cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 143 results. Next

A048993 Triangle of Stirling numbers of 2nd kind, S(n,k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 1, 31, 90, 65, 15, 1, 0, 1, 63, 301, 350, 140, 21, 1, 0, 1, 127, 966, 1701, 1050, 266, 28, 1, 0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1, 0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Also known as Stirling set numbers.
S(n,k) enumerates partitions of an n-set into k nonempty subsets.
The o.g.f. for the sequence of diagonal k (k=0 for the main diagonal) is G(k,x) = ((x^k)/(1-x)^(2*k+1))*Sum_{m=0..k-1} A008517(k,m+1)*x^m. A008517 is the second-order Eulerian triangle. - Wolfdieter Lang, Oct 14 2005
From Philippe Deléham, Nov 14 2007: (Start)
Sum_{k=0..n} S(n,k)*x^k = B_n(x), where B_n(x) = Bell polynomials.
The first few Bell polynomials are:
B_0(x) = 1;
B_1(x) = 0 + x;
B_2(x) = 0 + x + x^2;
B_3(x) = 0 + x + 3x^2 + x^3;
B_4(x) = 0 + x + 7x^2 + 6x^3 + x^4;
B_5(x) = 0 + x + 15x^2 + 25x^3 + 10x^4 + x^5;
B_6(x) = 0 + x + 31x^2 + 90x^3 + 65x^4 + 15x^5 + x^6;
(End)
This is the Sheffer triangle (1, exp(x) - 1), an exponential (binomial) convolution triangle. The a-sequence is given by A006232/A006233 (Cauchy sequence). The z-sequence is the zero sequence. See the link under A006232 for the definition and use of these sequences. The row sums give A000110 (Bell), and the alternating row sums give A000587 (see the Philippe Deléham formulas and crossreferences below). - Wolfdieter Lang, Oct 16 2014
Also the inverse Bell transform of the factorial numbers (A000142). For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015
From Wolfdieter Lang, Feb 21 2017: (Start)
The transposed (trans) of this lower triagonal Sheffer matrix of the associated type S = (1, exp(x) - 1) (taken as N X N matrix for arbitrarily large N) provides the transition matrix from the basis {x^n/n!}, n >= 0, to the basis {y^n/n!}, n >= 0, with y^n/n! = Sum_{m>=n} S^{trans}(n, m) x^m/m! = Sum_{m>=0} x^m/m!*S(m, n).
The Sheffer transform with S = (g, f) of a sequence {a_n} to {b_n} for n >= 0, in matrix notation vec(b) = S vec(a), satisfies, with e.g.f.s A and B, B(x) = g(x)*A(f(x)) and B(x) = A(y(x)) identically, with vec(xhat) = S^{trans,-1} vec(yhat) in symbolic notation with vec(xhat)_n = x^n/n! (similarly for vec(yhat)).
(End)
Number of partitions of {1, 2, ..., n+1} into k+1 nonempty subsets such that no subset contains two adjacent numbers. - Thomas Anton, Sep 26 2022

Examples

			The triangle S(n,k) begins:
  n\k 0 1    2     3      4       5       6      7      8     9   10 11 12
  0:  1
  1:  0 1
  2:  0 1    1
  3:  0 1    3     1
  4:  0 1    7     6      1
  5:  0 1   15    25     10       1
  6:  0 1   31    90     65      15       1
  7:  0 1   63   301    350     140      21      1
  8:  0 1  127   966   1701    1050     266     28      1
  9:  0 1  255  3025   7770    6951    2646    462     36     1
 10:  0 1  511  9330  34105   42525   22827   5880    750    45    1
 11:  0 1 1023 28501 145750  246730  179487  63987  11880  1155   55  1
 12:  0 1 2047 86526 611501 1379400 1323652 627396 159027 22275 1705 66  1
 ... reformatted and extended - _Wolfdieter Lang_, Oct 16 2014
Completely symmetric function S(4, 2) = h^{(2)}_2 = 1^2 + 2^2 + 1^1*2^1 = 7; S(5, 2) = h^{(2)}_3 = 1^3 + 2^3 + 1^2*2^1 + 1^1*2^2 = 15. - _Wolfdieter Lang_, May 26 2017
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence: S(5, 3) = S(4, 2) + 2*S(4, 3) = 7 + 3*6 = 25.
Boas-Buck recurrence for column m = 3, and n = 5: S(5, 3) = (3/2)*((5/2)*S(4, 3) + 10*Bernoulli(2)*S(3, 3)) = (3/2)*(15 + 10*(1/6)*1) = 25. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 310.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Springer, p. 92.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 244.
  • J. Riordan, An Introduction to Combinatorial Analysis, p. 48.

Crossrefs

See especially A008277 which is the main entry for this triangle.
A000110(n) = sum(S(n, k)) k=0..n, n >= 0. Cf. A085693.
Cf. A084938, A106800 (mirror image), A138378, A213061 (mod 2).

Programs

  • Haskell
    a048993 n k = a048993_tabl !! n !! k
    a048993_row n = a048993_tabl !! n
    a048993_tabl = iterate (\row ->
       [0] ++ (zipWith (+) row $ zipWith (*) [1..] $ tail row) ++ [1]) [1]
    -- Reinhard Zumkeller, Mar 26 2012
  • Maple
    for n from 0 to 10 do seq(Stirling2(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, Nov 01 2006
  • Mathematica
    t[n_, k_] := StirlingS2[n, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v *)
  • Maxima
    create_list(stirling2(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    for(n=0, 22, for(k=0, n, print1(stirling(n, k, 2), ", ")); print()); \\ Joerg Arndt, Apr 21 2013
    

Formula

S(n, k) = k*S(n-1, k) + S(n-1, k-1), n > 0; S(0, k) = 0, k > 0; S(0, 0) = 1.
Equals [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is Deléham's operator defined in A084938.
Sum_{k = 0..n} x^k*S(n, k) = A213170(n), A000587(n), A000007(n), A000110(n), A001861(n), A027710(n), A078944(n), A144180(n), A144223(n), A144263(n) respectively for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7. - Philippe Deléham, May 09 2004, Feb 16 2013
S(n, k) = Sum_{i=0..k} (-1)^(k+i)binomial(k, i)i^n/k!. - Paul Barry, Aug 05 2004
Sum_{k=0..n} k*S(n,k) = B(n+1)-B(n), where B(q) are the Bell numbers (A000110). - Emeric Deutsch, Nov 01 2006
Equals the inverse binomial transform of A008277. - Gary W. Adamson, Jan 29 2008
G.f.: 1/(1-xy/(1-x/(1-xy/(1-2x/(1-xy/1-3x/(1-xy/(1-4x/(1-xy/(1-5x/(1-... (continued fraction equivalent to Deléham DELTA construction). - Paul Barry, Dec 06 2009
G.f.: 1/Q(0), where Q(k) = 1 - (y+k)*x - (k+1)*y*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
Inverse of padded A008275 (padded just as A048993 = padded A008277). - Tom Copeland, Apr 25 2014
E.g.f. for the row polynomials s(n,x) = Sum_{k=0..n} S(n,k)*x^k is exp(x*(exp(z)-1)) (Sheffer property). E.g.f. for the k-th column sequence with k leading zeros is ((exp(x)-1)^k)/k! (Sheffer property). - Wolfdieter Lang, Oct 16 2014
G.f. for column k: x^k/Product_{j=1..k} (1-j*x), k >= 0 (with the empty product for k = 0 put to 1). See Abramowitz-Stegun, p. 824, 24.1.4 B. - Wolfdieter Lang, May 26 2017
Boas-Buck recurrence for column sequence m: S(n, k) = (k/(n - k))*(n*S(n-1, k)/2 + Sum_{p=k..n-2} (-1)^(n-p)*binomial(n,p)*Bernoulli(n-p)*S(p, k)), for n > k >= 0, with input T(k,k) = 1. See a comment and references in A282629. An example is given below. - Wolfdieter Lang, Aug 11 2017
The n-th row polynomial has the form x o x o ... o x (n factors), where o denotes the white diamond multiplication operator defined in Bala - see Example E4. - Peter Bala, Jan 07 2018
Sum_{k=1..n} k*S(n,k) = A138378(n). - Alois P. Heinz, Jan 07 2022
S(n,k) = Sum_{j=k..n} (-1)^(j-k)*A059297(n,j)*A354794(j,k). - Mélika Tebni, Jan 27 2023

A057077 Periodic sequence 1,1,-1,-1; expansion of (1+x)/(1+x^2).

