cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 349 results. Next

A014445 Even Fibonacci numbers; or, Fibonacci(3*n).

Original entry on oeis.org

0, 2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, 832040, 3524578, 14930352, 63245986, 267914296, 1134903170, 4807526976, 20365011074, 86267571272, 365435296162, 1548008755920, 6557470319842, 27777890035288, 117669030460994, 498454011879264, 2111485077978050
Offset: 0

Views

Author

Keywords

Comments

a(n) = 3^n*b(n;2/3) = -b(n;-2), but we have 3^n*a(n;2/3) = F(3n+1) = A033887 and a(n;-2) = F(3n-1) = A015448, where a(n;d) and b(n;d), n=0,1,...,d, denote the so-called delta-Fibonacci numbers (the argument "d" of a(n;d) and b(n;d) is abbreviation of the symbol "delta") defined by the following equivalent relations: (1 + d*((sqrt(5) - 1)/2))^n = a(n;d) + b(n;d)*((sqrt(5) - 1)/2) equiv. a(0;d)=1, b(0;d)=0, a(n+1;d) = a(n;d) + d*b(n;d), b(n+1;d) = d*a(n;d) + (1-d)b(n;d) equiv. a(0;d)=a(1;d)=1, b(0;1)=0, b(1;d)=d, and x(n+2;d) + (d-2)*x(n+1;d) + (1-d-d^2)*x(n;d) = 0 for every n=0,1,...,d, and x=a,b equiv. a(n;d) = Sum_{k=0..n} C(n,k)*F(k-1)*(-d)^k, and b(n;d) = Sum_{k=0..n} C(n,k)*(-1)^(k-1)*F(k)*d^k equiv. a(n;d) = Sum_{k=0..n} C(n,k)*F(k+1)*(1-d)^(n-k)*d^k, and b(n;d) = Sum_{k=1..n} C(n;k)*F(k)*(1-d)^(n-k)*d^k. The sequences a(n;d) and b(n;d) for special values d are connected with many known sequences: A000045, A001519, A001906, A015448, A020699, A033887, A033889, A074872, A081567, A081568, A081569, A081574, A081575, A163073 (see also the papers of Witula et al.). - Roman Witula, Jul 12 2012
For any odd k, Fibonacci(k*n) = sqrt(Fibonacci((k-1)*n) * Fibonacci((k+1)*n) + Fibonacci(n)^2). - Gary Detlefs, Dec 28 2012
The ratio of consecutive terms approaches the continued fraction 4 + 1/(4 + 1/(4 +...)) = A098317. - Hal M. Switkay, Jul 05 2020

Examples

			G.f. = 2*x + 8*x^2 + 34*x^3 + 144*x^4 + 610*x^5 + 2584*x^6 + 10946*x^7 + ...
		

References

  • Arthur T. Benjamin and Jennifer J. Quinn,, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, id. 232.

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*F(k)*2^k. - Benoit Cloitre, Oct 25 2003
From Lekraj Beedassy, Jun 11 2004: (Start)
a(n) = 4*a(n-1) + a(n-2), with a(-1) = 2, a(0) = 0.
a(n) = 2*A001076(n).
a(n) = (F(n+1))^3 + (F(n))^3 - (F(n-1))^3. (End)
a(n) = Sum_{k=0..floor((n-1)/2)} C(n, 2*k+1)*5^k*2^(n-2*k). - Mario Catalani (mario.catalani(AT)unito.it), Jul 22 2004
a(n) = Sum_{k=0..n} F(n+k)*binomial(n, k). - Benoit Cloitre, May 15 2005
O.g.f.: 2*x/(1 - 4*x - x^2). - R. J. Mathar, Mar 06 2008
a(n) = second binomial transform of (2,4,10,20,50,100,250). This is 2* (1,2,5,10,25,50,125) or 5^n (offset 0): *2 for the odd numbers or *4 for the even. The sequences are interpolated. Also a(n) = 2*((2+sqrt(5))^n - (2-sqrt(5))^n)/sqrt(20). - Al Hakanson (hawkuu(AT)gmail.com), May 02 2009
a(n) = 3*F(n-1)*F(n)*F(n+1) + 2*F(n)^3, F(n)=A000045(n). - Gary Detlefs, Dec 23 2010
a(n) = (-1)^n*3*F(n) + 5*F(n)^3, n >= 0. See the D. Jennings formula given in a comment on A111125, where also the reference is given. - Wolfdieter Lang, Aug 31 2012
With L(n) a Lucas number, F(3*n) = F(n)*(L(2*n) + (-1)^n) = (L(3*n+1) + L(3*n-1))/5 starting at n=1. - J. M. Bergot, Oct 25 2012
a(n) = sqrt(Fibonacci(2*n)*Fibonacci(4*n) + Fibonacci(n)^2). - Gary Detlefs, Dec 28 2012
For n > 0, a(n) = 5*F(n-1)*F(n)*F(n+1) - 2*F(n)*(-1)^n. - J. M. Bergot, Dec 10 2015
a(n) = -(-1)^n * a(-n) for all n in Z. - Michael Somos, Nov 15 2018
a(n) = (5*Fibonacci(n)^3 + Fibonacci(n)*Lucas(n)^2)/4 (Ferns, 1967). - Amiram Eldar, Feb 06 2022
a(n) = 2*i^(n-1)*S(n-1,-4*i), with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(-1, x) = 0. From the simplified trisection formula. - Gary Detlefs and Wolfdieter Lang, Mar 04 2023
E.g.f.: 2*exp(2*x)*sinh(sqrt(5)*x)/sqrt(5). - Stefano Spezia, Jun 03 2024
a(n) = 2*F(n) + 3*Sum_{k=0..n-1} F(3*k)*F(n-k). - Yomna Bakr and Greg Dresden, Jun 10 2024

