)/(3*(1+x)*k + 6*x + 4 - x*(3*k+4)*(3*k+5)/(x*(3*k+5) + 3*(k+1)/G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jun 10 2013
Empirical: a(n) = floor((n+3)/(e^(6/(n+3))-1)). - Richard R. Forberg, Jul 24 2013
a(n) = Sum_{i=0..n} floor((i+2)/3). - Bruno Berselli, Aug 29 2013
0 = a(n)*(a(n+2) + a(n+3)) + a(n+1)*(-2*a(n+2) - a(n+3) + a(n+4)) + a(n+2)*(a(n+2) - 2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Jan 22 2014
a(n) = n/2 + floor(n^2/3 + 2/3)/2. - Bruno Berselli, Jan 23 2017
a(n) + a(n+1) = A000212(n+2). - R. J. Mathar, Jan 14 2021
Sum_{n>=1} 1/a(n) = 20/3 - 2*Pi/sqrt(3). - Amiram Eldar, Sep 27 2022
E.g.f.: (exp(x)*(4 + 12*x + 3*x^2) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/18. - Stefano Spezia, Apr 05 2023

A057079 Periodic sequence: repeat [1,2,1,-1,-2,-1]; expansion of (1+x)/(1-x+x^2).

Original entry on oeis.org

1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2000

Keywords

Comments

Inverse binomial transform of A057083. Binomial transform of A061347. The sums of consecutive pairs of elements give A084103. - Paul Barry, May 15 2003
Hexaperiodic sequence identical to its third differences. - Paul Curtz, Dec 13 2007
a(n+1) is the Hankel transform of A001700(n+1)-A001700(n). - Paul Barry, Apr 21 2009
Non-simple continued fraction expansion of 1 = 1+1/(2+1/(1+1/(-1+...))). - R. J. Mathar, Mar 08 2012
Pisano period lengths: 1, 3, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... - R. J. Mathar, Aug 10 2012
Alternating row sums of Riordan triangle A111125. - Wolfdieter Lang, Oct 18 2012
Periodic sequences of this type can be also calculated by a(n) = c + floor(q/(p^m-1)*p^n) mod p, where c is a constant, q is the number representing the periodic digit pattern and m is the period length. c, p and q can be calculated as follows: Let D be the array representing the number pattern to be repeated, m = size of D, max = maximum value of elements in D, min = minimum value of elements in D. Than c := min, p := max - min + 1 and q := p^m*sum_{i=1..m} (D(i)-min)/p^i. Example: D = (1, 2, 1, -1, -2, -1), c = -2, m = 6, p = 5 and q = 12276 for this sequence. - Hieronymus Fischer, Jan 04 2013

Examples

			G.f. = 1 + 2*x + x^2 - x^3 - 2*x^4 - x^5 + x^6 + 2*x^7 + x^8 - x^9 - 2*x^10 + x^11 + ...
		

Crossrefs

Cf. A049310. Apart from signs, same as A061347.

Programs

  • Maple
    A057079:=n->[1, 2, 1, -1, -2, -1][(n mod 6)+1]: seq(A057079(n), n=0..100); # Wesley Ivan Hurt, Mar 10 2015
  • Mathematica
    a[n_] := {1, 2, 1, -1, -2, -1}[[Mod[n, 6] + 1]]; Array[a, 100, 0] (* Jean-François Alcover, Jul 05 2013 *)
    CoefficientList[Series[(1 + x)/(1 - x + x^2), {x, 0, 71}], x] (* Michael De Vlieger, Jul 10 2017 *)
    PadRight[{},100,{1,2,1,-1,-2,-1}] (* Harvey P. Dale, Nov 11 2024 *)
  • PARI
    {a(n) = [1, 2, 1, -1, -2, -1][n%6 + 1]}; /* Michael Somos, Jul 14 2006 */
    
  • PARI
    {a(n) = if( n<0, n = 2-n); polcoeff( (1 + x) / (1 - x + x^2) + x * O(x^n), n)}; /* Michael Somos, Jul 14 2006 */
    
  • PARI
    a(n)=2^(n%3%2)*(-1)^(n\3) \\ Tani Akinari, Aug 15 2013

Formula

a(n) = S(n, 1) + S(n-1, 1) = S(2*n, sqrt(3)); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 1) = A010892(n).
a(n) = 2*cos((n-1)*Pi/3) = a(n-1) - a(n-2) = -a(n-3) = a(n-6) = (A022003(n+1)+1)*(-1)^floor(n/3). Unsigned a(n) = 4 - a(n-1) - a(n-2). - Henry Bottomley, Mar 29 2001
a(n) = (-1)^floor(n/3) + ((-1)^floor((n-1)/3) + (-1)^floor((n+1)/3))/2. - Mario Catalani (mario.catalani(AT)unito.it), Jan 07 2003
a(n) = (1/2 - sqrt(3)*i/2)^(n-1) + (1/2 + sqrt(3)*i/2)^(n-1) = cos(Pi*n/3) + sqrt(3)*sin(Pi*n/3). - Paul Barry, Mar 15 2004
The period 3 sequence (2, -1, -1, ...) has a(n) = 2*cos(2*Pi*n/3) = (-1/2 - sqrt(3)*i/2)^n + (-1/2 + sqrt(3)*i/2)^n. - Paul Barry, Mar 15 2004
Euler transform of length 6 sequence [2, -2, -1, 0, 0, 1]. - Michael Somos, Jul 14 2006
G.f.: (1 + x) / (1 - x + x^2) = (1 - x^2)^2 * (1 - x^3) / ((1 - x)^2 * (1 - x^6)). a(n) = a(2-n) for all n in Z. - Michael Somos, Jul 14 2006
a(n) = A033999(A002264(n))*(A000035(A010872(n))+1). - Hieronymus Fischer, Jun 20 2007
a(n) = (3*A033999(A002264(n)) - A033999(n))/2. - Hieronymus Fischer, Jun 20 2007
a(n) = (-1)^floor(n/3)*((n mod 3) mod 2 + 1). - Hieronymus Fischer, Jun 20 2007
a(n) = (3*(-1)^floor(n/3) - (-1)^n)/2. - Hieronymus Fischer, Jun 20 2007
a(n) = (-1)^((n-1)/3) + (-1)^((1-n)/3). - Jaume Oliver Lafont, May 13 2010
E.g.f.: E(x) = S(0), S(k) = 1 + 2*x/(6*k+1 - x*(6*k+1)/(4*(3*k+1) + x + 4*x*(3*k+1)/(6*k + 3 - x - x*(6*k+3)/(3*k + 2 + x - x*(3*k+2)/(12*k + 10 + x - x*(12*k+10)/(x - (6*k+6)/S(k+1))))))); (continued fraction). - Sergei N. Gladkovskii, Dec 14 2011
a(n) = -2 + floor((281/819)*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 04 2013
a(n) = -2 + floor((11/14)*5^(n+1)) mod 5. - Hieronymus Fischer, Jan 04 2013
a(n) = A010892(n) + A010892(n-1).
a(n) = ( (1+i*sqrt(3))^(n-1) + (1-i*sqrt(3))^(n-1) )/2^(n-1), where i=sqrt(-1). - Bruno Berselli, Dec 01 2014
a(n) = 2*sin((2n+1)*Pi/6). - Wesley Ivan Hurt, Apr 04 2015
a(n) = hypergeom([-n/2-2, -n/2-5/2], [-n-4], 4). - Peter Luschny, Dec 17 2016
G.f.: 1 / (1 - 2*x / (1 + 3*x / (2 - x))). - Michael Somos, Dec 29 2016
a(n) = (2*n+1)*(Sum_{k=0..n} ((-1)^k/(2*k+1))*binomial(n+k,2*k)) for n >= 0. - Werner Schulte, Jul 10 2017
Sum_{n>=0} (a(n)/(2*n+1))*x^(2*n+1) = arctan(x/(1-x^2)) for -1 < x < 1. - Werner Schulte, Jul 10 2017
E.g.f.: exp(x/2)*(sqrt(3)*cos(sqrt(3)*x/2) + 3*sin(sqrt(3)*x/2))/sqrt(3). - Stefano Spezia, Aug 04 2025

