A001570
Numbers k such that k^2 is centered hexagonal.
Original entry on oeis.org
1, 13, 181, 2521, 35113, 489061, 6811741, 94875313, 1321442641, 18405321661, 256353060613, 3570537526921, 49731172316281, 692665874901013, 9647591076297901, 134373609193269601, 1871582937629476513, 26067787517619401581, 363077442309042145621
Offset: 1
G.f. = x + 13*x^2 + 181*x^3 + 2521*x^4 + 35113*x^5 + 489061*x^6 + 6811741*x^7 + ...
- E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 03 2022
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 1..870 (terms 1..101 from T. D. Noe)
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- G. Julia, Triangles dont un angle mesure 120 degrés, Problème Capes, part C (in French).
- Tanya Khovanova, Recursive Sequences
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Sociedad Magic Penny Patagonia, Leonardo en Patagonia
- V. Thebault, Consecutive cubes with difference a square, Amer. Math. Monthly, 56 (1949), 174-175.
- Eric Weisstein's World of Mathematics, Hex Number
- Wikipedia, Beal's conjecture
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
One half of odd part of bisection of
A001075. First differences of
A007655.
A122571 is another version of the same sequence.
Cf. similar sequences listed in
A238379.
Cf.
A028231, which gives the corresponding values of x in 3n^2 = x^2 + x + 1.
Similar sequences of the type cosh((2*m+1)*arccosh(k))/k are listed in
A302329. This is the case k=2.
-
[((2 + Sqrt(3))^(2*n - 1) + (2 - Sqrt(3))^(2*n - 1))/4: n in [1..50]]; // G. C. Greubel, Nov 04 2017
-
A001570:=-(-1+z)/(1-14*z+z**2); # Simon Plouffe in his 1992 dissertation.
-
NestList[3 + 7*#1 + 4*Sqrt[1 + 3*#1 + 3*#1^2] &, 0, 24] (* Zak Seidov, May 06 2007 *)
f[n_] := Simplify[(2 + Sqrt@3)^(2 n - 1) + (2 - Sqrt@3)^(2 n - 1)]/4; Array[f, 19] (* Robert G. Wilson v, Oct 28 2010 *)
a[c_, n_] := Module[{},
p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Denominator[Convergents[Sqrt[c], n p]];
t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
Return[t];
] (* Complement of A041017 *)
a[12, 20] (* Gerry Martens, Jun 07 2015 *)
LinearRecurrence[{14, -1}, {1, 13}, 19] (* Jean-François Alcover, Sep 26 2017 *)
CoefficientList[Series[x (1-x)/(1-14x+x^2),{x,0,20}],x] (* Harvey P. Dale, Sep 18 2024 *)
-
{a(n) = real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2}; /* Michael Somos, Feb 15 2011 */
A140480
RMS numbers: numbers n such that root mean square of divisors of n is an integer.
Original entry on oeis.org
1, 7, 41, 239, 287, 1673, 3055, 6665, 9545, 9799, 9855, 21385, 26095, 34697, 46655, 66815, 68593, 68985, 125255, 155287, 182665, 242879, 273265, 380511, 391345, 404055, 421655, 627215, 730145, 814463, 823537, 876785, 1069895, 1087009, 1166399, 1204281, 1256489
Offset: 1
- Giovanni Resta, Table of n, a(n) for n = 1..7430 (terms < 10^13, first 455 terms from T. D. Noe, terms 456..1660 from Donovan Johnson)
- A. S. Fraenkel, Heap games, numeration systems and sequences, arXiv:math/9809074 [math.CO], 1998; Annals of Combinatorics, 2 (1998), 197-210.
- Aviezri S. Fraenkel, On the recurrence f(m+1)= b(m)*f(m)-f(m-1) and applications, Discrete Mathematics 224 (2000), pp. 273-279.
- H. W. Lenstra Jr., Solving the Pell Equation, Notices of the AMS, Vol.49, No.2, Feb. 2002, p.182-192. [_Ctibor O. Zizka_, Aug 30 2008]
- Eric Weisstein's World of Math, Root Mean Square
Cf.
A002315,
A001653,
A001834,
A001835,
A001599,
A000005,
A000040,
A003601,
A010052,
A001157,
A020486,
A158294,
A224988.