Original entry on oeis.org

1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2000

Keywords

Comments

Abscissa of the image produced after n alternating reflections of (1,1) over the x and y axes respectively. Similarly, the ordinate of the image produced after n alternating reflections of (1,1) over the y and x axes respectively. - Wesley Ivan Hurt, Jul 06 2013

Crossrefs

Programs

Formula

G.f.: (1+x)/(1+x^2).
a(n) = S(n, 0) + S(n-1, 0) = S(2*n, sqrt(2)); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 0)=A056594.
a(n) = (-1)^binomial(n,2) = (-1)^floor(n/2) = 1/2*((n+2) mod 4 - n mod 4). For fixed r = 0,1,2,..., it appears that (-1)^binomial(n,2^r) gives a periodic sequence of period 2^(r+1), the period consisting of a block of 2^r plus ones followed by a block of 2^r minus ones. See A033999 (r = 0), A143621 (r = 2) and A143622 (r = 3). Define E(k) = sum {n = 0..inf} a(n)*n^k/n! for k = 0,1,2,... . Then E(0) = cos(1) + sin(1), E(1) = cos(1) - sin(1) and E(k) is an integral linear combination of E(0) and E(1) (a Dobinski-type relation). Precisely, E(k) = A121867(k) * E(0) - A121868(k) * E(1). See A143623 and A143624 for the decimal expansions of E(0) and E(1) respectively. For a fixed value of r, similar relations hold between the values of the sums E_r(k) := Sum_{n>=0} (-1)^floor(n/r)*n^k/n!, k = 0,1,2,... . For particular cases see A000587 (r = 1) and A143628 (r = 3). - Peter Bala, Aug 28 2008
Sum_{k>=0} a(k)/(k+1) = Sum_{k>=0} 1/((a(k)*(k+1))) = log(2)/2 + Pi/4. - Jaume Oliver Lafont, Apr 30 2010
a(n) = (-1)^A180969(1,n), where the first index in A180969(.,.) is the row index. - Adriano Caroli, Nov 18 2010
a(n) = (-1)^((2*n+(-1)^n-1)/4) = i^((n-1)*n), with i=sqrt(-1). - Bruno Berselli, Dec 27 2010 - Aug 26 2011
Non-simple continued fraction expansion of (3+sqrt(5))/2 = A104457. - R. J. Mathar, Mar 08 2012
E.g.f.: cos(x)*(1 + tan(x)). - Arkadiusz Wesolowski, Aug 31 2012
From Ricardo Soares Vieira, Oct 15 2019: (Start)
E.g.f.: sin(x) + cos(x) = sqrt(2)*sin(x + Pi/4).
a(n) = sqrt(2)*(d^n/dx^n) sin(x)|_x=Pi/4, i.e., a(n) equals sqrt(2) times the n-th derivative of sin(x) evaluated at x=Pi/4. (End)
a(n) = 4*floor(n/4) - 2*floor(n/2) + 1. - Ridouane Oudra, Mar 23 2024

A001861 Expansion of e.g.f. exp(2*(exp(x) - 1)).

Original entry on oeis.org

1, 2, 6, 22, 94, 454, 2430, 14214, 89918, 610182, 4412798, 33827974, 273646526, 2326980998, 20732504062, 192982729350, 1871953992254, 18880288847750, 197601208474238, 2142184050841734, 24016181943732414, 278028611833689478, 3319156078802044158, 40811417293301014150
Offset: 0

Views

Author

Keywords

Comments

Values of Bell polynomials: ways of placing n labeled balls into n unlabeled (but 2-colored) boxes.
First column of the square of the matrix exp(P)/exp(1) given in A011971. - Gottfried Helms, Mar 30 2007
Base matrix in A011971, second power in A078937, third power in A078938, fourth power in A078939. - Gottfried Helms, Apr 08 2007
Equals row sums of triangle A144061. - Gary W. Adamson, Sep 09 2008
Equals eigensequence of triangle A109128. - Gary W. Adamson, Apr 17 2009
Hankel transform is A108400. - Paul Barry, Apr 29 2009
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 2 labeled boxes. An example is given below. - Peter Bala, Mar 23 2013
The f-vectors of n-dimensional hypercube are given by A038207 = exp[M*B(.,2)] = exp[M*A001861(.)] where M = A238385-I and (B(.,x))^n = B(n,x) are the Bell polynomials (cf. A008277). - Tom Copeland, Apr 17 2014
Moments of the Poisson distribution with mean 2. - Vladimir Reshetnikov, May 17 2016
Exponential self-convolution of Bell numbers (A000110). - Vladimir Reshetnikov, Oct 06 2016

Examples

			a(2) = 6: The six ways of putting 2 balls into bags (denoted by { }) and then into 2 labeled boxes (denoted by [ ]) are
01: [{1,2}] [ ];
02: [ ] [{1,2}];
03: [{1}] [{2}];
04: [{2}] [{1}];
05: [{1} {2}] [ ];
06: [ ] [{1} {2}].
- _Peter Bala_, Mar 23 2013
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For boxes of 1 color, see A000110, for 3 colors see A027710, for 4 colors see A078944, for 5 colors see A144180, for 6 colors see A144223, for 7 colors see A144263, for 8 colors see A221159.
First column of A078937.
Equals 2*A035009(n), n>0.
Row sums of A033306, A036073, A049020, and A144061.