A122367 Dimension of 3-variable non-commutative harmonics (twisted derivative) of order n. The dimension of the space of non-commutative polynomials of degree n in 3 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i != j).

Original entry on oeis.org

1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418, 514229, 1346269, 3524578, 9227465, 24157817, 63245986, 165580141, 433494437, 1134903170, 2971215073, 7778742049, 20365011074, 53316291173, 139583862445, 365435296162, 956722026041
Offset: 0

Views

Author

Mike Zabrocki, Aug 30 2006

Keywords

Comments

Essentially identical to A001519.
From Matthew Lehman, Jun 14 2008: (Start)
Number of monotonic rhythms using n time intervals of equal duration (starting with n=0).
Representationally, let 0 be an interval which is "off" (rest),
1 an interval which is "on" (beep),
1 1 two consecutive "on" intervals (beep, beep),
1 0 1 (beep, rest, beep) and
1-1 two connected consecutive "on" intervals (beeeep).
For f(3)=13:
0 0 0, 0 0 1, 0 1 0, 0 1 1, 0 1-1, 1 0 0, 1 0 1,
1 1 0, 1-1 0, 1 1 1, 1 1-1, 1-1 1, 1-1-1.
(End)
Equivalent to the number of one-dimensional graphs of n nodes, subject to the condition that a node is either 'on' or 'off' and that any two neighboring 'on' nodes can be connected. - Matthew Lehman, Nov 22 2008
Sum_{n>=0} arctan(1/a(n)) = Pi/2. - Jaume Oliver Lafont, Feb 27 2009
This is the limit sequence for certain generalized Pell numbers. - Gregory L. Simay, Oct 21 2024

Examples

			a(1) = 2 because x1-x2, x1-x3 are both of degree 1 and are killed by the differential operator d_x1 + d_x2 + d_x3.
a(2) = 5 because x1*x2 - x3*x2, x1*x3 - x2*x3, x2*x1 - x3*x1, x1*x1 - x2*x1 - x2*x2 + x1*x2, x1*x1 - x3*x1 - x3*x3 + x3*x1 are all linearly independent and are killed by d_x1 + d_x2 + d_x3, d_x1 d_x1 + d_x2 d_x2 + d_x3 d_x3 and Sum_{j = 1..3} (d_xi d_xj, i).
		

Crossrefs

Programs

  • Magma
    [Fibonacci(2*n+1): n in [0..40]]; // Vincenzo Librandi, Jul 04 2015
    
  • Maple
    a:=n->if n=0 then 1; elif n=1 then 2 else 3*a(n-1)-a(n-2); fi;
    A122367List := proc(m) local A, P, n; A := [1,2]; P := [2];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-1]]);
    A := [op(A), P[-1]] od; A end: A122367List(30); # Peter Luschny, Mar 24 2022
  • Mathematica
    Table[Fibonacci[2 n + 1], {n, 0, 30}] (* Vincenzo Librandi, Jul 04 2015 *)
  • PARI
    Vec((1-x)/(1-3*x+x^2) + O(x^50)) \\ Michel Marcus, Jul 04 2015