-
a140480 n = a140480_list !! (n-1)
a140480_list = filter
((== 1) . a010052 . (\x -> a001157 x `div` a000005 x)) a020486_list
-- Reinhard Zumkeller, Jan 15 2013
-
rmsQ[n_] := IntegerQ[Sqrt[DivisorSigma[2, n]/DivisorSigma[0, n]]]; m = 160000; sel1 = Select[8*Range[0, m]+1, rmsQ]; sel7 = Select[8*Range[m]-1, rmsQ]; Union[sel1, sel7] (* Jean-François Alcover, Aug 31 2011, after T. D. Noe's comment *)
Select[Range[1300000],IntegerQ[RootMeanSquare[Divisors[#]]]&] (* Harvey P. Dale, Mar 24 2016 *)
A003480
a(0) = 1, a(1) = 2, for n > 1, a(n) = 4*a(n-1) - 2*a(n-2).
Original entry on oeis.org
1, 2, 7, 24, 82, 280, 956, 3264, 11144, 38048, 129904, 443520, 1514272, 5170048, 17651648, 60266496, 205762688, 702517760, 2398545664, 8189147136, 27959497216, 95459694592, 325919783936, 1112759746560, 3799199418368, 12971278180352, 44286713884672, 151204299177984
Offset: 0
- G. Castiglione and A. Restivo, L-convex polyominoes: a survey, Chapter 2 of K. G. Subranian et al., eds., Formal Models, Languages and Applications, World Scientific, 2015.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from T. D. Noe)
- Daniela Battaglino, Jean-Marc Fédou, Simone Rinaldi, and Samanta Socci, The number of k-parallelogram polyominoes, FPSAC 2013 Paris, France DMTCS Proc. AS, 2013, 1143-1154.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, (an + b)-color compositions, arXiv:1707.07798 [math.CO], 2017.
- Adrien Boussicault, Simone Rinaldi, and Samanta Socci, The number of directed k-convex polyominoes, arXiv preprint arXiv:1501.00872 [math.CO], 2015; Discrete Math., 343 (2020), #111731, 22 pages. See t_n.
- Steve Butler, Jeongyoon Choi, Kimyung Kim, and Kyuhyeok Seo, Enumerating multiplex juggling patterns, arXiv:1702.05808 [math.CO], 2017.
- Peter J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- Giuseppa Castiglione, Andrea Frosini, Emanuele Munarini, Antonio Restivo, and Simone Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
- Yumin Cho, Jaehyun Kim, Jang Soo Kim, and Nakyung Lee, Enumeration of multiplex juggling card sequences using generalized q-derivatives, arXiv:2402.09903 [math.CO], 2024. See p. 6.
- Ana Djurdjevac, Vesa Kaarnioja, Claudia Schillings, and André-Alexander Zepernick, Uncertainty quantification for stationary and time-dependent PDEs subject to Gevrey regular random domain deformations, arXiv:2502.12345 [math.NA], 2025. See p. 34.
- Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607.
- Enrica Duchi, Simone Rinaldi, and Gilles Schaeffer, The number of Z-convex polyominoes, arXiv:math/0602124 [math.CO], 2006.
- Andrea Frosini and Simone Rinaldi, An object grammar for the class of L-convex polyominoes, PU.M.A. Vol. 17 (2006), No. 1-2, pp. 97-110.
- Taras Goy and Mark Shattuck, Toeplitz-Hessenberg determinant formulas for the sequence F_n-1, Online J. Anal. Comb. (2025) Vol. 19, Paper 1, 1-26. See pp. 12, 18
- Yu-hong. Guo, Some n-Color Compositions, J. Int. Seq. 15 (2012) 12.1.2, eq (12).
- Harri Hakula, Helmut Harbrecht, Vesa Kaarnioja, Frances Y. Kuo, and Ian H. Sloan, Uncertainty quantification for random domains using periodic random variables, arXiv:2210.17329 [math.NA], 2022.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 418
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products and noncommutative multi-symmetric functions, arXiv:0806.3682 [math.CO], 2008.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
- Index entries for sequences related to poker
- Index entries for linear recurrences with constant coefficients, signature (4,-2).