Programs

  • Magma
    [&+[2^k*StirlingSecond(n, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, May 18 2019
  • Maple
    A001861:=n->add(Stirling2(n,k)*2^k, k=0..n); seq(A001861(n), n=0..20); # Wesley Ivan Hurt, Apr 18 2014
    # second Maple program:
    b:= proc(n, m) option remember;
         `if`(n=0, 2^m, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    Table[Sum[StirlingS2[n, k]*2^k, {k, 0, n}], {n, 0, 21}] (* Geoffrey Critzer, Oct 06 2009 *)
    mx = 16; p = 1; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[BellB[n, 2], {n, 0, 20}] (* Vaclav Kotesovec, Jan 06 2013 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(exp(2*(exp(x+x*O(x^n))-1)),n))
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 2^m*x^m/prod(k=1,m,1-k*x +x*O(x^n))), n)} /* Paul D. Hanna, Feb 15 2012 */
    
  • PARI
    {a(n) = sum(k=0, n, 2^k*stirling(n, k, 2))} \\ Seiichi Manyama, Jul 28 2019
    
  • Sage
    expnums(30, 2) # Zerinvary Lajos, Jun 26 2008
    

Formula

a(n) = Sum_{k=0..n} 2^k*Stirling2(n, k). - Emeric Deutsch, Oct 20 2001
a(n) = exp(-2)*Sum_{k>=1} 2^k*k^n/k!. - Benoit Cloitre, Sep 25 2003
G.f. satisfies 2*(x/(1-x))*A(x/(1-x)) = A(x) - 1; twice the binomial transform equals the sequence shifted one place left. - Paul D. Hanna, Dec 08 2003
PE = exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,1]. - Gottfried Helms, Apr 08 2007
G.f.: 1/(1-2x-2x^2/(1-3x-4x^2/(1-4x-6x^2/(1-5x-8x^2/(1-6x-10x^2/(1-... (continued fraction). - Paul Barry, Apr 29 2009
O.g.f.: Sum_{n>=0} 2^n*x^n / Product_{k=1..n} (1-k*x). - Paul D. Hanna, Feb 15 2012
a(n) ~ exp(-2-n+n/LambertW(n/2))*n^n/LambertW(n/2)^(n+1/2). - Vaclav Kotesovec, Jan 06 2013
G.f.: (G(0) - 1)/(x-1)/2 where G(k) = 1 - 2/(1-k*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: 1/Q(0) where Q(k) = 1 + x*k - x - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
G.f.: ((1+x)/Q(0)-1)/(2*x), where Q(k) = 1 - (k+1)*x - 2*(k+1)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: T(0)/(1-2*x), where T(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) - (1-2*x-x*k)*(1-3*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) = Sum_{k=0..n} A033306(n,k) = Sum_{k=0..n} binomial(n,k)*Bell(k)*Bell(n-k), where Bell = A000110 (see Motzkin, p. 170). - Danny Rorabaugh, Oct 18 2015
a(0) = 1 and a(n) = 2 * Sum_{k=0..n-1} binomial(n-1,k)*a(k) for n > 0. - Seiichi Manyama, Sep 25 2017 [corrected by Ilya Gutkovskiy, Jul 12 2020]

A133314 Coefficients of list partition transform: reciprocal of an exponential generating function (e.g.f.).

Original entry on oeis.org

1, -1, -1, 2, -1, 6, -6, -1, 8, 6, -36, 24, -1, 10, 20, -60, -90, 240, -120, -1, 12, 30, -90, 20, -360, 480, -90, 1080, -1800, 720, -1, 14, 42, -126, 70, -630, 840, -420, -630, 5040, -4200, 2520, -12600, 15120, -5040, -1, 16, 56, -168, 112, -1008, 1344, 70
Offset: 0

Views

Author

Tom Copeland, Oct 18 2007, Oct 29 2007, Nov 16 2007

Keywords

Comments

The list partition transform of a sequence a(n) for which a(0)=1 is illustrated by:
b_0 = 1
b_1 = -a_1
b_2 = -a_2 + 2 a_1^2
b_3 = -a_3 + 6 a_2 a_1 - 6 a_1^3
b_4 = -a_4 + 8 a_3 a_1 + 6 a_2^2 - 36 a_2 a_1^2 + 24 a_1^4
... .
The unsigned coefficients are A049019 with a leading 1. The sign is dependent on the partition as evident from inspection (replace a_n's by -1).
Expressed umbrally, i.e., with the umbral operation (a.)^n := a_n,
exp(a.x) exp(b.x) = exp[(a.+b.)x] = 1; i.e., (a.+b.)^n = 1 for n=0 and 0 for all other values of n.
Expressed recursively,
b_0 = 1, b_n = -Sum_{j=1..n} binomial(n,j) a_j b_{n-j}; which is conditionally self-inverse, i.e., the roles of a_k and b_k may be reversed with a_0 = b_0 = 1.
Expressed in matrix form, b_n form the first column of B = matrix inverse of A .
A = Pascal matrix diagonally multiplied by a_n, i.e., A_{n,k} = binomial(n,k)* a_{n-k}.
Some examples of reciprocal pairs of sequences under these operations are:
1) A084358 and -A000262 with the first term set to 1.
2) (1,-1,0,0,...) and (0!,1!,2!,3!,...) with the unsigned associated matrices A128229 and A094587.
3) (1,-1,-1,-1,...) and A000670.
5) (1,-2,-2,0,0,0,...) and (0! c_1,1! c_2,2! c_3,3! c_4,...) where c_n = A000129(n) with the associated matrices A110327 and A110330.
6) (1,-2,2,0,0,0,...) and (1!,2!,3!,4!,...).
7) Sequences of rising and signed lowering factorials form reciprocal pairs where a_n = (-1)^n m!/(m-n)! and b_n = (m-1+n)!/(m-1)! for m=0,1,2,... .
Denote the action of the list partition transform on the sequence a. or an invertible matrix M by LPT(a.) = b. or LPT(M)= M^(-1).
If the matrix equation M = exp(T) also holds, then exp[a.*T]*exp[b.*T] = exp[(a.+b.)*T] = I, the identity matrix, because (a.+b.)^n = delta_n, the Kronecker delta with delta_n = 1 and delta_n = 0 otherwise, i.e., (0)^n = delta_n.
Therefore, [exp(a.*T)]^(-1) = exp[b.*T] = exp[LPT(a.)*T] = LPT[exp(a.*T)].
The fundamental Pascal (A007318), unsigned Lah (A105278) and associated Laguerre matrices can be generated by exponentiation of special infinitesimal matrices (see A132440, A132710 and A132681) such that finding LPT(a.) amounts to multiplying the k'th diagonal of the fundamental matrices by a_k for every diagonal followed by matrix inversion and then extraction of the b_n factors from the first column (simplest for the Pascal formulas above).
Conversely, the inverses of matrices formed by diagonally multiplying the three fundamental matrices by a_k are given by diagonally multiplying the fundamental matrices by b_k.
If LPT(M) is defined differently as application of the top formula to a_n = M^n, then b_n = (-M)^n and the formalism could even be applied to more general sequences of matrices M., providing the reciprocal of exp[t*M.].
The group of fundamental lower triangular matrices M = exp(T) such that LPT[exp(a.*T)] = exp[LPT(a.)*T] = [exp[a.*T]]^(-1) are obtained by infinitesimal generator matrices of the form T =
0;
t(0), 0;
0, t(1), 0;
0, 0, t(2), 0;
0, 0, 0, t(3), 0;
... .
T^m has trivially vanishing terms except along the m'th subdiagonal, which is a sequence of generalized factorials:
[ t(0)*t(1)...t(m-2)*t(m-1), t(1)*t(2)...t(m-1)*t(m), t(2)*t(3)...t(m)*t(m+1), ... ].
Therefore the principal submatrices of T (given by setting t(j) = 0 for j > n-1) are nilpotent with at least [Tsub_n]^(n+1) = 0.
The general group of matrices GM[a.] = exp[a.*T] can also be obtained through diagonal multiplication of M = exp(T) by the sequence a_n, as in the Pascal matrix example above and their inverses by diagonal multiplication by b. = LPT(a.).
Weighted-mappings interpretation for the top partition equation:
Given n pre-nodes (Pre) and k post-nodes (Post), each Pre is connected to only one Post and each Post has at least one Pre connected to it (surjections or onto functions/maps). Weight each Post by -a_m where m is the number of connections to the Post.
Weight each map by the product of the Post weights and multiply by the number of maps that share the same connectivity. Sum over the possible mappings for n Pre. The result is b_n.
E.g., b_3 = [ 3 Pre to 1 Post ] + [ 3 Pre to 2 Post ] + [ 3 Pre to 3 Post ]
= [1 map with 1 Post with 3 connections] + [ 6 maps with 1 Post with 2 connections and 1 Post with 1 connection] + [6 maps with 3 Post with 1 connection each]
= -a_3 + 6 * [-a_2*(-a_1)] + 6 * [-a_1*(-a_1)*(-a_1)].
See A263633 for the complementary formulation for the reciprocal of o.g.f.s rather than e.g.f.s and computations of these partition polynomials as Gram determinants. - Tom Copeland, Dec 04 2016
The coefficients of the partition polynomials enumerate the faces of the convex, bounded polytopes called permutohedra, and the absolute value of the sum of the coefficients gives the Euler characteristic of unity for each polytope; i.e., the absolute value of the sum of each row of the array is unity. In addition, the signs of the faces alternate with dimension, and the coefficients of faces with the same dimension for each polytope have the same sign. - Tom Copeland, Nov 13 2019
With the fundamental matrix chosen to be the lower triangular Pascal matrix M, the matrix MA whose n-th diagonals are multiplied by a_n (i.e., MA_{i,j} = PM_{i,j} * a_{i-j}) gives a matrix representation of the e.g.f. associated to the Appell polynomial sequence defined by e^{a.t}e^{xt}= e^{(a.+x)t} = e^{A.(x)t} where umbrally (A.(x))^n = A_n(x) = (a. + x)^n = sum_{k=0..n} binomial(n,k) a_k x^{n-k} are the associated Appell polynomials. Left multiplication of the column vector (1,x,x^2,..) by MA gives the Appell polynomial sequence, and multiplication of the two e.g.f.s e^{a.t} and e^{b.t} corresponds to multiplication of their respective matrix representations MA and MB. Forming the reciprocal of an e.g.f. corresponds to taking the matrix inverse of its matrix representation as noted above. A263634 gives an associated modified Pascal matrix representation of the raising operator for the Appell sequence. - Tom Copeland, Nov 13 2019
The diagonal of MA consists of all ones. Let MAN be the truncated square submatrix of MA containing the coefficients of the first N Appell polynomials A_k=(a.+x)^k = Sum(j=0 to k) MAN(k,j) x^j. Then by the Cayley-Hamilton theorem (I-MAN)^N = 0; therefore, MAN^(-1) = Sum(k=1 to N) binomial(N,k) (-MAN)^{k-1} = MBN, the inverse of MAN, containing the coefficients of the first N rows of the Appell polynomials B_k(x) = (b. + x)^k = Sum(j=0 to k) MBN(k,j) x^j, which are the umbral compositional inverses of the Appell row polynomials A_k(x) of MAN; that is, A_k(B.(x)) = x^k = B_k(A.(x)), where, e.g., (A.(x))^k = A_k(x). - Tom Copeland, May 13 2020
The use of the term 'list partition transform' resulted from one of my first uses of these partition polynomials in relating A000262 to A084358 with their simple e.g.f.s. Other appropriate names would be the permutohedra polynomials since they are refined Euler characteristics of the permutohedra or the reciprocal polynomials since they give the multiplicative inverses of e.g.f.s with a constant of 1. - Tom Copeland, Oct 09 2022