Formula

G.f.: (1-q)/(1-3*q+q^2). More generally, (Sum_{d=0..n} (n!/(n-d)!*q^d)/Product_{r=1..d} (1 - r*q)) / (Sum_{d=0..n} q^d/Product_{r=1..d} (1 - r*q)) where n=3.
a(n) = 3*a(n-1) - a(n-2) with a(0) = 1, a(1) = 2.
a(n) = Fibonacci(2n+1) = A000045(2n+1). - Philippe Deléham, Feb 11 2009
a(n) = (2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5)) + (1+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5). - Colin Barker, Oct 14 2015
a(n) = Sum_{k=0..n} Sum_{i=0..n} binomial(k+i-1, k-i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = A048575(n-1) for n >= 1. - Georg Fischer, Nov 02 2018
a(n) = Fibonacci(n)^2 + Fibonacci(n+1)^2. - Michel Marcus, Mar 18 2019
a(n) = Product_{k=1..n} (1 + 4*cos(2*k*Pi/(2*n+1))^2). - Seiichi Manyama, Apr 30 2021
From J. M. Bergot, May 27 2022: (Start)
a(n) = F(n)*L(n+1) + (-1)^n where L(n)=A000032(n) and F(n)=A000045(n).
a(n) = (L(n)^2 + L(n)*L(n+2))/5 - (-1)^n.
a(n) = 2*(area of a triangle with vertices at (L(n-1), L(n)), (F(n+1), F(n)), (L(n+1), L(n+2))) - 5*(-1)^n for n > 1. (End)
G.f.: (1-x)/(1-3x+x^2) = 1/(1-2x-x^2-x^3-x^4-...) - Gregory L. Simay, Oct 21 2024
E.g.f.: exp(3*x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Nov 07 2024
From Peter Bala, May 04 2025: (Start)
a(n) = sqrt(2/5) * sqrt( 1 - T(2*n+1, - 3/2) ), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
a(2*n+1/2) = sqrt(5)*a(n)^2 - 2/sqrt(5).
a(3*n+1) = 5*a(n)^3 - 3*a(n); hence a(n) divides a(3*n+1).
a(4*n+3/2) = 5^(3/2)*a(n)^4 - 4*sqrt(5)*a(n)^2 + 2/sqrt(5).
a(5*n+2) = (5^2)*a(n)^5 - 5*5*a(n)^3 + 5*a(n); hence a(n) divides a(5*n+2).
See A034807 for the unsigned coefficients [1, 2; 1, 3; 1, 4, 2; 1, 5, 5; ...].
In general, for k >= 0, a(k*n + (k-1)/2) = a(-1/2) * T(k, a(n)/a(-1/2)), where a(n) = (2^(-1-n)*((3 - sqrt(5))^n *(-1 + sqrt(5)) + (1 + sqrt(5))*(3 + sqrt(5))^n)) / sqrt(5), as given above, and a(-1/2) = 2/sqrt(5).
The aerated sequence [b(n)]n>=1 = [1, 0, 2, 0, 5, 0, 13, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -5, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
Sum_{n >= 1} 1/(a(n) - 1/a(n)) = 1 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A001906(n) - 1/A001906(n+1).) (End)

A007805 a(n) = Fibonacci(6*n + 3)/2.

Original entry on oeis.org

1, 17, 305, 5473, 98209, 1762289, 31622993, 567451585, 10182505537, 182717648081, 3278735159921, 58834515230497, 1055742538989025, 18944531186571953, 339945818819306129, 6100080207560938369
Offset: 0

Views

Author

Keywords

Comments

Hypotenuse (z) of Pythagorean triples (x,y,z) with |2x-y|=1.
x(n) := 2*A049629(n) and y(n) := a(n), n >= 0, give all positive solutions of the Pell equation x^2 - 5*y^2 = -1. See the Gregory V. Richardson formula, where his x is the y here and A075796(n+1) = x(n). - Wolfdieter Lang, Jun 20 2013
Positive numbers n such that 5*n^2 - 1 is a square (A075796(n+1)^2). - Gregory V. Richardson, Oct 13 2002

Crossrefs

Cf. A000045.
Row 18 of array A094954.
Row 2 of array A188647.
Cf. similar sequences listed in A238379.

Programs

  • Haskell
    a007805 = (`div` 2) . a000045 . (* 3) . (+ 1) . (* 2)
    -- Reinhard Zumkeller, Mar 26 2013
    
  • Magma
    I:=[1, 17]; [n le 2 select I[n] else 18*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    seq(combinat:-fibonacci(6*n+3)/2, n=0..30); # Robert Israel, Sep 10 2014
  • Mathematica
    LinearRecurrence[{18, -1}, {1, 17}, 50] (* Sture Sjöstedt, Nov 29 2011 *)
    Table[Fibonacci[6n+3]/2, {n, 0, 20}] (* Harvey P. Dale, Dec 17 2011 *)
    CoefficientList[Series[(1-x)/(1-18*x+x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    a(n)=fibonacci(6*n+3)/2 \\ Edward Jiang, Sep 09 2014
    
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-18*x+x^2)) \\ G. C. Greubel, Dec 19 2017
    