-
a003480 n = a003480_list !! n
a003480_list = 1 : 2 : 7 : (tail $ zipWith (-)
(tail $ map (* 4) a003480_list) (map (* 2) a003480_list))
-- Reinhard Zumkeller, Jan 16 2012, Oct 03 2011
-
INVERT([seq(n+1,n=1..20)]); # Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008
-
a[0]=1; a[1]=2; a[2]=7; a[n_]:=a[n]=4*a[n-1] - 2*a[n-2]; Table[a[n],{n,0,24}] (* Jean-François Alcover, Mar 22 2011 *)
Join[{1},LinearRecurrence[{4,-2},{2,7},40]] (* Harvey P. Dale, Oct 23 2011 *)
-
a(n)=polcoeff((1-x)^2/(1-4*x+2*x^2)+x*O(x^n),n)
-
a(n)=local(x); if(n<1,n==0,x=(2+quadgen(8))^n; imag(x)+real(x)/2)
A061278
a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3) with a(1) = 1 and a(k) = 0 if k <= 0.
Original entry on oeis.org
0, 1, 5, 20, 76, 285, 1065, 3976, 14840, 55385, 206701, 771420, 2878980, 10744501, 40099025, 149651600, 558507376, 2084377905, 7779004245, 29031639076, 108347552060, 404358569165, 1509086724601, 5631988329240, 21018866592360, 78443478040201, 292755045568445
Offset: 0
a(2)=5 and T(5)=15 which is 1/3 of 45=T(9).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., Vol. 58, No. 2 (2020), 140-142.
- Niccolò Castronuovo, On the number of fixed points of the map gamma, arXiv:2102.02739 [math.NT], 2021. Mentions this sequence.
- Brian Lawrence and Will Sawin, The Shafarevich conjecture for hypersurfaces in abelian varieties, arXiv:2004.09046 [math.NT], 2020.
- Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
- L. A. Medina and A. Straub, On multiple and infinite log-concavity, 2013.
- S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987. - From _N. J. A. Sloane_, Dec 26 2012
- Robert Phillips, A triangular number result, 2009.
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Congruence Properties of Indices of Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2103.03019 [math.GM], 2021.
- Vladimir Pletser, Searching for multiple of triangular numbers being triangular numbers, 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Eric Weisstein, Centered Polygonal Number.
- Index entries for linear recurrences with constant coefficients, signature (5,-5,1).
-
I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2) + 1: n in [1..30]]; // Vincenzo Librandi, Dec 23 2012
-
f:= gfun:-rectoproc({a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3),a(1)=1,a(0)=0,a(-1)=0},a(n),remember):
map(f, [$0..50]); # Robert Israel, Jun 05 2015
-
CoefficientList[Series[x/(1 - 5*x + 5*x^2 - x^3), {x, 0, nn}], x] (* T. D. Noe, Jun 04 2012 *)
LinearRecurrence[{5,-5,1},{0,1,5},30] (* Harvey P. Dale, Dec 23 2012 *)
-
M = [1, 1, 0; 1, 3, 1; 0, 1, 1]; for(i=1, 30, print1(([1, 0, 0]*M^i)[3], ",")) \\ Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 25 2005
More terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 25 2005
A052530
a(n) = 4*a(n-1) - a(n-2), with a(0) = 0, a(1) = 2.
Original entry on oeis.org
0, 2, 8, 30, 112, 418, 1560, 5822, 21728, 81090, 302632, 1129438, 4215120, 15731042, 58709048, 219105150, 817711552, 3051741058, 11389252680, 42505269662, 158631825968, 592022034210, 2209456310872, 8245803209278, 30773756526240
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Colored compositions. a(2) = 8: There are two compositions of 4 into even parts, namely 4 and 2 + 2. Using primes to indicate the coloring of parts, the 8 colored compositions are 4, 4', 4'', 4''', 2 + 2, 2 + 2', 2' + 2 and 2' + 2'. - _Peter Bala_, Sep 17 2013
- T. D. Noe, Table of n, a(n) for n = 0..200
- K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, (an + b)-color compositions, arXiv:1707.07798 [math.CO], 2017.
- Niccolò Castronuovo, On the number of fixed points of the map gamma, arXiv:2102.02739 [math.NT], 2021. Mentions this sequence.
- C. R. Dedrickson III, Compositions, Bijections, and Enumerations Thesis, 2012, Jack N. Averitt College of Graduate Studies, Georgia Southern University.
- J.-P. Ehrmann et al., Problem POLYA002, Integer pairs (x,y) for which (x^2+y^2)/(1+pxy) is an integer.