Examples

			Table starts:
[0] [ 1]
[1] [-1]
[2] [-1,  2]
[3] [-1,  6, -6]
[4] [-1,  8,  6, -36,  24]
[5] [-1, 10, 20, -60, -90,  240, -120]
[6] [-1, 12, 30, -90,  20, -360,  480, -90, 1080, -1800, 720]
		

Crossrefs

Programs

  • Mathematica
    b[0] = 1; b[n_] := b[n] = -Sum[Binomial[n, j]*a[j]*b[n-j], {j, 1, n}];
    row[0] = {1}; row[n_] := Coefficient[b[n], #]& /@ (Times @@ (a /@ #)&) /@ IntegerPartitions[n];
    Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Apr 23 2014 *)
  • Sage
    def A133314_row(n): return [(-1)^len(s)*factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in Partitions(n)]
    for n in (0..10): print(A133314_row(n)) # Peter Luschny, Sep 18 2015

Formula

b_{n-1} = (1/n)(d/da(1))p_n[a_1, a_2, ..., a_n] where p_n are the row partition polynomials of the cumulant generator A127671. - Tom Copeland, Oct 13 2012
(E.g.f. of matrix B) = (e.g.f. of b)·exp(xt) = exp(b.t)·exp(xt) = exp(xt)/exp(a.t) = (e.g.f. of A^(-1)) and (e.g.f. of matrix A) = exp(a.t)·exp(xt) = exp(xt)/exp(b.t) = (e.g.f. of B^(-1)), where the umbral evaluation of exp(b.t) = Sum{n >= 0} (b.t)^n / n! = Sum_{n >= 0} b_n t^n / n! is understood in the denominator. These e.g.f.s define Appell sequences of polynomials. - Tom Copeland, Mar 22 2014
Sum of the n-th row is (-1)^n. - Peter Luschny, Sep 18 2015
The unsigned coefficients for the partitions a_2*a_1^n for n >= 0 are the Lah numbers A001286. - Tom Copeland, Aug 06 2016
G.f.: 1 / (1 + Sum_{n > 0} a_n x^n/n!) = 1 / exp(a.x). - Tom Copeland, Oct 18 2016
Let a_1 = 1 + x + B_1 = x + 1/2 and a_n = B_n = (B.)^n, where B_n are the Bernoulli numbers defined by e^(B.t) = t / (e^t-1), then t / e^(a.t) = t / [(x + 1) * t + exp(B.t)] = (e^t - 1) /[ 1 + (x + 1) (e^t - 1)] = exp(p.(x)t), where (p.(x))^n = p_n(x) are the shifted signed polynomials of A019538: p_0(x) = 0, p_1(x) = 1, p_2(x) = -(1 + 2 x), p_3(x) = 1 + 6 x + 6 x^2, ... , p_n(x) = n * b_{n-1}. - Tom Copeland, Oct 18 2016
With a_n = 1/(n+1), b_n = B_n, the Bernoulli numbers. - Tom Copeland, Nov 08 2016
Indeterminate substitutions as illustrated in A356145 lead to [E] = [L][P] = [P][E]^(-1)[P] = [P][RT] and [E]^(-1) = [P][L] = [P][E][P] = [RT][P], where [E] contains the refined Eulerian partition polynomials of A145271; [E]^(-1), A356145, the inverse set to [E]; [P], the permutohedra polynomials of this entry; [L], the classic Lagrange inversion polynomials of A134685; and [RT], the reciprocal tangent polynomials of A356144. Since [L]^2 = [P]^2 = [RT]^2 = [I], the substitutional identity, [L] = [E][P] = [P][E]^(-1) = [RT][P], [RT] = [E]^(-1)[P] = [P][L][P] = [P][E], and [P] = [L][E] = [E][RT] = [E]^(-1)[L] = [RT][E]^(-1). - Tom Copeland, Oct 05 2022

Extensions

More terms from Jean-François Alcover, Apr 23 2014

A011971 Aitken's array: triangle of numbers {a(n,k), n >= 0, 0 <= k <= n} read by rows, defined by a(0,0)=1, a(n,0) = a(n-1,n-1), a(n,k) = a(n,k-1) + a(n-1,k-1).