Formula

G.f.: (1-x)/(1-18*x+x^2).
a(n) = 18*a(n-1) - a(n-2), n > 1, a(0)=1, a(1)=17.
a(n) = A134495(n)/2 = A001076(2n+1).
a(n+1) = 9*a(n) + 4*sqrt(5*a(n)^2-1). - Richard Choulet, Aug 30 2007, Dec 28 2007
a(n) = ((2+sqrt(5))^(2*n+1) - (2-sqrt(5))^(2*n+1))/(2*sqrt(5)). - Dean Hickerson, Dec 09 2002
a(n) ~ (1/10)*sqrt(5)*(sqrt(5) + 2)^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Limit_{n->infinity} a(n)/a(n-1) = 8*phi + 5 = 9 + 4*sqrt(5). - Gregory V. Richardson, Oct 13 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then a(n) = q(n, 16). - Benoit Cloitre, Dec 06 2002
a(n) = 19*a(n-1)- 19*a(n-2) + a(n-3); f(x) = (sqrt(5)/10)*((2+sqrt(5))*(9+4*sqrt(5))^(x-1) - (2-sqrt(5))*(9-4*sqrt(5))^(x-1)). - Antonio Alberto Olivares, May 15 2008
a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3). - Antonio Alberto Olivares, Jun 19 2008
a(n) = b(n+1) - b(n), n >= 0, with b(n) := F(6*n)/F(6) = A049660(n). First differences. See the o.g.f.s. - Wolfdieter Lang, 2012
a(n) = S(n,18) - S(n-1,18) with the Chebyshev S-polynomials (A049310). - Wolfdieter Lang, Jun 20 2013
Sum_{n >= 1} 1/( a(n) - 1/a(n) ) = 1/4^2. Compare with A001519 and A097843. - Peter Bala, Nov 29 2013
a(n) = 9*a(n-1) + 8*A049629(n-1), n >= 1, a(0) = 1. This is just the rewritten Chebyshev S(n, 18) recurrence. - Wolfdieter Lang, Aug 26 2014
From Peter Bala, Mar 23 2015: (Start)
a(n) = ( Fibonacci(6*n + 6 - 2*k) - Fibonacci(6*n + 2*k) )/( Fibonacci(6 - 2*k) - Fibonacci(2*k) ), for k an arbitrary integer.
a(n) = ( Fibonacci(6*n + 6 - 2*k - 1) + Fibonacci(6*n + 2*k + 1) )/( Fibonacci(6 - 2*k - 1) + Fibonacci(2*k + 1) ), for k an arbitrary integer.
The aerated sequence (b(n)) n>=1 = [1, 0, 17, 0, 305, 0, 5473, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -20, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)
a(n) = sqrt(2 + (9-4*sqrt(5))^(1+2*n) + (9+4*sqrt(5))^(1+2*n))/(2*sqrt(5)). - Gerry Martens, Jun 04 2015

Extensions

Better description and more terms from Michael Somos

A096270 Fixed point of the morphism 0->01, 1->011.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 22 2004

Keywords

Comments

This is another version of the Fibonacci word A005614.
(With offset 1) for k>0, a(ceiling(k*phi^2))=0 and a(floor(k*phi^2))=1 where phi=(1+sqrt(5))/2 is the Golden ratio. - Benoit Cloitre, Apr 01 2006
(With offset 1) for n>1 a(A000045(n)) = (1-(-1)^n)/2.
Equals the Fibonacci word A005614 with an initial zero.
Also the Sturmian word of slope phi (cf. A144595). - N. J. A. Sloane, Jan 13 2009
More precisely: (a(n)) is the inhomogeneous Sturmian word of slope phi-1 and intercept 0: a(n) = floor((n+1)*(phi-1)) - floor(n*(phi-1)), n >= 0. - Michel Dekking, May 21 2018
The ratio of number of 1's to number of 0's tends to the golden ratio (1+sqrt(5))/2 = 1.618... - Zak Seidov, Feb 15 2012

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.

Crossrefs

Cf. A003849, A096268, A001519. See A005614, A114986 for other versions.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Magma
    [-1+Floor(n*(1+Sqrt(5))/2)-Floor((n-1)*(1+Sqrt(5))/2): n in [1..100]]; // Wesley Ivan Hurt, Aug 29 2022
  • Mathematica
    Nest[ Function[l, {Flatten[(l /. {0 -> {0, 1}, 1 -> {0, 1, 1}})]}], {0}, 6] (* Robert G. Wilson v, Feb 04 2005 *)
  • PARI
    a(n)=-1+floor(n*(1+sqrt(5))/2)-floor((n-1)*(1+sqrt(5))/2) \\ Benoit Cloitre, Apr 01 2006
    
  • Python
    from math import isqrt
    def A096270(n): return (n+1+isqrt(5*(n+1)**2)>>1)-(n+isqrt(5*n**2)>>1)>>1 # Chai Wah Wu, Aug 29 2022
    

Formula

Conjecture: a(n) is given recursively by a(1)=0 and, for n>1, by a(n)=1 if n=F(2k+1) and a(n)=a(n-F(2k+1)) otherwise, where F(2k+1) is the largest odd-indexed Fibonacci number smaller than or equal to n. (This has been confirmed for more than nine million terms.) The odd-indexed bisection of the Fibonacci numbers (A001519) is {1, 2, 5, 13, 34, 89, ...}. So by the conjecture, we would expect that a(30) = a(30-13) = a(17) = a(17-13) = a(4) = a(4-2) = a(2) = 1, which is in fact correct. - John W. Layman, Jun 29 2004
From Michel Dekking, Apr 13 2016: (Start)
Proof of the above conjecture:
Let g be the morphism above: g(0)=01, g(1)=011. Then g^n(0) has length F(2n+1), and (a(n)) starts with g^n(0) for all n>0. Obviously g^n(0) ends in 1 for all n, proving the first part of the conjecture.
We extend the semigroup of words with letters 0 and 1 to the free group, adding the inverses 0*:=0^{-1} and 1*:=1^{-1}. Easy observation: for any word w one has g(w1)= g(w0)1. We claim that for all n>1 one has g^n(0)=u(n)v(n)v(n)0*1, where u(n)=g(u(n-1))0 and v(n)=0*g(v(n-1))0. The recursion starts with u(2)=0, v(2)=10. Indeed: g^2(0)=01011=u(2)v(2)v(2)0*1. Induction step:
g^{n+1}(0)=g(g^n(0))= g(u(n)v(n)v(n)0*1)= g(u(n)v(n)v(n))1= g(u(n))00*g(v(n))00*g(v(n))00*1=u(n+1)v(n+1)v(n+1)0*1.
Since v(n) has length F(2n-1), which is the largest odd-indexed Fibonacci number smaller than or equal to m for all m between F(2n-1) and F(2n+1), the claim proves the second part of the conjecture. (End)
(With offset 1) a(n) = -1 + floor(n*phi) - floor((n-1)*phi) where phi=(1+sqrt(5))/2 so a(n) = -1 + A082389(n). - Benoit Cloitre, Apr 01 2006