A063007 T(n,k) = binomial(n,k)*binomial(n+k,k), 0 <= k <= n, triangle read by rows.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 12, 30, 20, 1, 20, 90, 140, 70, 1, 30, 210, 560, 630, 252, 1, 42, 420, 1680, 3150, 2772, 924, 1, 56, 756, 4200, 11550, 16632, 12012, 3432, 1, 72, 1260, 9240, 34650, 72072, 84084, 51480, 12870, 1, 90, 1980, 18480, 90090, 252252, 420420, 411840, 218790, 48620
Offset: 0

Views

Author

Henry Bottomley, Jul 02 2001

Keywords

Comments

T(n,k) is the number of compatible k-sets of cluster variables in Fomin and Zelevinsky's Cluster algebra of finite type B_n. Take a row of this triangle regarded as a polynomial in x and rewrite as a polynomial in y := x+1. The coefficients of the polynomial in y give a row of triangle A008459 (squares of binomial coefficients). For example, x^2+6*x+6 = y^2+4*y+1. - Paul Boddington, Mar 07 2003
T(n,k) is the number of lattice paths from (0,0) to (n,n) using steps E=(1,0), N=(0,1) and D=(1,1) (i.e., bilateral Schroeder paths), having k N=(0,1) steps. E.g. T(2,0)=1 because we have DD; T(2,1) = 6 because we have NED, NDE, EDN, END, DEN and DNE; T(2,2)=6 because we have NNEE, NENE, NEEN, EENN, ENEN and ENNE. - Emeric Deutsch, Apr 20 2004
Another version of [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] = 1; 1, 0; 1, 2, 0; 1, 6, 6, 0; 1, 12, 30, 20, 0; ..., where DELTA is the operator defined in A084938. - Philippe Deléham Apr 15 2005
Terms in row n are the coefficients of the Legendre polynomial P(n,2x+1) with increasing powers of x.
From Peter Bala, Oct 28 2008: (Start)
Row n of this triangle is the f-vector of the simplicial complex dual to an associahedron of type B_n (a cyclohedron) [Fomin & Reading, p.60]. See A008459 for the corresponding h-vectors for associahedra of type B_n and A001263 and A033282 respectively for the h-vectors and f-vectors for associahedra of type A_n.
An alternative description of this triangle in terms of f-vectors is as follows. Let A_n be the root lattice generated as a monoid by {e_i - e_j: 0 <= i,j <= n+1}. Let P(A_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the f-vectors of a unimodular triangulation of P(A_n) [Ardila et al.]. A008459 is the corresponding array of h-vectors for these type A_n polytopes. See A127674 (without the signs) for the array of f-vectors for type C_n polytopes and A108556 for the array of f-vectors associated with type D_n polytopes.
The S-transform on the ring of polynomials is the linear transformation of polynomials that is defined on the basis monomials x^k by S(x^k) = binomial(x,k) = x(x-1)...(x-k+1)/k!. Let P_n(x) denote the S-transform of the n-th row polynomial of this array. In the notation of [Hetyei] these are the Stirling polynomials of the type B associahedra. The first few values are P_1(x) = 2*x + 1, P_2(x) = 3*x^2 + 3*x + 1 and P_3(x) = (10*x^3 + 15*x^2 + 11*x + 3)/3. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane, that is, the polynomials P_n(-x) satisfy a Riemann hypothesis. See A142995 for further details. The sequence of values P_n(k) for k = 0,1,2,3, ... produces the n-th row of A108625. (End)
This is the row reversed version of triangle A104684. - Wolfdieter Lang, Sep 12 2016
T(n, k) is also the number of (n-k)-dimensional faces of a convex n-dimensional Lipschitz polytope of real functions f defined on the set X = {1, 2, ..., n+1} which satisfy the condition f(n+1) = 0 (see Gordon and Petrov). - Stefano Spezia, Sep 25 2021
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial ((x+1)*(x+2)*(x+3)*...*(x+n) / n!)^2 in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 09 2022
Chapoton's observation above is correct: the precise expansion is ((x+1)*(x+2)*(x+3)*...*(x+n)/ n!)^2 = Sum_{k = 0..n} (-1)^k*T(n,n-k)*binomial(x+2*n-k, 2*n-k), as can be verified using the WZ algorithm. For example, n = 3 gives ((x+1)*(x+2)*(x+3)/3!)^2 = 20*binomial(x+6,6) - 30*binomial(x+5,5) + 12*binomial(x+4,4) - binomial(x+3,3). - Peter Bala, Jun 24 2023

Examples

			The triangle T(n, k) starts:
  n\k 0  1    2     3     4      5      6      7      8     9
  0:  1
  1:  1  2
  2:  1  6    6
  3:  1 12   30    20
  4:  1 20   90   140    70
  5:  1 30  210   560   630    252
  6:  1 42  420  1680  3150   2772    924
  7:  1 56  756  4200 11550  16632  12012   3432
  8:  1 72 1260  9240 34650  72072  84084  51480  12870
  9:  1 90 1980 18480 90090 252252 420420 411840 218790 48620
... reformatted by _Wolfdieter Lang_, Sep 12 2016
From _Petros Hadjicostas_, Jul 11 2020: (Start)
Its inverse (from Table II, p. 92, in Ser's book) is
   1;
  -1/2,  1/2;
   1/3, -1/2,    1/6;
  -1/4,  9/20,  -1/4,   1/20;
   1/5, -2/5,    2/7,  -1/10,  1/70;
  -1/6,  5/14, -25/84,  5/36, -1/28,  1/252;
   1/7, -9/28,  25/84, -1/6,   9/154, -1/84, 1/924;
   ... (End)
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 366.
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, Table I, p. 92.
  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

See A331430 for an essentially identical triangle, except with signed entries.
Columns include A000012, A002378, A033487 on the left and A000984, A002457, A002544 on the right.
Main diagonal is A006480.
Row sums are A001850. Alternating row sums are A033999.
Cf. A033282 (f-vectors type A associahedra), A108625, A080721 (f-vectors type D associahedra).
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Haskell
    a063007 n k = a063007_tabl !! n !! k
    a063007_row n = a063007_tabl !! n
    a063007_tabl = zipWith (zipWith (*)) a007318_tabl a046899_tabl
    -- Reinhard Zumkeller, Nov 18 2014
    
  • Magma
    /* As triangle: */ [[Binomial(n,k)*Binomial(n+k,k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 03 2015
  • Maple
    p := (n,x) -> orthopoly[P](n,1+2*x): seq(seq(coeff(p(n,x),x,k), k=0..n), n=0..9);
  • Mathematica
    Flatten[Table[Binomial[n, k]Binomial[n + k, k], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Dec 24 2011 *)
    Table[CoefficientList[Hypergeometric2F1[-n, n + 1, 1, -x], x], {n, 0, 9}] // Flatten
    (* Peter Luschny, Mar 09 2018 *)
  • PARI
    {T(n, k) = local(t); if( n<0, 0, t = (x + x^2)^n; for( k=1, n, t=t'); polcoeff(t, k) / n!)} /* Michael Somos, Dec 19 2002 */
    
  • PARI
    {T(n, k) = binomial(n, k) * binomial(n+k, k)} /* Michael Somos, Sep 22 2013 */
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, (n+k)! / (k!^2 * (n-k)!))} /* Michael Somos, Sep 22 2013 */
    