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 5, 7, 10, 15, 15, 20, 27, 37, 52, 52, 67, 87, 114, 151, 203, 203, 255, 322, 409, 523, 674, 877, 877, 1080, 1335, 1657, 2066, 2589, 3263, 4140, 4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147, 21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828, 115975
Offset: 0

Views

Author

Keywords

Comments

Also called the Bell triangle or the Peirce triangle.
a(n,k) is the number of equivalence relations on {0, ..., n} such that k is not equivalent to n, k+1 is not equivalent to n, ..., n-1 is not equivalent to n. - Don Knuth, Sep 21 2002 [Comment revised by Thijs van Ommen (thijsvanommen(AT)gmail.com), Jul 13 2008]
Named after the New Zealand mathematician Alexander Craig Aitken (1895-1967). - Amiram Eldar, Jun 11 2021

Examples

			Triangle begins:
00:       1
01:       1      2
02:       2      3      5
03:       5      7     10     15
04:      15     20     27     37     52
05:      52     67     87    114    151    203
06:     203    255    322    409    523    674    877
07:     877   1080   1335   1657   2066   2589   3263   4140
08:    4140   5017   6097   7432   9089  11155  13744  17007  21147
09:   21147  25287  30304  36401  43833  52922  64077  77821  94828 115975
10:  115975 137122 162409 192713 229114 272947 325869 389946 467767 562595 678570
...
		

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 205.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 212.
  • Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 418).
  • Charles Sanders Peirce, On the Algebra of Logic, American Journal of Mathematics, Vol. 3, pages 15-57, 1880. Reprinted in Collected Papers (1935-1958) and in Writings of Charles S. Peirce: A Chronological Edition (Indiana University Press, Bloomington, IN, 1986).
  • Jeffrey Shallit, A triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.

Crossrefs

Borders give Bell numbers A000110. Diagonals give A005493, A011965, A011966, etc., A011968, A011969. Cf. A046934, A011972 (duplicates removed).
Main diagonal is in A094577. Mirror image is in A123346.

Programs

  • GAP
    T:=Flat(List([0..9],n->List([0..n],k->Sum([0..k],i->Binomial(k,i)*Bell(n-k+i))))); # Muniru A Asiru, Oct 26 2018
  • Haskell
    a011971 n k = a011971_tabl !! n !! k
    a011971_row n = a011971_tabl !! n
    a011971_tabl = iterate (\row -> scanl (+) (last row) row) [1]
    -- Reinhard Zumkeller, Dec 09 2012
    
  • Maple
    A011971 := proc(n,k) option remember; if n=0 and k=0 then 1 elif k=0 then A011971(n-1,n-1) else A011971(n,k-1)+A011971(n-1,k-1); fi: end;
    for n from 0 to 12 do lprint([ seq(A011971(n,k),k=0..n) ]); od:
    # Compare the analogue algorithm for the Catalan numbers in A030237.
    BellTriangle := proc(len) local P, T, n; P := [1]; T := [[1]];
    for n from 1 to len - 1 do P := ListTools:-PartialSums([P[-1], op(P)]);
    T := [op(T), P] od; T end:
    BellTriangle(6); ListTools:-Flatten(%); # Peter Luschny, Mar 26 2022
  • Mathematica
    a[0, 0] = 1; a[n_, 0] := a[n, 0] = a[n-1, n-1]; a[n_, k_] := a[n, k] = a[n, k-1] + a[n-1, k-1]; Flatten[ Table[ a[n, k], {n, 0, 9}, {k, 0, n}]] (* Robert G. Wilson v, Mar 27 2004 *)
    Flatten[Table[Sum[Binomial[k, i]*BellB[n-k+i], {i, 0, k}], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, May 24 2016, after Vladeta Jovovic *)
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A011971 = blist = [1]
    for _ in range(10**2):
        b = blist[-1]
        blist = list(accumulate([b]+blist))
        A011971 += blist # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 19 2014
    

Formula

Double-exponential generating function: Sum_{n, k} a(n-k, k) x^n y^k / n! k! = exp(e^{x+y}-1+x). - Don Knuth, Sep 21 2002 [U coordinates, reversed]
a(n,k) = Sum_{i=0..k} binomial(k,i)*Bell(n-k+i). - Vladeta Jovovic, Oct 15 2006

Extensions

Peirce reference from Jon Awbrey, Mar 11 2002
Reference to my paper from Jeffrey Shallit, Jan 23 2015
Moved a comment to A056857 where it belonged. - N. J. A. Sloane, May 02 2015.

A004211 Shifts one place left under 2nd-order binomial transform.

Original entry on oeis.org

1, 1, 3, 11, 49, 257, 1539, 10299, 75905, 609441, 5284451, 49134923, 487026929, 5120905441, 56878092067, 664920021819, 8155340557697, 104652541401025, 1401572711758403, 19546873773314571, 283314887789276721, 4259997696504874817, 66341623494636864963
Offset: 0

Views

Author

Keywords

Comments

Equals the eigensequence of A038207, the square of Pascal's triangle. - Gary W. Adamson, Apr 10 2009
The g.f. of the second binomial transform is 1/(1-2x-x/(1-2x/(1-2x-x/(1-4x/(1-2x-x/(1-6x/(1-2x-x/(1-8x/(1-... (continued fraction). - Paul Barry, Dec 04 2009
Length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(k)<=F(k)+2 where F(0)=0 and F(k+1)=s(k+1) if s(k+1)-s(k)=2, otherwise F(k+1)=F(k); see example and Fxtbook link. - Joerg Arndt, Apr 30 2011
It appears that the infinite set of "Shifts 1 place left under N-th order binomial transform" sequences has a production matrix of:
1, N, 0, 0, 0, ...
1, 1, N, 0, 0, ...
1, 2, 1, N, 0, ...
1, 3, 3, 1, N, ...
... (where a diagonal of (N,N,N,...) is appended to the right of Pascal's triangle). a(n) in each sequence is the upper left term of M^n such that N=1 generates A000110, then (N=2 - A004211), (N=3 - A004212), (N=4 - A004213), (N=5 - A005011), ... - Gary W. Adamson, Jul 29 2011
Number of "unlabeled" hierarchical orderings on set partitions of {1..n}, see comments on A034691. - Gus Wiseman, Mar 03 2016
From Lorenzo Sauras Altuzarra, Jun 17 2022: (Start)
Number of n-variate noncontradictory conjunctions of logical equalities of literals (modulo logical equivalence).
Equivalently, number of n-variate noncontradictory Krom formulas with palindromic truth-vector (modulo logical equivalence).
a(n) <= A109457(n). (End)