Extensions

More terms from John W. Layman, Jun 29 2004

A024718 a(n) = (1/2)*(1 + Sum_{k=0..n} binomial(2*k, k)).

Original entry on oeis.org

1, 2, 5, 15, 50, 176, 638, 2354, 8789, 33099, 125477, 478193, 1830271, 7030571, 27088871, 104647631, 405187826, 1571990936, 6109558586, 23782190486, 92705454896, 361834392116, 1413883873976, 5530599237776, 21654401079326, 84859704298202, 332818970772254
Offset: 0

Views

Author

Keywords

Comments

Total number of leaves in all rooted ordered trees with at most n edges. - Michael Somos, Feb 14 2006
Also: Number of UH-free Schroeder paths of semilength n with horizontal steps only at level less than two [see Yan]. - R. J. Mathar, May 24 2008
Hankel transform is A010892. - Paul Barry, Apr 28 2009
Binomial transform of A005773. - Philippe Deléham, Dec 13 2009
Number of vertices all of whose children are leaves in all ordered trees with n+1 edges. Example: a(3) = 15; for an explanation see David Callan's comment in A001519. - Emeric Deutsch, Feb 12 2015

Examples

			G.f. = 1 + 2*x + 5*x^2 + 15*x^3 + 50*x^4 + 176*x^5 + 638*x^6 + ...
		

Crossrefs

Partial sums of A088218.
Bisection of A086905.
Second column of triangle A102541.

Programs

  • Maple
    A024718 := n -> (binomial(2*n, n)*hypergeom([1, -n], [1/2 - n], 1/4) + 1)/2:
    seq(simplify(A024718(n)), n = 0..26); # Peter Luschny, Dec 15 2024
  • Mathematica
    Table[Sum[Binomial[2k-1,k-1],{k,0,n}],{n,0,100}] (* Emanuele Munarini, May 18 2018 *)
  • PARI
    a(n) = (1 + sum(k=0, n, binomial(2*k, k)))/2; \\ Michel Marcus, May 18 2018

Formula

a(n) = A079309(n) + 1.
G.f.: 1/((1 - x)*(2 - C)), where C = g.f. for the Catalan numbers A000108. - N. J. A. Sloane, Aug 30 2002
Given g.f. A(x), then x * A(x - x^2) is the g.f. of A024494. - Michael Somos, Feb 14 2006
G.f.: (1 + 1 / sqrt(1 - 4*x)) / (2 - 2*x). - Michael Somos, Feb 14 2006
D-finite with recurrence: n*a(n) - (5*n-2)*a(n-1) + 2*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Dec 02 2012
Remark: The above recurrence is true (it can be easily proved by differentiating the generating function). Notice that it is the same recurrence satisfied by the partial sums of the central binomial coefficients (A006134). - Emanuele Munarini, May 18 2018
0 = a(n)*(16*a(n+1) - 22*a(n+2) + 6*a(n+3)) + a(n+1)*(-18*a(n+1) + 27*a(n+2) - 7*a(n+3)) + a(n+2)*(-3*a(n+2) + a(n+3)) for all n in Z if a(n) = 1/2 for n < 0. - Michael Somos, Apr 23 2014
a(n) = ((1 - I/sqrt(3))/2 - binomial(2*n+1, n)*hypergeom([n+3/2, 1], [n+2], 4)). - Peter Luschny, May 18 2018
a(n) = [x^n] 1/((1-x+x^2) * (1-x)^n). - Seiichi Manyama, Apr 06 2024

Extensions

Name edited by Petros Hadjicostas, Aug 04 2020

A124758 Product of the parts of the compositions in standard order.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 4, 2, 3, 2, 2, 1, 5, 4, 6, 3, 6, 4, 4, 2, 4, 3, 4, 2, 3, 2, 2, 1, 6, 5, 8, 4, 9, 6, 6, 3, 8, 6, 8, 4, 6, 4, 4, 2, 5, 4, 6, 3, 6, 4, 4, 2, 4, 3, 4, 2, 3, 2, 2, 1, 7, 6, 10, 5, 12, 8, 8, 4, 12, 9, 12, 6, 9, 6, 6, 3, 10, 8, 12, 6, 12, 8, 8, 4, 8, 6, 8, 4, 6, 4, 4, 2, 6, 5, 8, 4, 9, 6
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. - Gus Wiseman, Apr 03 2020