Formula

T(n, k) = (n+k)!/(k!^2*(n-k)!) = T(n-1, k)*(n+k)/(n-k) = T(n, k-1)*(n+k)*(n-k+1)/k^2 = T(n-1, k-1)*(n+k)*(n+k-1)/k^2.
binomial(x, n)^2 = Sum_{k>=0} T(n,k) * binomial(x, n+k). - Michael Somos, May 11 2012
T(n, k) = A109983(n, k+n). - Michael Somos, Sep 22 2013
G.f.: G(t, z) = 1/sqrt(1-2*z-4*t*z+z^2). Row generating polynomials = P_n(1+2z), i.e., T(n, k) = [z^k] P_n(1+2*z), where P_n are the Legendre polynomials. - Emeric Deutsch, Apr 20 2004
Sum_{k>=0} T(n, k)*A000172(k) = Sum_{k>=0} T(n, k)^2 = A005259(n). - Philippe Deléham, Jun 08 2005
1 + z*d/dz(log(G(t,z))) = 1 + (1 + 2*t)*z + (1 + 8*t + 8*t^2)*z^2 + ... is the o.g.f. for a signed version of A127674. - Peter Bala, Sep 02 2015
If R(n,t) denotes the n-th row polynomial then x^3 * exp( Sum_{n >= 1} R(n,t)*x^n/n ) = x^3 + (1 + 2*t)*x^4 + (1 + 5*t + 5*t^2)*x^5 + (1 + 9*t + 21*t^2 + 14*t^3)*x^6 + ... is an o.g.f for A033282. - Peter Bala, Oct 19 2015
P(n,x) := 1/(1 + x)*Integral_{t = 0..x} R(n,t) dt are (modulo differences of offset) the row polynomials of A033282. - Peter Bala, Jun 23 2016
From Peter Bala, Mar 09 2018: (Start)
R(n,x) = Sum_{k = 0..n} binomial(2*k,k)*binomial(n+k,n-k)*x^k.
R(n,x) = Sum_{k = 0..n} binomial(n,k)^2*x^k*(1 + x)^(n-k).
n*R(n,x) = (1 + 2*x)*(2*n - 1)*R(n-1,x) - (n - 1)*R(n-2,x).
R(n,x) = (-1)^n*R(n,-1 - x).
R(n,x) = 1/n! * (d/dx)^n ((x^2 + x)^n). (End)
The row polynomials are R(n,x) = hypergeom([-n, n + 1], [1], -x). - Peter Luschny, Mar 09 2018
T(n,k) = C(n+1,k)*A009766(n,k). - Bob Selcoe, Jan 18 2020 (Connects this triangle with the Catalan triangle. - N. J. A. Sloane, Jan 18 2020)
If we let A(n,k) = (-1)^(n+k)*(2*k+1)*(n*(n-1)*...*(n-(k-1)))/((n+1)*...*(n+(k+1))) for n >= 0 and k = 0..n, and we consider both T(n,k) and A(n,k) as infinite lower triangular arrays, then they are inverses of one another. (Empty products are by definition 1.) See the example below. The rational numbers |A(n,k)| appear in Table II on p. 92 in Ser's (1933) book. - Petros Hadjicostas, Jul 11 2020
From Peter Bala, Nov 28 2021: (Start)
Row polynomial R(n,x) = Sum_{k >= n} binomial(k,n)^2 * x^(k-n)/(1+x)^(k+1) for x > -1/2.
R(n,x) = 1/(1 + x)^(n+1) * hypergeom([n+1, n+1], [1], x/(1 + x)).
R(n,x) = (1 + x)^n * hypergeom([-n, -n], [1], x/(1 + x)).
R(n,x) = hypergeom([(n+1)/2, -n/2], [1], -4*x*(1 + x)).
If we set R(-1,x) = 1, we can run the recurrence n*R(n,x) = (1 + 2*x)*(2*n - 1)*R(n-1,x) - (n - 1)*R(n-2,x) backwards to give R(-n,x) = R(n-1,x).
R(n,x) = [t^n] ( (1 + t)*(1 + x*(1 + t)) )^n. (End)
n*T(n,k) = (2*n-1)*T(n-1,k) + (4*n-2)*T(n-1,k-1) - (n-1)*T(n-2,k). - Fabián Pereyra, Jun 30 2022
From Peter Bala, Oct 07 2024: (Start)
n-th row polynomial R(n,x) = Sum_{k = 0..n} binomial(n, k) * x^k o (1 + x)^(n-k), where o denotes the black diamond product of power series as defined by Dukes and White (see Bala, Section 4.4, exercise 3).
Denote this triangle by T. Then T * transpose(T) = A143007, the square array of crystal ball sequences for the A_n X A_n lattices.
Let S denote the triangle ((-1)^(n+k)*T(n, k))n,k >= 0, a signed version of this triangle. Then S^(-1) * T = A007318, Pascal's triangle; it appears that T * S^(-1) = A110098.
T = A007318 * A115951. (End)

A000179 Ménage numbers: a(0) = 1, a(1) = -1, and for n >= 2, a(n) = number of permutations s of [0, ..., n-1] such that s(i) != i and s(i) != i+1 (mod n) for all i.

Original entry on oeis.org

1, -1, 0, 1, 2, 13, 80, 579, 4738, 43387, 439792, 4890741, 59216642, 775596313, 10927434464, 164806435783, 2649391469058, 45226435601207, 817056406224416, 15574618910994665, 312400218671253762, 6577618644576902053, 145051250421230224304, 3343382818203784146955, 80399425364623070680706, 2013619745874493923699123
Offset: 0

Views

Author

Keywords

Comments

According to rook theory, John Riordan considered a(1) to be -1. - Vladimir Shevelev, Apr 02 2010
This is also the value that the formulas of Touchard and of Wyman and Moser give and is compatible with many recurrences. - William P. Orrick, Aug 31 2020
Or, for n >= 3, the number of 3 X n Latin rectangles the second row of which is full cycle with a fixed order of its elements, e.g., the cycle (x_2,x_3,...,x_n,x_1) with x_1 < x_2 < ... < x_n. - Vladimir Shevelev, Mar 22 2010
Muir (p. 112) gives essentially this recurrence (although without specifying any initial conditions). Compare A186638. - N. J. A. Sloane, Feb 24 2011
Sequence discovered by Touchard in 1934. - L. Edson Jeffery, Nov 13 2013
Although these are also known as Touchard numbers, the problem was formulated by Lucas in 1891, who gave the recurrence formula shown below. See Cerasoli et al., 1988. - Stanislav Sykora, Mar 14 2014
An equivalent problem was formulated by Tait; solutions to Tait's problem were given by Muir (1878) and Cayley (1878). - William P. Orrick, Aug 31 2020
From Vladimir Shevelev, Jun 25 2015: (Start)
According to the ménage problem, 2*n!*a(n) is the number of ways of seating n married couples at 2*n chairs around a circular table, men and women in alternate positions, so that no husband is next to his wife.
It is known [Riordan, ch. 7] that a(n) is the number of arrangements of n non-attacking rooks on the positions of the 1's in an n X n (0,1)-matrix A_n with 0's in positions (i,i), i = 1,...,n, (i,i+1), i = 1,...,n-1, and (n,1). This statement could be written as a(n) = per(A_n). For example, A_5 has the form
001*11
1*0011
11001* (1)
11*100
0111*0,
where 5 non-attacking rooks are denoted by {1*}.
We can indicate a one-to-one correspondence between arrangements of n non-attacking rooks on the 1's of a matrix A_n and arrangements of n married couples around a circular table by the rules of the ménage problem, after the ladies w_1, w_2, ..., w_n have taken the chairs numbered
2*n, 2, 4, ..., 2*n-2 (2)
respectively. Suppose we consider an arrangement of rooks: (1,j_1), (2,j_2), ..., (n,j_n). Then the men m_1, m_2, ..., m_n took chairs with numbers
2*j_i - 3 (mod 2*n), (3)
where the residues are chosen from the interval[1,2*n]. Indeed {j_i} is a permutation of 1,...,n. So {2*j_i-3}(mod 2*n) is a permutation of odd positive integers <= 2*n-1. Besides, the distance between m_i and w_i cannot be 1. Indeed, the equality |2*(j_i-i)-1| = 1 (mod 2*n) is possible if and only if either j_i=i or j_i=i+1 (mod n) that correspond to positions of 0's in matrix A_n.
For example, in the case of positions of {1*} in(1) we have j_1=3, j_2=1, j_3=5, j_4=2, j_5=4. So, by(2) and (3) the chairs 1,2,...,10 are taken by m_4, w_2, m_1, w_3, m_5, w_4, m_3, w_5, m_2, w_1, respectively. (End)
The first 20 terms of this sequence were calculated in 1891 by E. Lucas (see [Lucas, p. 495]). - Peter J. C. Moses, Jun 26 2015
From Ira M. Gessel, Nov 27 2018: (Start)
If we invert the formula
Sum_{ n>=0 } u_n z^n = ((1-z)/(1+z)) F(z/(1+z)^2)
that Don Knuth mentions (see link) (i.e., set x=z/(1+z)^2 and solve for z in terms of x), we get a formula for F(z) = Sum_{n >= 0} n! z^n as a sum with all positive coefficients of (almost) powers of the Catalan number generating function.
The exact formula is (5) of the Yiting Li article.
This article also gives a combinatorial proof of this formula (though it is not as simple as one might want). (End)

Examples

			a(2) = 0; nothing works. a(3) = 1; (201) works. a(4) = 2; (2301), (3012) work. a(5) = 13; (20413), (23401), (24013), (24103), (30412), (30421), (34012), (34021), (34102), (40123), (43012), (43021), (43102) work.
		