Examples

			From _Joerg Arndt_, Apr 30 2011: (Start)
Restricted growth strings: a(0)=1 corresponds to the empty string;
a(1)=1 to [0]; a(2)=3 to [00], [01], and [02]; a(3) = 11 to
        RGS           F
[ 1]  [ 0 0 0 ]    [ 0 0 0 ]
[ 2]  [ 0 0 1 ]    [ 0 0 0 ]
[ 3]  [ 0 0 2 ]    [ 0 0 2 ]
[ 4]  [ 0 1 0 ]    [ 0 0 0 ]
[ 5]  [ 0 1 1 ]    [ 0 0 0 ]
[ 6]  [ 0 1 2 ]    [ 0 0 2 ]
[ 7]  [ 0 2 0 ]    [ 0 2 2 ]
[ 8]  [ 0 2 1 ]    [ 0 2 2 ]
[ 9]  [ 0 2 2 ]    [ 0 2 2 ]
[10]  [ 0 2 3 ]    [ 0 2 2 ]
[11]  [ 0 2 4 ]    [ 0 2 4 ]. (End)
From _Lorenzo Sauras Altuzarra_, Jun 17 2022: (Start)
The 11 trivariate noncontradictory conjunctions of logical equalities of literals are (x <-> y) /\ (y <-> z), (~ x <-> y) /\ (y <-> z), (x <-> ~ y) /\ (~ y <-> z), (x <-> y) /\ (y <-> ~ z), (x <-> y) /\ (z <-> z), (~ x <-> y) /\ (z <-> z), (x <-> z) /\ (y <-> y), (~ x <-> z) /\ (y <-> y), (y <-> z) /\ (x <-> x), (~ y <-> z) /\ (x <-> x), and (x <-> x) /\ (y <-> y) /\ (z <-> z) (modulo logical equivalence).
The third complete Bell polynomial is x^3 + 3 x y + z; and note that (2^0)^3 + 3*2^0*2^1 + 2^2 = 11.
The truth-vector of (x <-> y) /\ (y <-> z), 10000001, is palindromic. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A075497 (row sums).
Cf. A038207.
Cf. A000110 (RGS where s(k) <= F(k) + 1), A004212 (RGS where s(k) <= F(k) + 3), A004213 (s(k) <= F(k) + 4), A005011 (s(k) <= F(k) + 5), A005012 (s(k) <= F(k) + 6), A075506 (s(k) <= F(k) + 7), A075507 (s(k) <= F(k) + 8), A075508 (s(k) <= F(k) + 9), A075509 (s(k) <= F(k) + 10).
Main diagonal of A261275.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*2^(j-1), j=1..n))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, May 30 2021
    # second Maple program:
    a:= n -> CompleteBellB(n, seq(2^k, k=0..n)):
    seq(a(n), n=0..23);  # Lorenzo Sauras Altuzarra, Jun 17 2022
  • Mathematica
    Table[ Sum[ StirlingS2[ n, k ] 2^(-k+n), {k, n} ], {n, 16} ] (* Wouter Meeussen *)
    Table[2^n BellB[n, 1/2], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(2^(n-k)*binomial(n-1,k-1)*a(k-1),k,1,n); /* Vladimir Kruchinin, Nov 28 2011 */
    
  • PARI
    x='x+O('x^66);
    egf=exp(intformal(exp(2*x))); /* = 1 + x + 3/2*x^2 + 11/6*x^3 + ... */
    /* egf=exp(1/2*(exp(2*x)-1)) */ /* alternative e.g.f. */
    Vec(serlaplace(egf))  /* Joerg Arndt, Apr 30 2011 */
    
  • SageMath
    def A004211(n): return sum(2^(n-k)*stirling_number2(n, k) for k in (0..n))
    print([A004211(n) for n in range(21)]) # Peter Luschny, Apr 15 2020

Formula

E.g.f. A(x) satisfies A'(x)/A(x) = e^(2x).
E.g.f.: exp(sinh(x)*exp(x)) = exp(Integral_{t = 0..x} exp(2*t)) = exp((exp(2*x)-1)/2). - Joerg Arndt, Apr 30 2011 and May 13 2011
a(n) = Sum_{k=0..n} 2^(n-k)*Stirling2(n, k). - Emeric Deutsch, Feb 11 2002
G.f.: Sum_{k >= 0} x^k/Product_{j = 1..k} (1-2*j*x). - Ralf Stephan, Apr 18 2004
Stirling transform of A000085. - Vladeta Jovovic May 14 2004
O.g.f.: A(x) = 1/(1-x-2*x^2/(1-3*x-4*x^2/(1-5*x-6*x^2/(1-... -(2*n-1)*x-2*n*x^2/(1- ...))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
Define f_1(x), f_2(x), ... such that f_1(x)=e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n) = e^(-1/2)*2^{n-1}*f_n(1/2). - Milan Janjic, May 30 2008
G.f.: 1/(1-x/(1-2x/(1-x/(1-4x/(1-x/(1-6x/(1-x/(1-8x/(1-... (continued fraction). - Paul Barry, Dec 04 2009
a(n) = upper left term in M^n, M = an infinite square production matrix with an appended diagonal of (2,2,2,...) to the right of Pascal's triangle:
1, 2, 0, 0, 0, ...
1, 1, 2, 0, 0, ...
1, 2, 1, 2, 0, ...
1, 3, 3, 1, 2, ...
... - Gary W. Adamson, Jul 29 2011
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+2*x)*d/dx. Cf. A000110. - Peter Bala, Nov 25 2011
G.f. A(x) satisfies A(x)=1+x/(1-2*x)*A(x/(1-2*x)), a(n) = Sum_{k=1..n} binomial(n-1,k-1)*2^(n-k)*a(k-1), a(0)=1. - Vladimir Kruchinin, Nov 28 2011 [corrected by Ilya Gutkovskiy, May 02 2019]
From Peter Bala, May 16 2012: (Start)
Recurrence equation: a(n+1) = Sum_{k = 0..n} 2^(n-k)*C(n,k)*a(k).
Written umbrally this is a(n+1) = (a + 2)^n (expand the binomial and replace a^k with a(k)). More generally, a*f(a) = f(a+2) holds umbrally for any polynomial f(x). An inductive argument then establishes the umbral recurrence a*(a-2)*(a-4)*...*(a-2*(n-1)) = 1 with a(0) = 1. Compare with the Bell numbers B(n) = A000110(n), which satisfy the umbral recurrence B*(B-1)*...*(B-(n-1)) = 1 with B(0) = 1. Cf. A009235.
Touchard's congruence holds: for odd prime p, a(p+k) == (a(k) + a(k+1)) (mod p) for k = 0,1,2,... (adapt the proof of Theorem 10.1 in Gessel). In particular, a(p) == 2 (mod p) for odd prime p. (End)
G.f.: (2/E(0) - 1)/x where E(k) = 1 + 1/(1 + 2*x/(1 - 4*(k+1)*x/E(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 20 2012
G.f.: (1/E(0)-1)/x where E(k) = 1 - x/(1 + 2*x - 2*x*(k+1)/E(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Sep 21 2012
a(n) = -1 + 2*Sum_{k=0..n} C(n,k)*A166922(k). - Peter Luschny, Nov 01 2012
G.f.: G(0)- 1/x where G(k) = 1 - (4*x*k-1)/(x - x^4/(x^3 - (4*x*k-1)*(4*x*k+2*x-1)*(4*x*k+4*x-1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 08 2013.
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-2*k*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: -G(0) where G(k) = 1 + 2*(1-k*x)/(2*k*x - 1 - x*(2*k*x - 1)/(x - 2*(1-k*x)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 29 2013
G.f.: 1/Q(0), where Q(k) = 1 - x/(1 - 2*x*(2*k+1)/( 1 - x/(1 - 4*x*(k+1)/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Apr 15 2013
G.f.: 1 + x/Q(0), where Q(k)= 1 - x*(2*k+3) - x^2*(2*k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 05 2013
For n > 0, a(n) = exp(-1/2)*Sum_{k > 0} (2*k)^n/(k!*2^k). - Vladimir Reshetnikov, May 09 2013
G.f.: -(1+(2*x+1)/G(0))/x, where G(k)= 2*x*k - x - 1 - 2*(k+1)*x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 20 2013
G.f.: T(0)/(1-x), where T(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) - (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 19 2013
Sum_{k=0..n} C(n,k)*a(k)*a(n-k) = 2^n*Bell(n) = A055882(n). - Vaclav Kotesovec, Apr 03 2016
a(n) ~ 2^n * n^n * exp(n/LambertW(2*n) - n - 1/2) / (sqrt(1 + LambertW(2*n)) * LambertW(2*n)^n). - Vaclav Kotesovec, Jan 07 2019, simplified Oct 01 2022
a(n) = B_n(2^0, ..., 2^(n - 1)), where B_n(x_1, ..., x_n) is the n-th complete Bell polynomial. - Lorenzo Sauras Altuzarra, Jun 17 2022

A024429 Expansion of e.g.f. sinh(exp(x)-1).