- F. Goebel and A. A. Jagers, On a conjecture of Tutte concerning minimal tree numbers, J. Combin. Theory Ser. B 26 (1979), no. 3, 346-348. MR0535948 (80m:05064). [From _N. J. A. Sloane_, Feb 20 2012]
- A. F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, Fibonacci Quarterly, Vol. 3, No. 3, 1965, pp. 161-176.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 460
- N. J. A. Sloane, Transforms
- G. Tesler, Matchings in graphs on non-orientable surfaces, Journal of Combinatorial Theory B, 78(2000), 198-231.
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
-
a052530 n = a052530_list !! n
a052530_list =
0 : 2 : zipWith (-) (map (* 4) $ tail a052530_list) a052530_list
-- Reinhard Zumkeller, Sep 29 2011
-
I:=[0,2]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Feb 25 2019
-
spec := [S,{S=Sequence(Prod(Union(Z,Z),Sequence(Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
s := sqrt(3): a := n -> ((2-s)^n-(s+2)^n)/(s*(s-2)*(s+2)):
seq(simplify(a(n)), n=0..24); # Peter Luschny, Apr 28 2020
-
p=1; c=2; a[0]=0; a[1]=c; a[n_]:=a[n]=p*c^2*a[n-1]-a[n-2]; Table[a[n], {n, 0, 20}]
NestList[2 # + Sqrt[4 + 3 #^2]&, 0, 200] (* Zak Seidov, Mar 31 2011 *)
LinearRecurrence[{4, -1}, {0, 2}, 25] (* T. D. Noe, Jan 09 2012 *)
CoefficientList[Series[2x/(1-4x+x^2),{x,0,30}],x] (* Harvey P. Dale, May 31 2023 *)
-
{ polya002(p,c,m) = local(v,w,j,a); w=0; print1(w,", "); v=c; print1(v,", "); j=1; while(j<=m,a=p*c^2*v-w; print1(a,", "); w=v; v=a; j++) };
polya002(1,2,25)
-
my(x='x+O('x^30)); concat([0], Vec(2*x/(1-4*x+x^2))) \\ G. C. Greubel, Feb 25 2019
-
first(n) = n = max(n, 2); my(res = vector(n)); res[1] = 0; res[2] = 2; for(i = 3, n, res[i] = 4 * res[i-1] - res[i-2]); res \\ David A. Corneth, Apr 28 2020
-
(2*x/(1-4*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
a(0) changed to 0 and entry revised accordingly by
Max Alekseyev, Nov 15 2007
A005246
a(n) = (1 + a(n-1)*a(n-2))/a(n-3), a(0) = a(1) = a(2) = 1.
Original entry on oeis.org
1, 1, 1, 2, 3, 7, 11, 26, 41, 97, 153, 362, 571, 1351, 2131, 5042, 7953, 18817, 29681, 70226, 110771, 262087, 413403, 978122, 1542841, 3650401, 5757961, 13623482, 21489003, 50843527, 80198051, 189750626, 299303201, 708158977, 1117014753
Offset: 0
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 7*x^5 + 11*x^6 + 26*x^7 + 41*x^8 + ...
From _Richard Choulet_, Feb 24 2010: (Start)
a(4) = 4^2 - 4^0 - 3*4^1 = 3.
a(7) = 4^3 - 4*binomial(2,1) - 2*(4^2-1) = 26. (End)
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..500
- Reid Barton, A combinatorial interpretation of the sequence 1, 1, 2, 6, 21, 77, ...
- Reid Barton, A combinatorial interpretation of the sequence 1, 1, 2, 6, 21, 77, ..., [Annotated scanned copy]
- Peter Cameron's Blog, The ADE affair, 3, Posted 23/06/2011.
- T. Crilly, Double sequences of positive integers, Math. Gaz., 69 (1985), 263-271.
- Enrica Duchi, Andrea Frosini, Renzo Pinzani and Simone Rinaldi, A Note on Rational Succession Rules, J. Integer Seqs., Vol. 6, 2003.
- R. K. Guy, Letter to N. J. A. Sloane, Feb 1986
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- Valentin Ovsienko, Serge Tabachnikov, Dual numbers, weighted quivers, and extended Somos and Gale-Robinson sequences, arXiv:1705.01623 [math.CO], 2017. See p. 10.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-1).