References

  • W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th Ed. Dover, p. 50.
  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Nicola Zanichelli Editore, Bologna 1988, Chapter 3, p. 78.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 185, mu(n).
  • Kaplansky, Irving and Riordan, John, The probleme des menages, Scripta Math. 12, (1946). 113-124. See u_n.
  • E. Lucas, Théorie des nombres, Paris, 1891, pp. 491-495.
  • P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 1, p 256.
  • T. Muir, A Treatise on the Theory of Determinants. Dover, NY, 1960, Sect. 132, p. 112. - N. J. A. Sloane, Feb 24 2011
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.
  • V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat. (J. of the Akademy of Sciences of Russia) 4(1992), 91-110. - Vladimir Shevelev, Mar 22 2010
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. M. Taylor, A problem on arrangements, Mess. Math., 32 (1902), 60ff.
  • J. Touchard, Permutations discordant with two given permutations, Scripta Math., 19 (1953), 108-119.
  • J. H. van Lint, Combinatorial Theory Seminar, Eindhoven University of Technology, Springer Lecture Notes in Mathematics, Vol. 382, 1974. See page 10.

Crossrefs

Diagonal of A058087. Also a diagonal of A008305.
A000179, A102761, and A335700 are all essentially the same sequence but with different conventions for the initial terms a(0) and a(1). - N. J. A. Sloane, Aug 06 2020

Programs

  • Haskell
    import Data.List (zipWith5)
    a000179 n = a000179_list !! n
    a000179_list = 1 : -1 : 0 : 1 : zipWith5
       (\v w x y z -> (x * y + (v + 2) * z - w) `div` v) [2..] (cycle [4,-4])
       (drop 4 a067998_list) (drop 3 a000179_list) (drop 2 a000179_list)
    -- Reinhard Zumkeller, Aug 26 2013
    
  • Maple
    A000179:= n ->add ((-1)^k*(2*n)*binomial(2*n-k,k)*(n-k)!/(2*n-k), k=0..n); # for n >= 1
    U:= proc(n) local k; add( (2*n/(2*n-k))*binomial(2*n-k,k)*(n-k)!*(x-1)^k, k=0..n); end; W := proc(r,s) coeff( U(r),x,s ); end; A000179 := n->W(n,0); # valid for n >= 1
  • Mathematica
    a[n_] := 2*n*Sum[(-1)^k*Binomial[2*n - k, k]*(n - k)!/(2*n - k), {k, 0, n}]; a[0] = 1; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 05 2012, from 2nd formula *)
  • PARI
    \\ 3 programs adapted to a(1) = -1 by Hugo Pfoertner, Aug 31 2020
    
  • PARI
    {a(n) = my(A); if( n, A = vector(n,i,i-2); for(k=4, n, A[k] = (k * (k - 2) * A[k-1] + k * A[k-2] - 4 * (-1)^k) / (k-2)); A[n], 1)};/* Michael Somos, Jan 22 2008 */
    
  • PARI
    a(n)=if(n>1, round(2*n*exp(-2)*besselk(n, 2)), 1-2*n) \\ Charles R Greathouse IV, Nov 03 2014
    
  • PARI
    {a(n) = my(A); if( n, A = vector(n,i,i-2); for(k=5, n, A[k] = k * A[k-1] + 2 * A[k-2] + (4-k) * A[k-3] - A[k-4]); A[n], 1)} /* Michael Somos, May 02 2018 */
    
  • Python
    from math import comb, factorial
    def A000179(n): return 1 if n == 0 else sum((-2*n if k & 1 else 2*n)*comb(m:=2*n-k,k)*factorial(n-k)//m for k in range(n+1)) # Chai Wah Wu, May 27 2022

Formula

a(n) = ((n^2-2*n)*a(n-1) + n*a(n-2) - 4*(-1)^n)/(n-2) for n >= 3.
a(n) = A059375(n)/(2*n!) for n >= 2.
a(n) = Sum_{k=0..n} (-1)^k*(2*n)*binomial(2*n-k, k)*(n-k)!/(2*n-k) for n >= 1. - Touchard (1934)
G.f.: ((1-x)/(1+x))*Sum_{n>=0} n!*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 26 2007
a(2^k+2) == 0 (mod 2^k); for k >= 2, a(2^k) == 2(mod 2^k). - Vladimir Shevelev, Jan 14 2011
a(n) = round( 2*n*exp(-2)*BesselK(n,2) ) for n > 1. - Mark van Hoeij, Oct 25 2011
a(n) ~ (n/e)^n * sqrt(2*Pi*n)/e^2. - Charles R Greathouse IV, Jan 21 2016
0 = a(n)*(-a(n+2) +a(n+4)) +a(n+1)*(+a(n+1) +a(n+2) -3*a(n+3) -5*a(n+4) +a(n+5)) +a(n+2)*(+2*a(n+2) +3*a(n+3) -3*a(n+4)) +a(n+3)*(+2*a(n+3) +a(n+4) -a(n+5)) +a(n+4)*(+a(n+4)), for all n>1. If a(-2..1) = (0, -1, 2, -1) then also true for those values of n. - Michael Somos, Apr 29 2018
D-finite with recurrence: 0 = a(n) +n*a(n+1) -2*a(n+2) +(-n-4)*a(n+3) +a(n+4), for all n in Z where a(n) = a(-n) for all n in Z and a(0) = 2, a(1) = -1. - Michael Somos, May 02 2018
a(n) = Sum_{k=0..n} A213234(n,k) * A000023(n-2*k) = Sum_{k=0..n} (-1)^k * n/(n-k) * binomial(n-k, k) * (n-2*k)! Sum_{j=0..n-2*k} (-2)^j/j! for n >= 1. [Wyman and Moser (1958)]. - William P. Orrick, Jun 25 2020
a(k+4*p) - 2*a(k+2*p) + a(k) is divisible by p, for any k > 0 and any prime p. - Mark van Hoeij, Jan 11 2022

Extensions

More terms from James Sellers, May 02 2000
Additional comments from David W. Wilson, Feb 18 2003
a(1) changed to -1 at the suggestion of Don Knuth. - N. J. A. Sloane, Nov 26 2018

A014551 Jacobsthal-Lucas numbers.

Original entry on oeis.org

2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911, 1073741825, 2147483647, 4294967297, 8589934591
Offset: 0

Views

Author

Keywords

Comments

Also gives the number of points of period n in the subshift of finite type corresponding to the square matrix A=[1,2;1,0] (this is then given by trace(A^n)). - Thomas Ward, Mar 07 2001
Sequence is identical to its signed inverse binomial transform (autosequence of the second kind). - Paul Curtz, Jul 11 2008
a(n) can be expressed in terms of values of the Fibonacci polynomials F_n(x), computed at x=1/sqrt(2). - Tewodros Amdeberhan (tewodros(AT)math.mit.edu), Dec 15 2008
Pisano period lengths: 1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4, 2, 8, 6, 18, 4, ... - R. J. Mathar, Aug 10 2012
Let F(x) = Product_{n >= 0} (1 - x^(3*n+1))/(1 - x^(3*n+2)). This sequence is the simple continued fraction expansion of the real number 1 + F(-1/2) = 2.83717 78068 73232 99799 ... = 2 + 1/(1 + 1/(5 + 1/(7 + 1/(17 + ...)))). See A111317. - Peter Bala, Dec 26 2012
With different signs, 2, -1, 5, -7, 17, -31, 65, -127, 257, -511, 1025, -2047, ... is the Lucas V(-1,-2) sequence. - R. J. Mathar, Jan 08 2013
The identity 2 = 2/2 + 2^2/(2*1) - 2^3/(2*1*5) - 2^4/(2*1*5*7) + 2^5/(2*1*5*7*17) + 2^6/(2*1*5*7*17*31) - - + + can be viewed as a generalized Engel-type expansion of the number 2 to the base 2. Compare with A062510. - Peter Bala, Nov 13 2013
For n >= 2, a(n) is the number of ways to tile a 2 X n strip, where the first two columns have an extra cell at the top, with 1 X 2 dominoes and 2 X 2 squares. Shown here is one of the a(7)=127 ways for the n=7 case:
._.
|_|_________.
| | | |_| |
||__|_|_|_|. - Greg Dresden, Sep 26 2021
Named by Horadam (1988) after the German mathematician Ernst Jacobsthal (1882-1965) and the French mathematician Édouard Lucas (1842-1891). - Amiram Eldar, Oct 02 2023

References

  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. pp. 180, 255.
  • Lind and Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995. (General material on subshifts of finite type)
  • Kritkhajohn Onphaeng and Prapanpong Pongsriiam. Jacobsthal and Jacobsthal-Lucas Numbers and Sums Introduced by Jacobsthal and Tverberg. Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.6.
  • Abdelmoumène Zekiri, Farid Bencherif, Rachid Boumahdi, Generalization of an Identity of Apostol, J. Int. Seq., Vol. 21 (2018), Article 18.5.1.

