A087399 Duplicate of A085692.
25, 121, 5041
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = 3*x + 8*x^2 + 15*x^3 + 24*x^4 + 35*x^5 + 48*x^6 + 63*x^7 + 80*x^8 + ...
a005563 n = n * (n + 2) a005563_list = zipWith (*) [0..] [2..] -- Reinhard Zumkeller, Dec 16 2012
[n*(n+2): n in [0..60]]; // G. C. Greubel, Mar 29 2024
Table[n^2 - 1, {n, 42}] (* Zerinvary Lajos, Mar 21 2007 *) ListCorrelate[{1, 2}, Range[-1, 50], {1, -1}, 0, Plus, Times] (* Harvey P. Dale, Aug 29 2015 *) Range[20]^2 - 1 (* Eric W. Weisstein, Aug 16 2017 *) Table[n (n + 2), {n, 20}] (* Eric W. Weisstein, Nov 21 2024 *) CoefficientList[Series[(-3 + x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 21 2024 *) LinearRecurrence[{3, -3, 1}, {3, 8, 15}, 20] (* Eric W. Weisstein, Nov 21 2024 *)
makelist(n*(n+2), n, 0, 56); /* Martin Ettl, Oct 15 2012 */
a(n)=n*(n+2) \\ Charles R Greathouse IV, Dec 22 2011
concat(0, Vec(x*(3-x)/(1-x)^3 + O(x^90))) \\ Altug Alkan, Oct 22 2015
[n*(n+2) for n in range(61)] # G. C. Greubel, Mar 29 2024
7! + 1 = 5041 = 71^2, hence 7 is in the sequence. - _Klaus Brockhaus_, Nov 05 2008
[: n in [1..8047] | t where t,p:=IsSquare(Factorial(n)+1) ]; // Klaus Brockhaus, Nov 05 2008
Select[Range[10],IntegerQ[Sqrt[#!+1]]&] (* Harvey P. Dale, Jan 31 2015 *)
{ for (n=1, 60100, if(issquare(n!+1) == 1, print(n) ) ) } \\ Marco Bellaccini (marcomurk(AT)tele2.it), Nov 08 2008
#!/bin/sh n=0 while(true) do n=`echo $n + 1 | bc` calc "($n! + 1)" ^ "(1 / 2)" | grep -v \. done
5041 = 71^2 = 1! + 7!.
/* To compile: gcc -Wall -O2 A227644.c -o A227644 -lgmp */ #include#include #include int main() { int bsz=256, a=0; mpz_t *f, t; f = malloc(sizeof(mpz_t) * bsz); mpz_init(t); mpz_init(f[0]); mpz_set_ui(f[0], 1); while (1) { a += 1; if (a == bsz) { bsz *= 2; f = (mpz_t *) realloc(f, sizeof(mpz_t) * bsz); } mpz_init(f[a]); mpz_mul_ui(f[a], f[a-1], a); for (int i=1; i<=a; i++) { mpz_add(t, f[a], f[i]); if (mpz_perfect_power_p(t)) { gmp_printf("%Zd, ", t); fflush(stdout); } } } return 0; }
4 is in the sequence because 4! + 1 = 5^2. 5 is in the sequence because 5! + 1 = 11^2. 6 is not in the sequence because 6! + 1 = 721 7 is in the sequence because 7! + 1 = 71^2. 12 is in the sequence because 12! + 1 = 13^2 * 2834329. 23 is a term because 23!+1 = 47^2*79*148139754736864591. From _Thomas Richard_, Aug 31 2021: (Start) 229 and 562 are terms because 229!+1 = 613^2 * 38669 * 1685231 * 3011917759 * (417-digit composite) 562!+1 = 563^2 * 64467346976659839517037 * 112870688711507255213769871 * 63753966393108716329397432599379239 * (1214-digit prime). (End)
remove(t -> numtheory:-issqrfree(t!+1), [$1..50]); # Robert Israel, Jul 04 2016
Flatten[Position[MoebiusMu[Range[30]!+1], 0]]; (* T. D. Noe, Mar 01 2006, Nov 21 2008 *)
lista(nn) = for(n=1, nn, if(!issquarefree(n!+1), print1(n, ", "))); \\ Altug Alkan, Mar 08 2016
Sqrt[#!+1]&/@Select[Range[1000],IntegerQ[Sqrt[#!+1]]&] (* Harvey P. Dale, Sep 29 2012 *)
apply( sqrtint, A085692) \\ M. F. Hasler, Nov 20 2018
select( is_A216071(m)=m^2==A084558(m^2)!+1, [0..99]) \\ M. F. Hasler, Nov 20 2018
6!+1=7*103; 8!+1=61*661; 10!+1=11*329891; 13!+1=83*75024347; 14!+1=23*3790360487; 19!+1=71*1713311273363831;..
fQ[n_]:=Last/@FactorInteger[n]=={1,1}; Select[Range[40], fQ[#!+1]&]
\ Farey sequence of order n fareyct(n) = { forprime(x=2,n, y = farey(x); \ print1(y","); ) } farey(n) = { c=0; m=n*(n-2)+2; a=vector(m); forprime(x=1,n, forprime(y=x,n, v = x/y; if(v<1, c++; a[c]=v; ) ) ); a = vecsort(a); c=0; for(x=2,m, if(a[x]<>a[x-1] & a[x]<>0, print1(numerator(a[x])","); c++; ) ); return(c) }
Table[Length@Select[Sqrt[Range[11]!+n], IntegerQ[#] &], {n, 1, 200}]
Select[Range[0,100], !IntegerQ[Sqrt[#!+1]] &] (* Amiram Eldar, Nov 21 2018 *)
select( is(n)=!issquare(n!+1), [0..99]) \\ M. F. Hasler, Nov 20 2018
Comments
= S(S+1) = n(n+2)/4, i.e., one quarter of a(n) with n = 2S. This plays an important role in the theory of magnetism and magnetic resonance. - Stanislav Sykora, May 26 2012