-
a005246 n = a005246_list !! n
a005246_list = 1 : 1 : 1 : map (+ 1) (zipWith div
(zipWith (*) (drop 2 a005246_list) (tail a005246_list)) a005246_list)
-- Reinhard Zumkeller, Mar 07 2012
-
A005246:=-(-1-z+2*z**2+z**3)/(1-4*z**2+z**4); # Conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence except for one of the leading 1's.
for q from 1 to 10 do :a:=1:b:=1:Q:=(a*b^2+q*b+a+q)/(a*b): for m from 0 to 15 do U(m):=sum((-1)^p*binomial(m-p,p)*Q^(m-2*p),p=0..floor(m/2))+(b-Q)*sum((-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p),p=0..floor((m-1)/2)):od: for m from 0 to 15 do V(m):=a*sum((-1)^p*binomial(m-p,p)*Q^(m-2*p),p=0..floor(m/2))+(a*b+q-a*Q)*sum((-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p),p=0..floor((m-1)/2)):od:for m from 0 to 15 do W(2*m):=U(m):od:for m from 0 to 14 do W(2*m+1):=V(m):od:seq(W(m),m=0..30):od; # Richard Choulet, Feb 24 2010
-
RecurrenceTable[{a[0]==a[1]==a[2]==1,a[n]==(1+a[n-1]a[n-2])/a[n-3]},a,{n,40}] (* Harvey P. Dale, May 28 2013 *)
a[n_] := Cosh[(n-1)*ArcSinh[1/Sqrt[2]]]*If[EvenQ[n], Sqrt[2/3], 1]; Table[a[n] // FunctionExpand, {n, 0, 34}] (* Jean-François Alcover, Dec 10 2014, after Peter Bala *)
a[ n_] := With[{m = If[ n < 0, 2 - n, n]}, SeriesCoefficient[ (1 + x - 3 x^2 - 2 x^3) / (1 - 4 x^2 + x^4), {x, 0, m}]]; (* Michael Somos, Feb 10 2017 *)
-
{a(n) = if( n<0, n = 2 - n); polcoeff((1 + x - 3*x^2 - 2*x^3) / (1 - 4*x^2 + x^4) + x * O(x^n), n)}; /* Michael Somos, Nov 15 2006 */
-
{a(n) = real( (2 + quadgen(12))^(n\2) * if( n%2, 1, 1 - 1 / quadgen(12)) )}; /* Michael Somos, May 24 2012 */
A006253
Number of perfect matchings (or domino tilings) in C_4 X P_n.
Original entry on oeis.org
1, 2, 9, 32, 121, 450, 1681, 6272, 23409, 87362, 326041, 1216800, 4541161, 16947842, 63250209, 236052992, 880961761, 3287794050, 12270214441, 45793063712, 170902040409, 637815097922, 2380358351281, 8883618307200, 33154114877521, 123732841202882
Offset: 0
G.f. = 1 + 2*x + 9*x^2 + 32*x^3 + 121*x^4 + 450*x^5 + ... - _Michael Somos_, Mar 17 2022
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 360.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- S. Butler and S. Osborne, Counting tilings by taking walks, preprint, 2012; J. Combin. Math. Combin. Comput. 88 2014 17-25. - From _N. J. A. Sloane_, Dec 27 2012
- M. Ciucu, Enumeration of perfect matchings in graphs with reflective symmetry, J. Combin. Theory Ser. A 77 (1997), no. 1, 67-97
- D. Deford, Seating rearrangements on arbitrary graphs, preprint 2013; involve, Vol. 7 (2014), No. 6, 787-805.
- F. Faase, Counting Hamiltonian cycles in product graphs
- F. Faase, Results from the counting program
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
- Charles H. Jepsen, Packing a box with bricks, Math. Mag. 64 (2) (1991) 92-97, Table 1
- W. Jockusch, Perfect matchings and perfect squares J. Combin. Theory Ser. A 67 (1994), no. 1, 100-115.
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: Counts derived from transfer matrices, arXiv:1406.7788 (2014), eq. (36).
- Valcho Milchev and Tsvetelina Karamfilova, Domino tiling in grid - new dependence, arXiv:1707.09741 [math.HO], 2017.
- László Németh, Tilings of (2 X 2 X n)-board with colored cubes and bricks, arXiv:1909.11729 [math.CO], 2019.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Radovan Potůček, The number of fillings a 2 X 2 X n prism with 1 X 1 X 2 prisms, Equations (2024) Vol. 3, 104-114.