Crossrefs

Cf. A001045 (companion "autosequence"), A019322, A066845, A111317.
Cf. A135440 (first differences), A166920 (partial sums).
Cf. A006995.

Programs

Formula

a(n+1) = 2 * a(n) - (-1)^n * 3.
From Len Smiley, Dec 07 2001: (Start)
a(n) = 2^n + (-1)^n.
G.f.: (2-x)/(1-x-2*x^2). (End)
E.g.f.: exp(x) + exp(-2*x) produces a signed version. - Paul Barry, Apr 27 2003
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-1, 2*k)*3^(2*k)/2^(n-2). - Paul Barry, Feb 21 2003
0, 1, 5, 7 ... is 2^n - 2*0^n + (-1)^n, the 2nd inverse binomial transform of (2^n-1)^2 (A060867). - Paul Barry, Sep 05 2003
a(n) = 2*T(n, i/(2*sqrt(2))) * (-i*sqrt(2))^n with i^2=-1. - Paul Barry, Nov 17 2003
a(n) = A078008(n) + A001045(n+1). - Paul Barry, Feb 12 2004
a(n) = 2*A001045(n+1) - A001045(n). - Paul Barry, Mar 22 2004
a(0)=2, a(1)=1, a(n) = a(n-1) + 2*a(n-2) for n > 1. - Philippe Deléham, Nov 07 2006
a(2*n+1) = Product_{d|(2*n+1)} cyclotomic(d,2). a(2^k*(2*n+1)) = Product_{d|(2*n+1)} cyclotomic(2*d,2^(2^k)). - Miklos Kristof, Mar 12 2007
a(n) = 2^{(n-1)/2}F_{n-1}(1/sqrt(2)) + 2^{(n+2)/2}F_{n-2}(1/sqrt(2)). - Tewodros Amdeberhan (tewodros(AT)math.mit.edu), Dec 15 2008
E.g.f.: U(0) where U(k) = 1 + (-1)^k/(2^k - 4^k*x*2/(2*x*2^k + (-1)^k*(k+1)/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 02 2012
G.f.: U(0) where U(k) = 1 + (-1)^k/(2^k - 4^k*x*2/(2*x*2^k + (-1)^k/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 02 2012
a(n) = sqrt(9*(A001045)^2 + (-1)^n*2^(n+2)). - Vladimir Shevelev, Mar 13 2013
G.f.: 2 + G(0)*x*(1+4*x)/(2-x), where G(k) = 1 + 1/(1 - x*(9*k-1)/( x*(9*k+8) - 2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 13 2013
a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x + 9*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
For n >= 1: a(n) = A006995(2^((n+2)/2)) when n is even, a(n) = A006995(3*2^((n-1)/2) - 1) when n is odd. - Bob Selcoe, Sep 04 2017
a(n) = J(n) + 4*J(n-1), a(0)=2, where J is A001045. - Yuchun Ji, Apr 23 2019
For n >= 0, 1/(2*a(n+1)) = Sum_{m>=n} a(m)/(a(m+1)*a(m+2)). - Kai Wang, Mar 03 2020
For 4 > h >= 0, k >= 0, a(4*k+h) mod 5 = a(h) mod 5. - Kai Wang, May 06 2020
From Kai Wang, May 30 2020: (Start)
(2 - a(n+1)/a(n))/9 = Sum_{m>=n} (-2)^m/(a(m)*a(m+1)).
a(n) = 2*A001045(n+1) - A001045(n).
a(n)^2 = a(2*n) + 2*(-2)^n.
a(n)^2 = 9*A001045(n)^2 + 4*(-2)^n.
a(2*n) = 9*A001045(n)^2 + 2*(-2)^n.
2*A001045(m+n) = A001045(m)*a(n) + a(m)*A001045(n).
2*(-2)^n*A001045(m-n) = A001045(m)*a(n) - a(m)*A001045(n).
A001045(m+n) + (-2)^n*A001045(m-n) = A001045(m)*a(n).
A001045(m+n) - (-2)^n*A001045(m-n) = a(m)*A001045(n).
2*a(m+n) = 9*A001045(m)*A001045(n) + a(m)*a(n).
2*(-2)^n*a(m-n) = a(m)*a(n) - 9*A001045(m)*A001045(n).
a(m+n) - (-2)^n*a(m-n) = 9*A001045(m)*A001045(n).
a(m+n) + (-2)^n*a(m-n) = a(m)*a(n).
a(m+n)*a(m-n) - a(m)*a(m) = 9*(-2)^(m-n)*A001045(n)^2.
a(m+1)*a(n) - a(m)*a(n+1) = 9*(-2)^n*A001045(m-n). (End)
a(n) = F(n+1) + F(n-1) + Sum_{k=0..(n-2)} a(k)*F(n-1-k) for F(n) the Fibonacci numbers and for n > 1. - Greg Dresden, Jun 03 2020

A108299 Triangle read by rows, 0 <= k <= n: T(n,k) = binomial(n-[(k+1)/2],[k/2])*(-1)^[(k+1)/2].

Original entry on oeis.org

1, 1, -1, 1, -1, -1, 1, -1, -2, 1, 1, -1, -3, 2, 1, 1, -1, -4, 3, 3, -1, 1, -1, -5, 4, 6, -3, -1, 1, -1, -6, 5, 10, -6, -4, 1, 1, -1, -7, 6, 15, -10, -10, 4, 1, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1, 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1, 1, -1, -11, 10, 45, -36, -84, 56, 70
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 01 2005

