A007407
a(n) = denominator of Sum_{k=1..n} 1/k^2.
Original entry on oeis.org
1, 4, 36, 144, 3600, 3600, 176400, 705600, 6350400, 1270080, 153679680, 153679680, 25971865920, 25971865920, 129859329600, 519437318400, 150117385017600, 150117385017600, 54192375991353600, 10838475198270720, 221193371393280
Offset: 1
1/1^2 + 1/2^2 + 1/3^2 = 1/1 + 1/4 + 1/9 = 49/36, so a(3) = 36. - _Jon E. Schoenfield_, Dec 26 2014
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 1..1152 (terms 1..200 from T. D. Noe)
- D. Y. Savio, E. A. Lamagna and S.-M. Liu, Summation of harmonic numbers, pp. 12-20 of E. Kaltofen and S. M. Watt, editors, Computers and Mathematics, Springer-Verlag, NY, 1989.
-
import Data.Ratio ((%), denominator)
a007407 n = a007407_list !! (n-1)
a007407_list = map denominator $
scanl1 (+) $ map (1 %) $ tail a000290_list
-- Reinhard Zumkeller, Jul 06 2012
-
ZL:=n->sum(1/i^2, i=2..n): a:=n->floor(denom(ZL(n))): seq(a(n), n=1..21); # Zerinvary Lajos, Mar 28 2007
-
s=0;lst={};Do[s+=n^2/n^4;AppendTo[lst,Denominator[s]],{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *)
Table[Denominator[Pi^2/6 - Zeta[2, x]], {x, 1, 22}] (* Artur Jasinski, Mar 03 2010 *)
Denominator[Accumulate[1/Range[30]^2]] (* Harvey P. Dale, Nov 08 2012 *)
-
a(n)=denominator(sum(k=1,n,1/k^2)) \\ Charles R Greathouse IV, Nov 20 2012
-
from fractions import Fraction
def A007407(n): return sum(Fraction(1,k**2) for k in range(1,n+1)).denominator # Chai Wah Wu, Apr 03 2021
A008955
Triangle of central factorial numbers |t(2n,2n-2k)| read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 4, 1, 14, 49, 36, 1, 30, 273, 820, 576, 1, 55, 1023, 7645, 21076, 14400, 1, 91, 3003, 44473, 296296, 773136, 518400, 1, 140, 7462, 191620, 2475473, 15291640, 38402064, 25401600, 1, 204, 16422, 669188, 14739153, 173721912, 1017067024, 2483133696, 1625702400
Offset: 0
Triangle begins:
1;
1, 1;
1, 5, 4;
1, 14, 49, 36;
1, 30, 273, 820, 576;
...
- B. C. Berndt, Ramanujan's Notebooks Part 1, Springer-Verlag 1985.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- Alois P. Heinz, Rows n = 0..100, flattened (first 51 rows from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- R. H. Boels, Three particle superstring amplitudes with massive legs, arXiv preprint arXiv:1201.2655 [hep-th], 2012.
- R. H. Boels and T. Hansen, String theory in target space, arXiv preprint arXiv:1402.6356 [hep-th], 2014.
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central Factorial Numbers: Their main properties and some applications, Numerical Functional Analysis and Optimization, 10 (5&6), 419-488 (1989).
- M. W. Coffey and M. C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- T. L. Curtright and T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arxiv:1408.0767 [math-ph], 2014.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
- Toshiki Matsusaka, Applications of Faà di Bruno's formula to partition traces, arXiv:2507.00404 [math.NT], 2025. See p. 5.
- J. W. Meijer and N. H. G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No.3, April 1987. pp 209-211.
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
- S. Shadrin, L. Spitz, and D. Zvonkine, On double Hurwitz numbers with completed cycles, J. Lond. Math. Soc., II. Ser. 86, No. 2, 407-432 (2012), Corollary 7.5.