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
- Index entries for sequences related to dominoes
- Index entries for sequences related to bricks
- Index entries for linear recurrences with constant coefficients, signature (3,3,-1).
-
a:=[1,2,9];; for n in [4..30] do a[n]:=3*a[n-1]+3*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Nov 16 2018
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)/(1-3*x-3*x^2+x^3))); // G. C. Greubel, Nov 16 2018
-
CoefficientList[Series[(1 - x)/(1 - 3 x - 3 x^2 + x^3), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 15 2012 *)
RecurrenceTable[{a[1] == 1, a[2] == 2, a[n] == BitXor[1, a[n - 1]]^2/a[n - 2]}, a, {n, 30}] (* Jon Maiga, Nov 16 2018 *)
LinearRecurrence[{3,3,-1}, {1,2,9}, 30] (* G. C. Greubel, Nov 16 2018 *)
a[ n_] := (-1)^n * ChebyshevU[n, Sqrt[-1/2]]^2; (* Michael Somos, Mar 17 2022 *)
-
a(n)=(sqrt(3)+2)^(n+1) \/ 6 \\ Charles R Greathouse IV, Aug 18 2016
-
a(n)=([0,1,0; 0,0,1; -1,3,3]^n*[1;2;9])[1,1] \\ Charles R Greathouse IV, Aug 18 2016
-
Vec((1 - x) / ((1 + x)*(1 - 4*x + x^2)) + O(x^40)) \\ Colin Barker, Dec 16 2017
-
{a(n) = simplify((-1)^n * polchebyshev(n, 2, quadgen(-8)/2)^2)}; /* Michael Somos, Mar 17 2022 */
-
s=((1-x)/(1-3*x-3*x^2+x^3)).series(x,30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 16 2018
A094954
Array T(k,n) read by antidiagonals. G.f.: x(1-x)/(1-kx+x^2), k>1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 13, 1, 1, 5, 19, 41, 34, 1, 1, 6, 29, 91, 153, 89, 1, 1, 7, 41, 169, 436, 571, 233, 1, 1, 8, 55, 281, 985, 2089, 2131, 610, 1, 1, 9, 71, 433, 1926, 5741, 10009, 7953, 1597, 1, 1, 10, 89, 631, 3409, 13201, 33461, 47956, 29681
Offset: 1
1,1,1,1,1,1,1,1,1,1,1,1,1,1, ...
1,2,5,13,34,89,233,610,1597, ...
1,3,11,41,153,571,2131,7953, ...
1,4,19,91,436,2089,10009,47956, ...
1,5,29,169,985,5741,33461,195025, ...
1,6,41,281,1926,13201,90481,620166, ...
Rows are first differences of rows in array
A073134.
Rows 2-14 are
A000012,
A001519,
A079935/
A001835,
A004253,
A001653,
A049685,
A070997,
A070998,
A072256,
A078922,
A077417,
A085260,
A001570. Other rows:
A007805 (k=18),
A075839 (k=20),
A077420 (k=34),
A078988 (k=66).
-
max = 14; row[k_] := Rest[ CoefficientList[ Series[ x*(1-x)/(1-k*x+x^2), {x, 0, max}], x]]; t = Table[ row[k], {k, 2, max+1}]; Flatten[ Table[ t[[k-n+1, n]], {k, 1, max}, {n, 1, k}]] (* Jean-François Alcover, Dec 27 2011 *)
-
T(k,n)=polcoeff(x*(1-x)/(1-k*x+x*x),n)
A079935
a(n) = 4*a(n-1) - a(n-2) with a(1) = 1, a(2) = 3.
Original entry on oeis.org
1, 3, 11, 41, 153, 571, 2131, 7953, 29681, 110771, 413403, 1542841, 5757961, 21489003, 80198051, 299303201, 1117014753, 4168755811, 15558008491, 58063278153, 216695104121, 808717138331, 3018173449203, 11263976658481, 42037733184721, 156886956080403
Offset: 1
a(4) = 41 since frac(1*x) + frac(3*x) + frac(11*x) + frac(41*x) < 1, while frac(1*x) + frac(3*x) + frac(11*x) + frac(k*x) > 1 for all k > 11 and k < 41.