Keywords

Comments

Matrix inverse of A124645.
Let L(n,x) = Sum_{k=0..n} T(n,k)*x^(n-k) and Pi=3.14...:
L(n,x) = Product_{k=1..n} (x - 2*cos((2*k-1)*Pi/(2*n+1)));
Sum_{k=0..n} T(n,k) = L(n,1) = A010892(n+1);
Sum_{k=0..n} abs(T(n,k)) = A000045(n+2);
abs(T(n,k)) = A065941(n,k), T(n,k) = A065941(n,k)*A087960(k);
T(2*n,k) + T(2*n+1,k+1) = 0 for 0 <= k <= 2*n;
T(n,0) = A000012(n) = 1; T(n,1) = -1 for n > 0;
T(n,2) = -(n-1) for n > 1; T(n,3) = A000027(n)=n for n > 2;
T(n,4) = A000217(n-3) for n > 3; T(n,5) = -A000217(n-4) for n > 4;
T(n,6) = -A000292(n-5) for n > 5; T(n,7) = A000292(n-6) for n > 6;
T(n,n-3) = A058187(n-3)*(-1)^floor(n/2) for n > 2;
T(n,n-2) = A008805(n-2)*(-1)^floor((n+1)/2) for n > 1;
T(n,n-1) = A008619(n-1)*(-1)^floor(n/2) for n > 0;
T(n,n) = L(n,0) = (-1)^floor((n+1)/2);
L(n,1) = A010892(n+1); L(n,-1) = A061347(n+2);
L(n,2) = 1; L(n,-2) = A005408(n)*(-1)^n;
L(n,3) = A001519(n); L(n,-3) = A002878(n)*(-1)^n;
L(n,4) = A001835(n+1); L(n,-4) = A001834(n)*(-1)^n;
L(n,5) = A004253(n); L(n,-5) = A030221(n)*(-1)^n;
L(n,6) = A001653(n); L(n,-6) = A002315(n)*(-1)^n;
L(n,7) = A049685(n); L(n,-7) = A033890(n)*(-1)^n;
L(n,8) = A070997(n); L(n,-8) = A057080(n)*(-1)^n;
L(n,9) = A070998(n); L(n,-9) = A057081(n)*(-1)^n;
L(n,10) = A072256(n+1); L(n,-10) = A054320(n)*(-1)^n;
L(n,11) = A078922(n+1); L(n,-11) = A097783(n)*(-1)^n;
L(n,12) = A077417(n); L(n,-12) = A077416(n)*(-1)^n;
L(n,13) = A085260(n);
L(n,14) = A001570(n); L(n,-14) = A028230(n)*(-1)^n;
L(n,n) = A108366(n); L(n,-n) = A108367(n).
Row n of the matrix inverse (A124645) has g.f.: x^floor(n/2)*(1-x)^(n-floor(n/2)). - Paul D. Hanna, Jun 12 2005
From L. Edson Jeffery, Mar 12 2011: (Start)
Conjecture: Let N=2*n+1, with n > 2. Then T(n,k) (0 <= k <= n) gives the k-th coefficient in the characteristic function p_N(x)=0, of degree n in x, for the n X n tridiagonal unit-primitive matrix G_N (see [Jeffery]) of the form
G_N=A_{N,1}=
(0 1 0 ... 0)
(1 0 1 0 ... 0)
(0 1 0 1 0 ... 0)
...
(0 ... 0 1 0 1)
(0 ... 0 1 1),
with solutions phi_j = 2*cos((2*j-1)*Pi/N), j=1,2,...,n. For example, for n=3,
G_7=A_{7,1}=
(0 1 0)
(1 0 1)
(0 1 1).
We have {T(3,k)}=(1,-1,-2,1), while the characteristic function of G_7 is p(x) = x^3-x^2-2*x+1 = 0, with solutions phi_j = 2*cos((2*j-1)*Pi/7), j=1,2,3. (End)
The triangle sums, see A180662 for their definitions, link A108299 with several sequences, see the crossrefs. - Johannes W. Meijer, Aug 08 2011
The roots to the polynomials are chaotic using iterates of the operation (x^2 - 2), with cycle lengths L and initial seeds returning to the same term or (-1)* the seed. Periodic cycle lengths L are shown in A003558 such that for the polynomial represented by row r, the cycle length L is A003558(r-1). The matrices corresponding to the rows as characteristic polynomials are likewise chaotic [cf. Kappraff et al., 2005] with the same cycle lengths but substituting 2*I for the "2" in (x^2 - 2), where I = the Identity matrix. For example, the roots to x^3 - x^2 - 2x + 1 = 0 are 1.801937..., -1.246979..., and 0.445041... With 1.801937... as the initial seed and using (x^2 - 2), we obtain the 3-period trajectory of 8.801937... -> 1.246979... -> -0.445041... (returning to -1.801937...). We note that A003558(2) = 3. The corresponding matrix M is: [0,1,0; 1,0,1; 0,1,1,]. Using seed M with (x^2 - 2*I), we obtain the 3-period with the cycle completed at (-1)*M. - Gary W. Adamson, Feb 07 2012

Examples

			Triangle begins:
  1;
  1,  -1;
  1,  -1,  -1;
  1,  -1,  -2,   1;
  1,  -1,  -3,   2,   1;
  1,  -1,  -4,   3,   3,  -1;
  1,  -1,  -5,   4,   6,  -3,  -1;
  1,  -1,  -6,   5,  10,  -6,  -4,   1;
  1,  -1,  -7,   6,  15, -10, -10,   4,   1;
  1,  -1,  -8,   7,  21, -15, -20,  10,   5,  -1;
  1,  -1,  -9,   8,  28, -21, -35,  20,  15,  -5,  -1;
  1,  -1, -10,   9,  36, -28, -56,  35,  35, -15,  -6,   1;
  ...
		

References

  • Friedrich L. Bauer, 'De Moivre und Lagrange: Cosinus eines rationalen Vielfachen von Pi', Informatik Spektrum 28 (Springer, 2005).
  • Jay Kappraff, S. Jablan, G. Adamson, & R. Sazdonovich: "Golden Fields, Generalized Fibonacci Sequences, & Chaotic Matrices"; FORMA, Vol 19, No 4, (2005).

Crossrefs

Cf. A049310, A039961, A124645 (matrix inverse).
Triangle sums (see the comments): A193884 (Kn11), A154955 (Kn21), A087960 (Kn22), A000007 (Kn3), A010892 (Fi1), A134668 (Fi2), A078031 (Ca2), A193669 (Gi1), A001519 (Gi3), A193885 (Ze1), A050935 (Ze3). - Johannes W. Meijer, Aug 08 2011
Cf. A003558.

Programs

  • Haskell
    a108299 n k = a108299_tabl !! n !! k
    a108299_row n = a108299_tabl !! n
    a108299_tabl = [1] : iterate (\row ->
       zipWith (+) (zipWith (*) ([0] ++ row) a033999_list)
                   (zipWith (*) (row ++ [0]) a059841_list)) [1,-1]
    -- Reinhard Zumkeller, May 06 2012
  • Maple
    A108299 := proc(n,k): binomial(n-floor((k+1)/2), floor(k/2))*(-1)^floor((k+1)/2) end: seq(seq(A108299 (n,k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
  • Mathematica
    t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 16 2013 *)
  • PARI
    {T(n,k)=polcoeff(polcoeff((1-x*y)/(1-x+x^2*y^2+x^2*O(x^n)),n,x)+y*O(y^k),k,y)} (Hanna)
    

Formula

T(n,k) = binomial(n-floor((k+1)/2),floor(k/2))*(-1)^floor((k+1)/2).
T(n+1, k) = if sign(T(n, k-1))=sign(T(n, k)) then T(n, k-1)+T(n, k) else -T(n, k-1) for 0 < k < n, T(n, 0) = 1, T(n, n) = (-1)^floor((n+1)/2).
G.f.: A(x, y) = (1 - x*y)/(1 - x + x^2*y^2). - Paul D. Hanna, Jun 12 2005
The generating polynomial (in z) of row n >= 0 is (u^(2*n+1) + v^(2*n+1))/(u + v), where u and v are defined by u^2 + v^2 = 1 and u*v = z. - Emeric Deutsch, Jun 16 2011
From Johannes W. Meijer, Aug 08 2011: (Start)
abs(T(n,k)) = A065941(n,k) = abs(A187660(n,n-k));
T(n,n-k) = A130777(n,k); abs(T(n,n-k)) = A046854(n,k) = abs(A066170(n,k)). (End)

Extensions

Corrected and edited by Philippe Deléham, Oct 20 2008

A020985 The Rudin-Shapiro or Golay-Rudin-Shapiro sequence (coefficients of the Shapiro polynomials).

Original entry on oeis.org

1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1
Offset: 0

Views

Author

Keywords

Comments

Other names are the Rudin-Shapiro or Golay-Rudin-Shapiro infinite word.
The Shapiro polynomials are defined by P_0 = Q_0 = 1; for n>=0, P_{n+1} = P_n + x^(2^n)*Q_n, Q_{n+1} = P_n - x^(2^n)*Q_n. Then P_n = Sum_{m=0..2^n-1} a(m)*x^m, where the a(m) (the present sequence) do not depend on n. - N. J. A. Sloane, Aug 12 2016
Related to paper-folding sequences - see the Mendès France and Tenenbaum article.
a(A022155(n)) = -1; a(A203463(n)) = 1. - Reinhard Zumkeller, Jan 02 2012
a(n) = 1 if and only if the numbers of 1's and runs of 1's in binary representation of n have the same parity: A010060(n) = A268411(n); otherwise, when A010060(n) = 1 - A268411(n), a(n) = -1. - Vladimir Shevelev, Feb 10 2016. Typo corrected and comment edited by Antti Karttunen, Jul 11 2017
A word that is uniform primitive morphic, but not pure morphic. - N. J. A. Sloane, Jul 14 2018
Named after the Austrian-American mathematician Walter Rudin (1921-2010), the mathematician Harold S. Shapiro (1928-2021) and the Swiss mathematician and physicist Marcel Jules Edouard Golay (1902-1989). - Amiram Eldar, Jun 13 2021

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 78 and many other pages.

Crossrefs

Cf. A022155, A005943 (factor complexity), A014081.
Cf. A020987 (0-1 version), A020986 (partial sums), A203531 (run lengths), A033999, A380667 (first differences).
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.