Appears in
A160464 (Eta triangle),
A160474 (Zeta triangle),
A160479 (ZL(n)),
A161739 (RSEG2 triangle),
A161742,
A161743,
A002195,
A002196,
A162440 (EG1 matrix),
A162446 (ZG1 matrix) and
A163927. -
Johannes W. Meijer, Jun 18 2009, Jul 06 2009 and Aug 17 2009
-
T:= function(n,k)
if k=0 then return 1;
elif k=n then return (Factorial(n))^2;
else return n^2*T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..8], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 14 2019
-
a008955 n k = a008955_tabl !! n !! k
a008955_row n = a008955_tabl !! n
a008955_tabl = [1] : f [1] 1 1 where
f xs u t = ys : f ys v (t * v) where
ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
v = u + 1
-- Reinhard Zumkeller, Dec 24 2013
-
T:= func< n,k | Factorial(2*(n+1))*(&+[(-1)^j*Binomial(n,k-j)*(&+[2^(m-2*k)*StirlingFirst(2*(n-k+1)+m, 2*(n-k+1))*Binomial(2*(n-k+1)+2*j-1, 2*(n-k+1)+m-1)/Factorial(2*(n-k+1)+m): m in [0..2*j]]): j in [0..k]]) >;
[T(n,k): k in [0..n], n in [0..8]]; // G. C. Greubel, Sep 14 2019
-
nmax:=7: for n from 0 to nmax do t1(n, 0):=1: t1(n, n):=(n!)^2 end do: for n from 1 to nmax do for k from 1 to n-1 do t1(n, k) := t1(n-1, k-1)*n^2 + t1(n-1, k) end do: end do: seq(seq(t1(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
t1 := proc(n,k)
sum((-1)^j*stirling1(n+1,n+1-k+j)*stirling1(n+1,n+1-k-j),j=-k..k) ;
end proc: # Mircea Merca, Apr 02 2012
# third Maple program:
T:= proc(n, k) option remember; `if`(k=0, 1,
add(T(j-1, k-1)*j^2, j=1..n))
end:
seq(seq(T(n, k), k=0..n), n=0..8); # Alois P. Heinz, Feb 19 2022
-
t[n_, 0]=1; t[n_, n_]=(n!)^2; t[n_ , k_ ]:=t[n, k] = n^2*t[n-1, k-1] + t[n-1, k]; Flatten[Table[t[n, k], {n,0,8}, {k,0,n}] ][[1 ;; 42]]
(* Jean-François Alcover, May 30 2011, after recurrence formula *)
-
T(n,m):=(2*(n+1))!*sum((-1)^k*binomial(n,m-k)*sum((2^(i-2*m)*stirling1(2*(n-m+1)+i,2*(n-m+1))*binomial(2*(n-m+1)+2*k-1,2*(n-m+1)+i-1))/(2*(n-m+1)+i)!,i,0,2*k),k,0,m); /* Vladimir Kruchinin, Oct 05 2013 */
-
T(n,k)=if(k==0,1, if(k==n, (n!)^2, n^2*T(n-1, k-1) + T(n-1, k)));
for(n=0,8, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 14 2019
-
# This triangle is (0,0)-based.
def A008955(n, k) :
if k==0 : return 1
if k==n : return factorial(n)^2
return n^2*A008955(n-1, k-1) + A008955(n-1, k)
for n in (0..7) : print([A008955(n, k) for k in (0..n)]) # Peter Luschny, Feb 04 2012
There's an error in the last column of Riordan's table (change 46076 to 21076).
Discussion of Riordan's definition of central factorial numbers added by
N. J. A. Sloane, Feb 01 2011
A088311
Number of sets of lists with distinct list sizes, cf. A000262.