Examples

			Composition number 11 is 2,1,1; 2*1*1 = 2, so a(11) = 2.
The table starts:
  1
  1
  2 1
  3 2 2 1
  4 3 4 2 3 2 2 1
  5 4 6 3 6 4 4 2 4 3 4 2 3 2 2 1
The 146-th composition in standard order is (3,3,2), with product 18, so a(146) = 18. - _Gus Wiseman_, Apr 03 2020
		

Crossrefs

Cf. A066099, A118851, A011782 (row lengths), A001906 (row sums).
The lengths of standard compositions are given by A000120.
The version for prime indices is A003963.
The version for binary indices is A096111.
Taking the sum instead of product gives A070939.
The sum of binary indices is A029931.
The sum of prime indices is A056239.
Taking GCD instead of product gives A326674.
Positions of first appearances are A331579.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Times@@stc[n],{n,0,100}] (* Gus Wiseman, Apr 03 2020 *)

Formula

For a composition b(1),...,b(k), a(n) = Product_{i=1}^k b(i).
a(A164894(n)) = a(A246534(n)) = n!. - Gus Wiseman, Apr 03 2020
a(A233249(n)) = a(A333220(n)) = A003963(n). - Gus Wiseman, Apr 03 2020
From Mikhail Kurkov, Jul 11 2021: (Start)
Some conjectures:
a(2n+1) = a(n) for n >= 0.
a(2n) = (1 + 1/A001511(n))*a(n) = 2*a(n) + a(n - 2^f(n)) - a(2n - 2^f(n)) for n > 0 with a(0)=1 where f(n) = A007814(n).
From the 1st formula for a(2n) we get a(4n+2) = 2*a(n), a(4n) = 2*a(2n) - a(n).
Sum_{k=0..2^n - 1} a(k) = A001519(n+1) for n >= 0.
a((4^n - 1)/3) = A011782(n) for n >= 0.
a(2^m*(2^n - 1)) = m + 1 for n > 0, m >= 0. (End)

A001517 Bessel polynomials y_n(x) (see A001498) evaluated at 2.

Original entry on oeis.org

1, 3, 19, 193, 2721, 49171, 1084483, 28245729, 848456353, 28875761731, 1098127402131, 46150226651233, 2124008553358849, 106246577894593683, 5739439214861417731, 332993721039856822081, 20651350143685984386753
Offset: 0

Views

Author

Keywords

Comments

Numerators of successive convergents to e using continued fraction 1 + 2/(1 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + 1/(22 + 1/26 + ...)))))).
Number of ways to use the elements of {1,...,k}, n <= k <= 2n, once each to form a collection of n lists, each having length 1 or 2. - Bob Proctor, Apr 18 2005, Jun 26 2006

References

  • L. Euler, 1737.
  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 6th ed., Section 0.126, p. 2.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A080893.
a(n) = A099022(n)/n!.
Partial sums: A105747.
Replace "lists" with "sets" in comment: A001515.

Programs

  • Maple
    A:= gfun:-rectoproc({a(n) = (4*n-2)*a(n-1) + a(n-2),a(0)=1,a(1)=3},a(n),remember):
    map(A, [$0..20]); # Robert Israel, Jul 22 2015
    f:=proc(n) option remember; if n = 0 then 1 elif n=1 then 3 else f(n-2)+(4*n-2)*f(n-1); fi; end;
    [seq(f(n), n=0..20)]; # N. J. A. Sloane, May 09 2016
    seq(simplify(KummerU(-n, -2*n, 1)), n = 0..16); # Peter Luschny, May 10 2022
  • Mathematica
    Table[(2k)! Hypergeometric1F1[-k, -2k, 1]/k!, {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
  • PARI
    a(n)=sum(k=0,n,(n+k)!/k!/(n-k)!)
    
  • Sage
    A001517 = lambda n: hypergeometric([-n, n+1], [], -1)
    [simplify(A001517(n)) for n in (0..16)] # Peter Luschny, Oct 17 2014

Formula

a(n) = Sum_{k=0..n} (n+k)!/(k!*(n-k)!) = (e/Pi)^(1/2) K_{n+1/2}(1/2).
D-finite with recurrence a(n) = (4*n-2)*a(n-1) + a(n-2), n >= 2.
a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n+k)*binomial(n,k)*A000522(n+k). - Vladeta Jovovic, Sep 30 2006
E.g.f. (for offset 1): exp(x*c(x)), where c(x)=(1-sqrt(1-4*x))/(2*x) (cf. A000108). - Vladimir Kruchinin, Aug 10 2010
G.f.: 1/Q(0), where Q(k) = 1 - x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = (1/n!)*Integral_{x>=0} (x*(1 + x))^n*exp(-x) dx. Expansion of exp(x) in powers of y = x*(1 - x): exp(x) = 1 + y + 3*y^2/2! + 19*y^3/3! + 193*y^4/4! + 2721*y^5/5! + .... - Peter Bala, Dec 15 2013
a(n) = exp(1/2) / sqrt(Pi) * BesselK(n+1/2, 1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) ~ 2^(2*n+1/2) * n^n / exp(n-1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) = hypergeom([-n, n+1], [], -1). - Peter Luschny, Oct 17 2014
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 4^n * hypergeometric1f1(-n; -2*n; 1).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 4*t/(1-t)^2). (End)
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*k!. - Ilya Gutkovskiy, Nov 24 2017
a(n) = KummerU(-n, -2*n, 1). - Peter Luschny, May 10 2022