Programs

  • Haskell
    a020985 n = a020985_list !! n
    a020985_list = 1 : 1 : f (tail a020985_list) (-1) where
       f (x:xs) w = x : x*w : f xs (0 - w)
    -- Reinhard Zumkeller, Jan 02 2012
    
  • Maple
    A020985 := proc(n) option remember; if n = 0 then 1 elif n mod 2 = 0 then A020985(n/2) else (-1)^((n-1)/2 )*A020985( (n-1)/2 ); fi; end;
  • Mathematica
    a[0] = 1; a[1] = 1; a[n_?EvenQ] := a[n] = a[n/2]; a[n_?OddQ] := a[n] = (-1)^((n-1)/2)* a[(n-1)/2]; a /@ Range[0, 80] (* Jean-François Alcover, Jul 05 2011 *)
    a[n_] := 1 - 2 Mod[Length[FixedPointList[BitAnd[#, # - 1] &, BitAnd[n, Quotient[n, 2]]]], 2] (* Jan Mangaldan, Jul 23 2015 *)
    Array[RudinShapiro, 81, 0] (* JungHwan Min, Dec 22 2016 *)
  • PARI
    A020985(n)=(-1)^A014081(n)  \\ M. F. Hasler, Jun 06 2012
    
  • Python
    def a014081(n): return sum([((n>>i)&3==3) for i in range(len(bin(n)[2:]) - 1)])
    def a(n): return (-1)**a014081(n) # Indranil Ghosh, Jun 03 2017
    
  • Python
    def A020985(n): return -1 if (n&(n>>1)).bit_count()&1 else 1 # Chai Wah Wu, Feb 11 2023

Formula

a(0) = a(1) = 1; thereafter, a(2n) = a(n), a(2n+1) = a(n) * (-1)^n. [Brillhart and Carlitz, in proof of theorem 4]
a(0) = a(1) = 1, a(2n) = a(n), a(2n+1) = a(n)*(1-2*(n AND 1)), where AND is the bitwise AND operator. - Alex Ratushnyak, May 13 2012
Brillhart and Morton (1978) list many properties.
a(n) = (-1)^A014081(n) = (-1)^A020987(n) = 1-2*A020987(n). - M. F. Hasler, Jun 06 2012
Sum_{n >= 1} a(n-1)*(8*n^2+4*n+1)/(2*n*(2*n+1)*(4*n+1)) = 1; see Allouche and Sondow, 2015. - Jean-Paul Allouche and Jonathan Sondow, Mar 21 2015

A191898 Symmetric square array read by antidiagonals: T(n,1)=1, T(1,k)=1, T(n,k) = -Sum_{i=1..k-1} T(n-i,k) for n >= k, -Sum_{i=1..n-1} T(k-i,n) for n < k.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -2, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -2, 1, 1, -2, 1, 1, 1, -1, 1, -1, -4, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -6, -1, 1, -1, 1, -1, 1
Offset: 1

Views

Author

Mats Granvik, Jun 19 2011

Keywords

Comments

Rows equal columns and are periodic. No zero elements are found (conjecture). The recurrence is related to the recurrence for the Mahonian numbers. The main diagonal is the Dirichlet inverse of the Euler totient function A023900 (conjecture). [The 2nd and 3rd formulas state that the conjecture is correct. R. J. Mathar, Sep 16 2017]
The sums from n=1 to infinity of T(n,k)/n converge to the Mangoldt function for column k (conjecture).
If gcd(n,k)=1 then T(n,k)=1 and if T(n,k)=1 then gcd(n,k)=1 (conjecture).
The Dirichlet generating functions for s > 1 for the columns appear to be (see A054535):
Zeta(s)*(1 + (Sum over all possible combinations of products of negative distinct prime factors of k, up to rearrangement, 1/((-1* first distinct prime factor)*(-1*second distinct prime factor)*(-1*third distinct prime factor * ...))^(s-1))).
Examples:
k=1: Zeta(s)
k=2: Zeta(s)*(1 - 1/2^(s-1))
k=3: Zeta(s)*(1 - 1/3^(s-1))
k=4: Zeta(s)*(1 - 1/2^(s-1))
k=5: Zeta(s)*(1 - 1/5^(s-1))
k=6: Zeta(s)*(1 - 1/2^(s-1) - 1/3^(s-1) + 1/6^(s-1))
k=7: Zeta(s)*(1 - 1/7^(s-1))
...
k=30: Zeta(s)*(1 - 1/2^(s-1) - 1/3^(s-1) - 1/5^(s-1) + 1/6^(s-1) + 1/10^(s-1) + 1/15^(s-1) - 1/30^(s-1))
...
(conjecture)
See triangle A142971 for negative distinct prime factors.
This could probably be checked by matrix multiplication.
The signs of the eigenvalues of this matrix are a rearrangement of the Mobius function A008683 (conjecture). The first few eigenvalues are:
{1.0000}
{-1.4142, 1.4142}
{-2.6554, 1.8662, -1.2108}
{-3.4393, 2.1004, -1.6611, 0}
{-4.7711, -3.3867, 2.5910, -1.4332, 0}
{-5.2439, -3.4641, 3.4641, 2.5169, -2.2730, 0}
The relation to Dirichlet characters for the entries in this matrix appears appears to be formulated in terms of the sequence A089026 which is equal to n if n is a prime, otherwise equal to 1. See Mathematica program below. [Mats Granvik, Nov 23 2013]
From Mats Granvik, Jun 19 2016: (Start)
Remark about the Dirichlet generating function for the whole matrix: Subtracting the first column (in the form of zeta(c)) of the matrix gives us the limit: lim_{c->1} zeta(s)*zeta(c)/zeta(c+s-1)-zeta(c) = -zeta'(s)/zeta(s) which is the classical Dirichlet generating function for the von Mangoldt function.
For n >= k, see A231425, this matrix has row sums equal to zero except for the first row:
1=1
1-1=0
1+1-2=0
1-1+1-1=0
1+1+1+1-4=0
...
log(A014963(n)) = Sum_{k>=1} A191898(n,k)/k, for n>1.
log(A014963(k)) = Sum_{n>=1} A191898(n,k)/n, for k>1.
log(A014963(n)) = limit of zeta(s)*(Sum_{d divides n} A008683(d)/d^(s-1)) as s->1, for n>1.
A008683(n) = Sum_{k=1..n} A191898(n,k)*exp(-i*2*Pi*k/n)/n.
A008683(n) = Sum_{n=1..k} A191898(n,k)*exp(-i*2*Pi*n/k)/k.
(End)
From Mats Granvik, Aug 09 2016: (Start)
The Dirichlet generating function for the matrix is zero for any pair c and s = 2 - c and any pair s and c = 2 - s except at the pole c = 1 and s = 1 where it is indeterminate.
In the Mathematica program section, in the expression for the matrix as Dirichlets characters, the variables s and c can apparently be any pair of positive integers.
Limits related to the Dirichlet generating function for the matrix: Let s = ZetaZero(n), then lim_{c->1} zeta(s*c)/zeta(c+s-1) = ZetaZero(n). Let s = ZetaZero(n), then lim_{c->1} zeta(s*c)/zeta(c+s*c-1) = ZetaZero(n)/(1+ZetaZero(n)).
(End)

Examples

			Array starts:
n\k | 1    2    3    4    5    6    7    8    9   10
----+-----------------------------------------------------
1   | 1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
2   | 1,  -1,   1,  -1,   1,  -1,   1,  -1,   1,  -1, ...
3   | 1,   1,  -2,   1,   1,  -2,   1,   1,  -2,   1, ...
4   | 1,  -1,   1,  -1,   1,  -1,   1,  -1,   1,  -1, ...
5   | 1,   1,   1,   1,  -4,   1,   1,   1,   1,  -4, ...
6   | 1,  -1,  -2,  -1,   1,   2,   1,  -1,  -2,  -1, ...
7   | 1,   1,   1,   1,   1,   1,  -6,   1,   1,   1, ...
8   | 1,  -1,   1,  -1,   1,  -1,   1,  -1,   1,  -1, ...
9   | 1,   1,  -2,   1,   1,  -2,   1,   1,  -2,   1, ...
10  | 1,  -1,   1,  -1,  -4,  -1,   1,  -1,   1,   4, ...
		