Original entry on oeis.org
1, 1, 2, 12, 48, 360, 2880, 25200, 241920, 2903040, 36288000, 479001600, 7185024000, 112086374400, 1917922406400, 35307207936000, 669529276416000, 13516122267648000, 294509190463488000, 6568835422076928000, 155705728523304960000, 3882911605049917440000
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Laplace( (&*[1+x^j: j in [1..m+2]]) ))); // G. C. Greubel, Dec 14 2022
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> n!*b(n):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 15 2018
-
nn = 19; Drop[ Range[0, nn]! CoefficientList[ Series[ Product[1 + x^i, {i,nn}], {x,0,nn}], x], 0] (* Geoffrey Critzer, Aug 05 2013; adapted to new offset by Vincenzo Librandi, Mar 28 2014 *)
nmax = 20; CoefficientList[Series[Product[1/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 19 2015 *)
-
my(x='x+O('x^66)); Vec(serlaplace(eta(x^2)/eta(x))) \\ Joerg Arndt, Aug 06 2013
-
# uses[EulerTransform from A166861]
a = BinaryRecurrenceSequence(0, 1) # Peter Luschny's code of A000009 and A166861
b = EulerTransform(a)
[factorial(n)*b(n) for n in range(41)] # G. C. Greubel, Dec 14 2022
A001819
Central factorial numbers: second right-hand column of triangle A008955.
Original entry on oeis.org
0, 1, 5, 49, 820, 21076, 773136, 38402064, 2483133696, 202759531776, 20407635072000, 2482492033152000, 359072203696128000, 60912644957448192000, 11977654199703478272000, 2702572249389834608640000
Offset: 0
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Second right-hand column of triangle
A008955.
Equals row sums of
A162990(n)/(n+1)^2 for n >= 1.
-
Table[Sum[1/i^2,{i,1,n}]/Product[1/i^2,{i,1,n}],{n,1,40}] (* Alexander Adamchuk, Jul 11 2006 *)
Table[n!^2*HarmonicNumber[n, 2], {n, 0, 15}] (* Jean-François Alcover, May 09 2012, after Joe Keane *)
-
a(n)=n!^2*sum(k=1,n,1/k^2) \\ Charles R Greathouse IV, Nov 06 2016
A079484
a(n) = (2n-1)!! * (2n+1)!!, where the double factorial is A006882.
Original entry on oeis.org
1, 3, 45, 1575, 99225, 9823275, 1404728325, 273922023375, 69850115960625, 22561587455281875, 9002073394657468125, 4348001449619557104375, 2500100833531245335015625, 1687568062633590601135546875, 1321365793042101440689133203125
Offset: 0
G.f. = 1 + 3*x + 45*x^2 + 1575*x^3 + 99225*x^4 + 9823275*x^5 + ...
M(5) =
[1, 2, 3, 1, 5]
[1, 2, 2, 4, 5]
[1, 3, 3, 4, 5]
[4, 2, 3, 4, 5]
[1, 2, 3, 4, 5].
Integral_{x=0..oo} x^3*BesselK(1, sqrt(x)) = 1575*Pi. - _Olivier Gérard_, May 20 2009
- Miklós Bóna, A walk through combinatorics, World Scientific, 2006.
- Alois P. Heinz, Table of n, a(n) for n = 0..224
- Cyril Banderier, Markus Kuba, and Michael Wallner, Analytic Combinatorics of Composition schemes and phase transitions with mixed Poisson distributions, arXiv:2103.03751 [math.PR], 2021.
- Guo-Niu Han and Christian Krattenthaler, Rectangular Scott-type permanents, arXiv:math/0003072 [math.RA], 2000.
- Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 17 Nov 2014.
- MathOverflow, Geometric / physical / probabilistic interpretations of Riemann zeta(n>1)?, answer by Tom Copeland posted in Aug 2021.
- Henryk Minc, On a conjecture of R. F. Scott (1881), Linear Algebra Appl., Vol. 28 (1979), pp. 141-153.
- Theodoros Theodoulidis, On the Closed-Form Expression of Carson’s Integral, Period. Polytech. Elec. Eng. Comp. Sci., Vol. 59, No. 1 (2015), pp. 26-29.
- Eric Weisstein's World of Mathematics, Struve function.
Diagonal elements of
A306364 in even-numbered rows.