Original entry on oeis.org

0, 1, 1, 2, 7, 27, 106, 443, 2045, 10440, 57781, 340375, 2115664, 13847485, 95394573, 690495874, 5235101739, 41428115543, 341177640610, 2917641580783, 25866987547865, 237421321934176, 2252995117706961, 22073206655954547, 222971522853648704, 2319379362420267753
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of an n-element set into an odd number of classes. - Peter Luschny, Apr 25 2011
Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k); entry gives B sequence (cf. A024430).

Examples

			G.f. = x + x^2 + 2*x^3 + 7*x^4 + 27*x^5 + 106*x^6 + 443*x^7 + 2045*x^8 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 4th line of table.

Crossrefs

Programs

  • GAP
    List([0..25], n-> Sum([0..Int(n/2)], k-> Stirling2(n,2*k+1)) ); # G. C. Greubel, Oct 09 2019
  • Magma
    a:= func< n | (&+[StirlingSecond(n,2*k+1): k in [0..Floor(n/2)]]) >;
    [a(n): n in [0..25]]; // G. C. Greubel, Oct 09 2019
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
           b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..28);  # Alois P. Heinz, Jan 15 2018
    with(combinat); seq((bell(n) - BellB(n, -1))/2, n = 0..25); # G. C. Greubel, Oct 09 2019
  • Mathematica
    CoefficientList[Series[Sinh[E^x-1], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
    Table[(BellB[n] - BellB[n, -1])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(sinh(exp(x)-1)))) \\ G. C. Greubel, Nov 12 2017
    
  • Sage
    def A024429(n) :
        return add(stirling_number2(n,i) for i in range(1,n+n%2,2))
    # Peter Luschny, Feb 28 2012
    

Formula

S(n,1) + S(n,3) + ... + S(n,2k+1), where k = [ (n-1)/2 ] and S(i,j) are Stirling numbers of second kind.
E.g.f.: sinh(exp(x)-1). - N. J. A. Sloane, Jan 28 2001
a(n) = (A000110(n) - A000587(n)) / 2. - Peter Luschny, Apr 25 2011
G.f.: x*G(0) where G(k) = 1 - x*(2*k+1)/((2*x*k+x-1) - x*(2*x*k+x-1)/(x - (2*k+1)*(2*x*k+2*x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 06 2013
G.f.: x*G(0)/(1+x) where G(k) = 1 - 2*x*(k+1)/((2*x*k+x-1) - x*(2*x*k+x-1)/(x - 2*(k+1)*(2*x*k+2*x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 06 2013
G.f.: -x*(1+x)*Sum_{k>=0} x^(2*k)/((2*x*k+x-1)*Product_{p=0..k} (2*x*p-1)*(2*x*p-x-1)). - Sergei N. Gladkovskii, Jan 06 2013
G.f.: Sum_{k>=0} x^(2*k+1)/(Product_{i=0..2*k+1} 1-i*x). - Sergei N. Gladkovskii, Jan 06 2013
a(n) ~ n^n / (2 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Aug 04 2014

Extensions

Description changed by N. J. A. Sloane, Sep 05 2006

A024430 Expansion of e.g.f. cosh(exp(x)-1).

Original entry on oeis.org

1, 0, 1, 3, 8, 25, 97, 434, 2095, 10707, 58194, 338195, 2097933, 13796952, 95504749, 692462671, 5245040408, 41436754261, 340899165549, 2915100624274, 25857170687507, 237448494222575, 2253720620740362, 22078799199129799, 222987346441156585, 2319210969809731600
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of an n-element set into an even number of classes.
Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k); entry gives A sequence (cf. A024429).

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 5th line of table.
  • S. K. Ghosal, J. K. Mandal, Stirling Transform Based Color Image Authentication, Procedia Technology, 2013 Volume 10, 2013, Pages 95-104.
  • L. Lovasz, Combinatorial Problems and Exercises, North-Holland, 1993, pp. 15, 148.

Crossrefs

Programs

  • GAP
    List([0..25], n-> Sum([0..Int(n/2)], k-> Stirling2(n,2*k)) ); # G. C. Greubel, Oct 09 2019
  • Magma
    a:= func< n | (&+[StirlingSecond(n,2*k): k in [0..Floor(n/2)]]) >;
    [a(n): n in [0..25]]; // G. C. Greubel, Oct 09 2019
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
           b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..28);  # Alois P. Heinz, Jan 15 2018
    with(combinat); seq((bell(n) + BellB(n, -1))/2, n = 0..20); # G. C. Greubel, Oct 09 2019
  • Mathematica
    nn=20;a=Exp[Exp[x]-1];Range[0,nn]!CoefficientList[Series[(a+1/a)/2,{x,0,nn}],x]  (* Geoffrey Critzer, Nov 04 2012 *)
    Table[(BellB[n] + BellB[n, -1])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, x^(2*m)/prod(k=1, 2*m, 1-k*x +x*O(x^n))), n)} \\ Paul D. Hanna, Sep 05 2012
    
  • Sage
    def A024430(n) :
        return add(stirling_number2(n,i) for i in range(0,n+(n+1)%2,2))
    # Peter Luschny, Feb 28 2012
    

Formula

a(n) = S(n, 2) + S(n, 4) + ... + S(n, 2k), where k = [ n/2 ], S(i, j) are Stirling numbers of second kind.
E.g.f.: cosh(exp(x)-1). - N. J. A. Sloane, Jan 28 2001
a(n) = (A000110(n) + A000587(n)) / 2. - Peter Luschny, Apr 25 2011
O.g.f.: Sum_{n>=0} x^(2*n) / Product_{k=0..2*n} (1 - k*x). - Paul D. Hanna, Sep 05 2012
G.f.: G(0)/(1+x) where G(k) = 1 - x*(2*k+1)/((2*x*k-1) - x*(2*x*k-1)/(x - (2*k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 05 2013
G.f.: G(0)/(1+2*x) where G(k) = 1 - 2*x*(k+1)/((2*x*k-1) - x*(2*x*k-1)/(x - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 05 2013
a(n) ~ n^n / (2 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Aug 04 2014

Extensions

Description changed by N. J. A. Sloane, Jun 14 2003 and again Sep 05 2006

A000757 Number of cyclic permutations of [n] with no i -> i+1 (mod n).