Extensions

More terms from Vladeta Jovovic, Apr 03 2000
Additional comments from Michael Somos, Jul 15 2002

A094954 Array T(k,n) read by antidiagonals. G.f.: x(1-x)/(1-kx+x^2), k>1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 13, 1, 1, 5, 19, 41, 34, 1, 1, 6, 29, 91, 153, 89, 1, 1, 7, 41, 169, 436, 571, 233, 1, 1, 8, 55, 281, 985, 2089, 2131, 610, 1, 1, 9, 71, 433, 1926, 5741, 10009, 7953, 1597, 1, 1, 10, 89, 631, 3409, 13201, 33461, 47956, 29681
Offset: 1

Views

Author

Ralf Stephan, May 31 2004

Keywords

Comments

Also, values of polynomials with coefficients in A098493 (see Fink et al.). See A098495 for negative k.
Number of dimer tilings of the graph S_{k-1} X P_{2n-2}.

Examples

			1,1,1,1,1,1,1,1,1,1,1,1,1,1, ...
1,2,5,13,34,89,233,610,1597, ...
1,3,11,41,153,571,2131,7953, ...
1,4,19,91,436,2089,10009,47956, ...
1,5,29,169,985,5741,33461,195025, ...
1,6,41,281,1926,13201,90481,620166, ...
		

Crossrefs

Rows are first differences of rows in array A073134.
Rows 2-14 are A000012, A001519, A079935/A001835, A004253, A001653, A049685, A070997, A070998, A072256, A078922, A077417, A085260, A001570. Other rows: A007805 (k=18), A075839 (k=20), A077420 (k=34), A078988 (k=66).
Columns include A028387. Diagonals include A094955, A094956. Antidiagonal sums are A094957.

Programs

  • Mathematica
    max = 14; row[k_] := Rest[ CoefficientList[ Series[ x*(1-x)/(1-k*x+x^2), {x, 0, max}], x]]; t = Table[ row[k], {k, 2, max+1}]; Flatten[ Table[ t[[k-n+1, n]], {k, 1, max}, {n, 1, k}]] (* Jean-François Alcover, Dec 27 2011 *)
  • PARI
    T(k,n)=polcoeff(x*(1-x)/(1-k*x+x*x),n)

Formula

Recurrence: T(k, 1) = 1, T(k, 2) = k-1, T(k, n) = kT(k, n-1) - T(k, n-2).
For n>3, T(k, n) = [k(k-2) + T(k, n-1)T(k, n-2)] / T(k, n-3).
T(k, n+1) = S(n, k) - S(n-1, k) = U(n, k/2) - U(n-1, k/2), with S, U = Chebyshev polynomials of second kind.
T(k+2, n+1) = Sum[i=0..n, k^(n-i) * C(2n-i, i)] (from comments by Benoit Cloitre).

A147703 Triangle [1,1,1,0,0,0,...] DELTA [1,0,0,0,...] with Deléham DELTA defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 13, 27, 20, 7, 1, 34, 80, 73, 35, 9, 1, 89, 234, 252, 151, 54, 11, 1, 233, 677, 837, 597, 269, 77, 13, 1, 610, 1941, 2702, 2225, 1199, 435, 104, 15, 1, 1597, 5523, 8533, 7943, 4956, 2158, 657, 135, 17, 1
Offset: 0

Views

Author

Paul Barry, Nov 10 2008

Keywords

Comments

Equal to A062110*A007318 when A062110 is regarded as a triangle read by rows.

Examples

			Triangle begins
   1;
   1,   1;
   2,   3,   1;
   5,   9,   5,   1;
  13,  27,  20,   7,  1;
  34,  80,  73,  35,  9,  1;
  89, 234, 252, 151, 54, 11, 1;
		

Crossrefs

Row sums are A006012. Diagonal sums are A147704.

Programs

  • Maple
    # The function RiordanSquare is defined in A321620:
    RiordanSquare(1 / (1 - x / (1 - x / (1 - x))), 10); # Peter Luschny, Jan 26 2020
  • Mathematica
    nmax=9; Flatten[CoefficientList[Series[CoefficientList[Series[(1 - 2*x)/(1 - (3 + y)*x + (1 + y)*x^2), {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 11 2017 *)

Formula

Riordan array ((1-2x)/(1-3x+x^2), x(1-x)/(1-3x+x^2)).
Sum_{k=0..n} T(n,k)*x^k = A152239(n), A152223(n), A152185(n), A152174(n), A152167(n), A152166(n), A152163(n), A000007(n), A001519(n), A006012(n), A081704(n), A082761(n), A147837(n), A147838(n), A147839(n), A147840(n), A147841(n), for x = -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Dec 01 2008
G.f.: (1-2*x)/(1-(3+y)*x+(1+y)*x^2). - Philippe Deléham, Nov 26 2011
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), for n > 1. - Philippe Deléham, Feb 12 2012
The Riordan square of the odd indexed Fibonacci numbers A001519. - Peter Luschny, Jan 26 2020

A026671 Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when on the diagonal, (1,1).