-
I:=[1, 3]; [n le 2 select I[n] else (4*n^2-8*n+3)*Self(n-1): n in [1..20]]; // Vincenzo Librandi, Nov 18 2014
-
a:= n-> (d-> d(2*n-1)*d(2*n+1))(doublefactorial):
seq(a(n), n=0..15); # Alois P. Heinz, Jan 30 2013
# second Maple program:
A079484 := n-> LinearAlgebra[Determinant](Matrix(2*n+1, (i, j)-> `if`(i+j=2*n+1, j, i))): seq(A079484(n), n=0..14); # Rainer Rosenthal, Jun 18 2024
-
a[n_] := (2n - 1)!!*(2n + 1)!!; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jan 30 2013 *)
-
/* Formula using the zeta function and a log integral:*/
L(n)= intnum(t=0, 1, log(1-1/t)^n);
Zetai(n)= -I*I^n*(2*Pi)^(n-1)/(n-1)*L(1-n);
a(m)={my(n=m+1);round(real(-I*2^(2*n-1)*Zetai(1/2-n)*L(-1/2+n)/(Zetai(-1/2+n)*L(1/2-n))))};
/* Gerry Martens, Mar 07 2011, adapted to offset 0 by Hugo Pfoertner, Jun 19 2024 */
-
{a(n) = if( n<0, -1 / self()(-1-n), (2*n + 1)! * (2*n)! / (n! * 2^n)^2 )}; /* Michael Somos, May 04 2017 */
-
{a(n) = if( n<0, -1 / self()(-1-n), my(m = 2*n + 1); m! * polcoeff( x / sqrt( 1 - x^2 + x * O(x^m) ), m))}; /* Michael Somos, May 04 2017 */
-
\\ using the Pochhammer symbol
a(n) = {my(P(x,k)=gamma(x+k)/gamma(x)); 4^n*round(P(1/2,n)*P(3/2,n))} \\ Hugo Pfoertner, Jun 20 2024
-
\\ Scott's (1881) method
a(n) = {my(m=2*n+1, X = polroots(x^m-1), Y = polroots(x^m+1), M = matrix(m, m, i, j, 1/(X[i]-Y[j]))); (-1)^n * round(2^m * real(matpermanent(M)))}; \\ Hugo Pfoertner, Jun 23 2024
Simpler description from Daniel Flath (deflath(AT)yahoo.com), Mar 05 2004
A084939
Pentagorials: n-th polygorial for k=5.
Original entry on oeis.org
1, 1, 5, 60, 1320, 46200, 2356200, 164934000, 15173928000, 1775349576000, 257425688520000, 45306921179520000, 9514453447699200000, 2350070001581702400000, 674470090453948588800000, 222575129849803034304000000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
- Robert Israel, Table of n, a(n) for n = 0..243
- M. A. Asiru, Sequence factorial of g-gonal numbers, Int. J. Math. Educ. Sci. Technol., 44(4) (2012), 579-586.
- Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
-
a := n->(n!/2^n)*mul(3*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
Table[k! Pochhammer[2/3, k] (3/2)^k, {k, 0, 20}] (* Jan Mangaldan, Mar 20 2013 *)
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[5, #] &, 17, 0] (* Robert G. Wilson v, Dec 17 2016 *)
-
a(n)=n!/2^n*prod(i=1,n,3*i-1) \\ Charles R Greathouse IV, Dec 13 2016
A144084
T(n,k) is the number of partial bijections of height k (height(alpha) = |Im(alpha)|) of an n-element set.
Original entry on oeis.org
1, 1, 1, 1, 4, 2, 1, 9, 18, 6, 1, 16, 72, 96, 24, 1, 25, 200, 600, 600, 120, 1, 36, 450, 2400, 5400, 4320, 720, 1, 49, 882, 7350, 29400, 52920, 35280, 5040, 1, 64, 1568, 18816, 117600, 376320, 564480, 322560, 40320
Offset: 0
T(3,1) = 9 because there are exactly 9 partial bijections (on a 3-element set) of height 1, namely: (1)->(1), (1)->(2), (1)->(3), (2)->(1), (2)->(2), (2)->(3), (3)->(1), (3)->(2), (3)->(3).