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Dalen Dockery, Marie Jameson, and Samuel Wilson, d-Fold Partition Diamonds, arXiv:2307.02579 [math.NT], 2023.
- Tanya Khovanova, Recursive Sequences
- Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9:3 (2005), pp. 609-640.
- G. Tesler, Matchings in graphs on non-orientable surfaces, Journal of Combinatorial Theory B, 78(2000), 198-231.
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory, Vol. 7, No. 5 (2011), pp. 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012), The John Selfridge Memorial Volume.
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
Cf.
A001835 (same except for the first term).
Cf. similar sequences listed in
A238379.
-
a079935 n = a079935_list !! (n-1)
a079935_list =
1 : 3 : zipWith (-) (map (4 *) $ tail a079935_list) a079935_list
-- Reinhard Zumkeller, Aug 14 2011
-
I:=[1,3]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 06 2015
-
f:= gfun:-rectoproc({a(n) = 4*a(n-1) - a(n-2),a(1)=1,a(2)=3}, a(n), remember):
seq(f(n),n=1..30); # Robert Israel, Jun 05 2015
-
a[n_] := (MatrixPower[{{1, 2}, {1, 3}}, n].{{1}, {1}})[[1, 1]]; Table[ a[n], {n, 0, 23}] (* Robert G. Wilson v, Jan 13 2005 *)
LinearRecurrence[{4,-1},{1,3},30] (* or *) CoefficientList[Series[ (1-x)/(1-4x+x^2),{x,0,30}],x] (* Harvey P. Dale, Apr 26 2011 *)
a[n_] := Sqrt[2/3] Cosh[(-1 - 2 n) ArcCsch[Sqrt[2]]];
Table[Simplify[a[n-1]], {n, 1, 12}] (* Peter Luschny, Oct 13 2020 *)
-
a(n)=([0,1; -1,4]^(n-1)*[1;3])[1,1] \\ Charles R Greathouse IV, Mar 18 2017
-
my(x='x+O('x^30)); Vec((1-x)/(1-4*x+x^2)) \\ G. C. Greubel, Feb 25 2019
-
[lucas_number1(n,4,1)-lucas_number1(n-1,4,1) for n in range(1, 25)] # Zerinvary Lajos, Apr 29 2009
A028230
Bisection of A001353. Indices of square numbers which are also octagonal.
Original entry on oeis.org
1, 15, 209, 2911, 40545, 564719, 7865521, 109552575, 1525870529, 21252634831, 296011017105, 4122901604639, 57424611447841, 799821658665135, 11140078609864049, 155161278879431551, 2161117825702177665, 30100488280951055759, 419245718107612602961, 5839339565225625385695
Offset: 1
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
- J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
- Vincenzo Librandi, Table of n, a(n) for n = 1..890
- K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- T. N. E. Greville, Table for third-degree spline interpolations with equally spaced arguments, Math. Comp., 24 (1970), 179-183.
- W. D. Hoskins, Table for third-degree spline interpolation using equi-spaced knots, Math. Comp., 25 (1971), 797-801.
- Tanya Khovanova, Recursive Sequences
- E. Kilic, Y. T. Ulutas, and N. Omur, A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters, J. Int. Seq. 14 (2011) #11.5.6, table 4, k=1, t=2.
- Dino Lorenzini, and Z. Xiang, Integral points on variable separated curves, Preprint 2016.
- F. V. Waugh and M. W. Maxfield, Side-and-diagonal numbers, Math. Mag., 40 (1967), 74-83.
- Eric Weisstein's World of Mathematics, Octagonal Square Number.
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
a:=[1,15];; for n in [3..30] do a[n]:=14*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
-
I:=[1,15]; [n le 2 select I[n] else 14*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 06 2019
-
seq(coeff(series((1+x)/(1-14*x+x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 06 2019
-
LinearRecurrence[{14, - 1}, {1, 15}, 17] (* Ant King, Nov 15 2011 *)
CoefficientList[Series[(1+x)/(1-14x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 17 2014 *)
-
Vec((1+x)/(1-14*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 16 2014
-
isok(n) = ispolygonal(n^2, 8); \\ Michel Marcus, Jul 09 2017
-
[(lucas_number2(n,14,1)-lucas_number2(n-1,14,1))/12 for n in range(1, 18)] # Zerinvary Lajos, Nov 10 2009
Incorrect recurrence relation deleted by
Ant King, Nov 15 2011
Comments