Crossrefs

Programs

  • Mathematica
    T[ n_, k_] := T[ n, k] = Which[ n < 1 || k < 1, 0, n == 1 || k == 1, 1, k > n, T[k, n], n > k,T[k, Mod[n, k, 1]], True, -Sum[ T[n, i], {i, n - 1}]]; (* Michael Somos, Jul 18 2011 *)
    (* Conjectured expression for the matrix as Dirichlet characters *) s = RandomInteger[{1, 3}]; c = RandomInteger[{1, 3}]; nn = 12; b = Table[Exp[MangoldtLambda[Divisors[n]]]^-MoebiusMu[Divisors[n]], {n, 1, nn^Max[s, c]}]; j = 1; MatrixForm[Table[Table[Product[(b[[n^s]][[m]]*DirichletCharacter[b[[n^s]][[m]], j, k^c] - (b[[n^s]][[m]] - 1)), {m, 1, Length[Divisors[n]]}], {n, 1, nn}], {k, 1, nn}]] (* Mats Granvik, Nov 23 2013 and Aug 09 2016 *)
  • PARI
    {T(n, k) = if( n<1 || k<1, 0, n==1 || k==1, 1, k>n, T(k, n), kMichael Somos, Jul 18 2011 */
    
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def T(n, k): return 0 if n<1 or k<1 else 1 if n==1 or k==1 else T(k, n) if k>n else T(k, (n - 1)%k + 1) if n>k else -sum([T(n, i) for i in range(1, n)])
    for n in range(1, 21): print([T(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Oct 23 2017

Formula

T(n,1)=1, T(1,k)=1, n>=k: -Sum_{i=1..k-1} T(n-i,k), n
T(n, n) = A023900(n). - Michael Somos, Jul 18 2011
T(n, k) = A023900(gcd(n,k)). - Mats Granvik, Jun 18 2012
Dirichlet generating function for sequence in the n-th row: zeta(s)*Sum_{ d divides n } mu(d)/d^(s-1). - Mats Granvik, Jun 18 2012 & Jun 19 2016
From Mats Granvik, Jun 19 2016: (Start)
Dirichlet generating function for the whole matrix: Sum_{k>=1} (Sum_{n>=1} T(n,k)/(n^c*k^s)) = Sum_{n>=1} (zeta(s)*Sum_{ d divides n } mu(d)/d^(s-1))/n^c = zeta(s)*zeta(c)/zeta( c + s - 1 ).
T(n,k) = A127093(n,k)^(1/2-i*a(k))*transpose(A008683(k)*(A127093(n,k)^(1/2+i*a(n)))) where a(x) is some real number. An example would be T(n,k) = A127093(n,k)^(zetazero(k))*transpose(A008683(k)*(A127093(n,k)^(zetazero(-k)))) but this is of course not special for only the zeta zeros.
Recurrence for a subset of A191898 that is a cross-directional variant of the recurrence in A051731: T(1,1)=1, T(1,2..k)=0, T(2..n,1)=0, n >= k: -Sum_{i=1..k-1} T(n-i,k) - T(n-i,k-1), n < k: -Sum_{i=1..n-1} T(k-i,n) - T(k-i,n-1). Notice that the identity matrix in linear algebra satisfies a similar recurrence:
T(1,1)=1, T(1,2..k)=0, T(2..n,1)=0, n >= k: -Sum_{i=1..n-1} T(n-i,k) - T(n-i,k-1), n < k: -Sum_{i=1..k-1} T(k-i,n) - T(k-i,n-1).
(End)
This array equals A051731*transpose(A143256). - Mats Granvik, Jul 22 2016
T(n,k) = sqrt(A143256(n,k))*transpose(sqrt(A143256(n,k))). - Mats Granvik, Aug 10 2018
Dirichlet generating function for absolute values: Sum_{k>=1} (Sum_{n>=1} abs(T(n,k))/(n^c*k^s)) = zeta(s)*zeta(c)*zeta(s + c - 1)/zeta(2*(s + c - 1))*Product_{k>=1} (1 - 2/(prime(k) + prime(k)^(s + c))). After Vaclav Kotesovec in A173557. - Mats Granvik, Apr 25 2021

A071321 Alternating sum of all prime factors of n; primes nondecreasing, starting with the least prime factor: A020639(n).

Original entry on oeis.org

0, 2, 3, 0, 5, -1, 7, 2, 0, -3, 11, 3, 13, -5, -2, 0, 17, 2, 19, 5, -4, -9, 23, -1, 0, -11, 3, 7, 29, 4, 31, 2, -8, -15, -2, 0, 37, -17, -10, -3, 41, 6, 43, 11, 5, -21, 47, 3, 0, 2, -14, 13, 53, -1, -6, -5, -16, -27, 59, -2, 61, -29, 7, 0, -8
Offset: 1

Author

Reinhard Zumkeller, May 18 2002

Keywords

Comments

a(n) = 0 iff n square, a(A000290(n)) = 0;
a(n) <= 0 iff A001222(n) is even;
a(n) = n iff n prime, a(A000040(n)) = A000040(n).
a(2n) = -a(n) + 2. - Ralf Stephan

Examples

			72 = 2*2*2*3*3, therefore a(72) = 2 - 2 + 2 - 3 + 3 = 2;
90 = 2*3*3*5, therefore a(90) = 2 - 3 + 3 - 5 = -3.
		

Crossrefs

Programs

  • Haskell
    a071321 1 = 0
    a071321 n = sum $ zipWith (*) a033999_list $ a027746_row n
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Mathematica
    Join[{0},Table[Total[Times@@@Partition[Riffle[Flatten[Table[#[[1]],{#[[2]]}]&/@ FactorInteger[n]],{1,-1},{2,-1,2}],2]],{n,2,100}]] (* Harvey P. Dale, Sep 23 2015 *)
  • Python
    from sympy import factorint
    def A071321(n):
        fs = factorint(n,multiple=True)
        return sum(fs[::2])-sum(fs[1::2]) # Chai Wah Wu, Aug 23 2021

Formula

a(n) = -A071322(n)*A008836(n). - Franklin T. Adams-Watters, Oct 18 2006

A122803 Powers of -2: a(n) = (-2)^n.

Original entry on oeis.org

1, -2, 4, -8, 16, -32, 64, -128, 256, -512, 1024, -2048, 4096, -8192, 16384, -32768, 65536, -131072, 262144, -524288, 1048576, -2097152, 4194304, -8388608, 16777216, -33554432, 67108864, -134217728, 268435456, -536870912, 1073741824, -2147483648, 4294967296, -8589934592, 17179869184
Offset: 0

Author

Keywords

Comments

The number -2 can be used as a base of numeration (see the Weisstein link). - Alonso del Arte, Mar 30 2014
Contribution from M. F. Hasler, Oct 21 2014: (Start)
This is the inverse binomial transform of A033999 = n->(-1)^n, and the binomial transform of A033999*A000244 = n->(-3)^n, see also A141413.
Prefixed with one 0, i.e., (0,1,-2,4,...) = -A033999*A131577, it is the binomial transform of (0, 1, -4, 13, -40, 121,...) = -A033999*A003462, and inverse binomial transform of (0,1,0,1,0,1,...) = A000035.
Prefixed with two 0's, i.e., (0,0,1,-2,4,-8,...), it is the binomial transform of (0,0,1,-5,18,-58,179,-543,...) (cf. A000340) and inverse binomial transform of (0,0,1,1,2,2,3,3,...) = A004526. (End)
Prefixed with three 0's, this is the inverse binomial difference of (0, 0, 0, 1, 2, 4, 6, 9, 12, 16,...) = concat(0, A002620), which has as successive differences (0, 0, 1, 1, 2, 2,...) = A004526, then (0, 1, 0, 1,...) = A000035, then (1, -1, 1, -1,...) = A033999, and then (-2)^k*A033999 with k=1,2,3,... - Paul Curtz, Oct 16 2014, edited by M. F. Hasler, Oct 21 2014
Stirling-Bernoulli transform of triangular numbers: 1, 3, 6, 10, 15, 21, 28, ... - Philippe Deléham, May 25 2015

Crossrefs

Programs

Formula

a(n) = (-2)^n = (-1)^n * 2^n.
a(n) = -2*a(n-1), n > 0; a(0) = 1. G.f.: 1/(1+2x). - Philippe Deléham, Nov 19 2008
Sum_{n >= 0} 1/a(n) = 2/3. - Jaume Oliver Lafont, Mar 01 2009
E.g.f.: 1/exp(2*x). - Arkadiusz Wesolowski, Aug 13 2012
a(n) = Sum_{k = 0..n} (-2)^(n-k)*binomial(n, k)*A030195(n+1). - R. J. Mathar, Oct 15 2012
G.f.: 1/(1+2x). A122803 = A033999 * A000079. - M. F. Hasler, Oct 21 2014
a(n) = Sum_{k = 0..n} A163626(n,k)*A000217(k+1). - Philippe Deléham, May 25 2015
Previous Showing 21-30 of 155 results. Next