Triangle T(n,k) begins:
1;
1, 1;
1, 4, 2;
1, 9, 18, 6;
1, 16, 72, 96, 24;
1, 25, 200, 600, 600, 120;
1, 36, 450, 2400, 5400, 4320, 720;
...
- O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, 2009, page 61.
- J. M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995).
- Vaclav Kotesovec, Non-attacking chess pieces, 6th ed. (2013), p. 216, p. 218.
- Alois P. Heinz, Rows n = 0..140, flattened
- Wayne A. Johnson, Exponential Hilbert series of equivariant embeddings, arXiv:1804.04943 [math.RT], 2018.
- W. D. Munn, The characters of the symmetric inverse semigroup, Proc. Cambridge Philos. Soc. 53 (1957), 13-18.
- Eric Weisstein's World of Mathematics, Clique Polynomial
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Eric Weisstein's World of Mathematics, Independence Polynomial
- Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
- Eric Weisstein's World of Mathematics, Rook Complement Graph
- Eric Weisstein's World of Mathematics, Rook Graph
T(n,k) = |
A021010|. Sum of rows of T(n,k) is
A002720. T(n,n) is the order of the symmetric group on an n-element set, n!.
-
/* As triangle */ [[(Binomial(n,k)^2)*Factorial(k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jun 13 2017
-
T:= (n, k)-> (binomial(n, k)^2)*k!:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Dec 04 2012
-
Table[Table[Binomial[n, k]^2 k!,{k, 0, n}], {n, 0, 6}] // Flatten (* Geoffrey Critzer, Dec 04 2012 *)
Table[ CoefficientList[n!*LaguerreL[n, x], x] // Abs // Reverse, {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 18 2013 *)
CoefficientList[Table[n! x^n LaguerreL[n, -1/x], {n, 0, 8}], x] // Flatten (* Eric W. Weisstein, Apr 24 2017 *)
CoefficientList[Table[(-x)^n HypergeometricU[-n, 1, -(1/x)], {n, 5}],
x] // Flatten (* Eric W. Weisstein, Jun 13 2017 *)
-
T(n,k) = k! * binomial(n,k)^2 \\ Andrew Howroyd, Feb 13 2018
A084940
Heptagorials: n-th polygorial for k=7.
Original entry on oeis.org
1, 1, 7, 126, 4284, 235620, 19085220, 2137544640, 316356606720, 59791398670080, 14050978687468800, 4018579904616076800, 1374354327378698265600, 553864793933615401036800, 259762588354865623086259200, 140271797711627436466579968000, 86407427390362500863413260288000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
a := n->n!/2^n*mul(5*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[ polygorial[7, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
Join[{1},FoldList[Times,PolygonalNumber[7,Range[20]]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 29 2019 *)
-
a(n)=n!/2^n*prod(i=1,n,5*i-3) \\ Charles R Greathouse IV, Dec 13 2016
A084944
Hendecagorials: n-th polygorial for k=11.
Original entry on oeis.org
1, 1, 11, 330, 19140, 1818300, 256380300, 50250538800, 13065140088000, 4350691649304000, 1805537034461160000, 913601739437346960000, 553642654099032257760000, 395854497680808064298400000, 329746796568113117560567200000, 316556924705388592858144512000000, 346946389477105897772526385152000000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
a := n->n!/2^n*product(9*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k - 2), n]]; Array[polygorial[11, #] &, 16, 0] (* Robert G. Wilson v, Dec 13 2016 *)
A084941
Octagorials: n-th polygorial for k=8.
Original entry on oeis.org
1, 1, 8, 168, 6720, 436800, 41932800, 5577062400, 981562982400, 220851671040000, 61838467891200000, 21086917550899200000, 8603462360766873600000, 4138265395528866201600000, 2317428621496165072896000000, 1494741460865026472017920000000, 1100129715196659483405189120000000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
a := n->n!/2^n*product(6*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[8, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
-
a(n) = n! / 2^n * prod(i=0, n-1, 6*i+2) \\ Felix Fröhlich, Dec 13 2016
Comments