Original entry on oeis.org

1, 3, 11, 43, 173, 707, 2917, 12111, 50503, 211263, 885831, 3720995, 15652239, 65913927, 277822147, 1171853635, 4945846997, 20884526283, 88224662549, 372827899079, 1576001732485, 6663706588179, 28181895551161, 119208323665543, 504329070986033, 2133944799315027
Offset: 0

Views

Author

Keywords

Comments

1, 1, 3, 11, 43, 173, ... is the unique sequence for which both the Hankel transform of the sequence itself and the Hankel transform of its left shift are the powers of 2 (A000079). For example, det[{{1, 1, 3}, {1, 3, 11}, {3, 11, 43}}] = det[{{1, 3, 11}, {3, 11, 43}, {11, 43, 173}}] = 4. - David Callan, Mar 30 2007
From Paul Barry, Jan 25 2009: (Start)
a(n) is the image of F(2n+2) under the Catalan matrix (1,xc(x)) where c(x) is the g.f. of A000108.
The sequence 1,1,3,... is the image of A001519 under (1,xc(x)). This sequence has g.f. given by 1/(1-x-2x^2/(1-3x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction). (End)
Binomial transform of A111961. - Philippe Deléham, Feb 11 2009
From Paul Barry, Nov 03 2010: (Start)
The sequence 1,1,3,... has g.f. 1/(1-x/sqrt(1-4x)), INVERT transform of A000984.
It is an eigensequence of the sequence array for A000984. (End)

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

a(n) = T(2n-1, n-1), T given by A026736.
a(n) = T(2n, n), T given by A026670.
a(n) = T(2n+1, n+1), T given by A026725.
Row sums of triangle A054335.

Programs

  • GAP
    a:=[3,11,43];; for n in [4..30] do a[n]:=(2*(4*n-3)*a[n-1] - 3*(5*n-8)*a[n-2] - 2*(2*n-3)*a[n-3])/n; od; Concatenation([1], a); # G. C. Greubel, Jul 16 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/(Sqrt(1-4*x)-x) )); // G. C. Greubel, Jul 16 2019
    
  • Mathematica
    Table[SeriesCoefficient[1/(Sqrt[1-4*x]-x),{x,0,n}],{n,0,30}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    {a(n)= if(n<0, 0, polcoeff( 1/(sqrt(1 -4*x +x*O(x^n)) -x), n))} /* Michael Somos, Apr 20 2007 */
    
  • PARI
    my(x='x+O('x^66)); Vec( 1/(sqrt(1-4*x)-x) ) \\ Joerg Arndt, May 04 2013
    
  • Sage
    (1/(sqrt(1-4*x)-x)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 16 2019
    

Formula

From Wolfdieter Lang, Mar 21 2000: (Start)
G.f.: 1/(sqrt(1-4*x)-x).
a(n) = Sum_{i=1..n} a(i-1)*binomial(2*(n-i), n-i) + binomial(2*n, n), n >= 1, a(0)=1. (End)
G.f.: 1/(1 -x -2*x*c(x)) where c(x) = g.f. for Catalan numbers A000108. - Michael Somos, Apr 20 2007
From Paul Barry, Jan 25 2009: (Start)
G.f.: 1/(1 - 3xc(x) + x^2*c(x)^2);
G.f.: 1/(1-3x-2x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction).
a(0) = 1, a(n) = Sum_{k=0..n} (k/(2n-k))*C(2n-k,n-k)*F(2k+2). (End)
a(n) = Sum_{k=0..n} A039599(n,k) * A000045(k+2). - Philippe Deléham, Feb 11 2009
From Paul Barry, Feb 08 2009: (Start)
G.f.: 1/(1-x/(1-2x/(1-x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction);
G.f. of 1,1,3,... is 1/(1-x-2x/(1-x/(1-x/(1-x/(1-... (continued fraction). (End)
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) = the upper left term in M^n, M = the infinite square production matrix:
3, 2, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
From Vaclav Kotesovec, Oct 08 2012: (Start)
D-finite with recurrence: n*a(n) = 2*(4*n-3)*a(n-1) - 3*(5*n-8)*a(n-2) - 2*(2*n-3)*a(n-3).
a(n) ~ (2+sqrt(5))^n/sqrt(5). (End)
a(n) = Sum_{k=0..n+1} 4^(n+1-k) * binomial(n-k/2,n+1-k). - Seiichi Manyama, Mar 30 2025
From Peter Luschny, Mar 30 2025: (Start)
a(n) = 4^n*(binomial(n-1/2, n)*hypergeom([1, (1-n)/2, -n/2], [1/2, 1/2-n], -1/4) + hypergeom([(1-n)/2, 1-n/2], [1-n], -1/4)/4) for n > 0.
a(n) = A001076(n) + A176280(n). (End)
Previous Showing 41-50 of 349 results. Next