Original entry on oeis.org

1, 0, 0, 1, 1, 8, 36, 229, 1625, 13208, 120288, 1214673, 13469897, 162744944, 2128047988, 29943053061, 451123462673, 7245940789072, 123604151490592, 2231697509543361, 42519034050101745, 852495597142800376
Offset: 0

Views

Author

Keywords

Examples

			a(4)=1 because from the 4!/4=6 circular permutations of n=4 elements (1,2,3,4), (1,4,3,2), (1,3,4,2),(1,2,4,3), (1,4,2,3) and (1,3,2,4) only (1,4,3,2) has no successor pair (i,i+1). Note that (4,1) is also a successor pair. - _Wolfdieter Lang_, Jan 21 2008
a(3) = 1 = 2! - 3*1! + 3*0! - 1. a(4) = 1 = 3! - 4*2! + 6*1! - 4*0! + 1. - _Michael Somos_, Mar 28 2011
G.f. = 1 + x^3 + x^4 + 8*x^5 + 36*x^6 + 229*x^7 + 1625*x^8 + 13208*x^9 + ...
		

References

  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, pp. 182, 183, Table 5.6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Space Programs Summary. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, Vol. 37-40-4 (1966), pp. 208-214.
  • R. P. Stanley, Enumerative Combinatorics I, Chap. 2, Exercise 8, p. 88.
  • N. Ya. Vilenkin, Combinatorics, pp. 56-57, Q_n = a(n), n >= 3. Academic Press, 1971. On the Merry Go-Round.

Crossrefs

Programs

  • Mathematica
    a[n_] := (-1)^n + Sum[(-1)^k*n!/((n-k)*k!), {k, 0, n-1}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 30 2011, after Michael Somos *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n + sum( k=0, n-1, (-1)^k * binomial( n, k) * (n - k - 1)!))}; /* Michael Somos, Jun 21 2002 */

Formula

From Michael Somos, Jun 21 2002: (Start)
a(n) = (-1)^n + Sum_{k=0..n-1} (-1)^k*binomial(n, k)*(n-k-1)!;
e.g.f.: (1 - log(1 - x)) / e^x;
a(n) = (n-3) * a(n-1) + (n-2) * (2*a(n-2) + a(n-3)).
a(n) = (n-2) * a(n-1) + (n-1) * a(n-2) - (-1)^n, if n > 0.
a(n) = (-1)^n + A002741(n). (End)
a(n) = n-th forward difference of [1, 1, 1, 2, 6, 24, ...] (factorials A000142 with 1 prepended). - Michael Somos, Mar 28 2011
a(n) = Sum_{j=3..n} (-1)^(n-j)*D(j-1), n >= 3, with the derangements numbers (subfactorials) D(n) = A000166(n).
a(n) + a(n+1) = A000166(n). - Aaron Meyerowitz, Feb 08 2014
a(n) ~ exp(-1)*(n-1)! * (1 - 1/n + 1/n^3 + 1/n^4 - 2/n^5 - 9/n^6 - 9/n^7 + 50/n^8 + 267/n^9 + 413/n^10 + ...), numerators are A000587. - Vaclav Kotesovec, Jul 03 2016

Extensions

Better description from Len Smiley
Additional comments from Michael Somos, Jun 21 2002

A123023 a(n) = (n-1)*a(n-2), a(0)=1, a(1)=0.

Original entry on oeis.org

1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 945, 0, 10395, 0, 135135, 0, 2027025, 0, 34459425, 0, 654729075, 0, 13749310575, 0, 316234143225, 0, 7905853580625, 0, 213458046676875, 0, 6190283353629375, 0, 191898783962510625, 0, 6332659870762850625, 0, 221643095476699771875
Offset: 0

Views

Author

Roger L. Bagula, Sep 24 2006

Keywords

Comments

a(n) is the number of ways of separating n terms into pairs. - Stephen Crowley, Apr 07 2007
a(n) is the n-th moment of the standard normal distribution. - Hal M. Switkay, Nov 06 2019
a(n) is the number of fixed-point free involutions in the symmetric group of degree n. - Nick Krempel, Feb 26 2020

Examples

			From _Gus Wiseman_, Dec 23 2018: (Start)
The a(6) = 15 ways of partitioning {1,2,3,4,5,6} into disjoint pairs:
  {{12}{34}{56}},  {{12}{35}{46}},  {{12}{36}{45}},
  {{13}{24}{56}},  {{13}{25}{46}},  {{13}{26}{45}},
  {{14}{23}{56}},  {{14}{25}{36}},  {{14}{26}{35}},
  {{15}{23}{46}},  {{15}{24}{36}},  {{15}{26}{34}},
  {{16}{23}{45}},  {{16}{24}{35}},  {{16}{25}{34}}.
(End)
		

References

  • Richard Bronson, Schaum's Outline of Modern Introductory Differential Equations, MacGraw-Hill, New York, 1973, page 107, solved problem 19.18
  • Norbert Wiener, Nonlinear Problems in Random Theory, 1958, Equation 1.31

Crossrefs

Programs

  • Magma
    a:=[1,0]; [n le 2 select a[n] else (n-2)*Self(n-2): n in [1..30]]; // Marius A. Burtea, Nov 07 2019
  • Maple
    with(combstruct): ZL2 := [S, {S=Set(Cycle(Z, card=2))}, labeled]:
    seq(count(ZL2, size=n), n=0..36); # Zerinvary Lajos, Sep 24 2007
    a := n -> ifelse(irem(n, 2) = 1, 0, 2^(n/2) * pochhammer(1/2, n/2)):
    seq(a(n), n = 0..36); # Peter Luschny, Jan 11 2023
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 0, a[n] == (n - 1) a[n - 2]}, a[n], {n, 0, 31}] (* Ray Chandler, Jul 30 2015 *)

Formula

a(n) = (1/2)*Gamma((1/2)*n + 1/2)*2^((1/2)*n)*(1 + (-1)^n)/sqrt(Pi). - Stephen Crowley, Apr 07 2007
E.g.f.: exp(x^2/2). - Geoffrey Critzer, Mar 15 2009
a(2n) = A001147(n). - R. J. Mathar, Oct 11 2011
From Sergei N. Gladkovskii, Nov 18 2012, Dec 05 2012, May 16 2013, May 24 2013, Jun 07 2013: (Start)
Continued fractions:
E.g.f.: E(0) where E(k) = 1 + x^2*(4*k+1)/((4*k+2)*(4*k+3) - x^2*(4*k+2)*(4*k+3)^2/(x^2*(4*k+3) + (4*k+4)*(4*k+5)/E(k+1))).
G.f.: 1/G(0) where G(k) = 1 - x^2*(k+1)/G(k+1).
G.f.: 1 + x^2/(1+x) + Q(0)*x^3/(1+x), where Q(k) = 1 + (2*k+3)*x/(1 - x/(x + 1/Q(k+1))).
G.f.: G(0)/2, where G(k) = 1 + 1/(1-x/(x+1/x/(2*k+1)/G(k+1))).
G.f.: (G(0) - 1)*x/(1+x) + 1, where G(k) = 1 + x*(2*k+1)/(1 - x/(x + 1/G(k+1))). (End)
For n even, a(n) = A001147(n/2) = A124794(3^(n/2)). a(n) is also the coefficient of x1*...*xn in Product_{1 <= i < j <= n} (1 + xi*xj). - Gus Wiseman, Dec 23 2018
a(n) = 2^(n/2)*Pochhammer(1/2, n/2)*(n+1 mod 2). - Peter Luschny, Jan 11 2023

Extensions

Edited by N. J. A. Sloane, Jan 06 2008
Better name by Sergei N. Gladkovskii, May 24 2013
Leading term 1 dropped, offset changed, and entry edited correspondingly by Andrey Zabolotskiy, Nov 07 2019
Previous Showing 11-20 of 143 results. Next