cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 147 results. Next

A050534 Tritriangular numbers: a(n) = binomial(binomial(n,2),2) = n*(n+1)*(n-1)*(n-2)/8.

Original entry on oeis.org

0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990, 1485, 2145, 3003, 4095, 5460, 7140, 9180, 11628, 14535, 17955, 21945, 26565, 31878, 37950, 44850, 52650, 61425, 71253, 82215, 94395, 107880, 122760, 139128, 157080, 176715, 198135, 221445, 246753, 274170, 303810, 335790
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999

Keywords

Comments

"There are n straight lines in a plane, no two of which are parallel and no three of which are concurrent. Their points of intersection being joined, show that the number of new lines drawn is (1/8)n(n-1)(n-2)(n-3)." (Schmall, 1915).
Several different versions of this sequence are possible, beginning with either one, two or three 0's.
If Y is a 3-subset of an n-set X then, for n>=6, a(n-4) is the number of (n-6)-subsets of X which have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Number of distinct ways to select 2 pairs of objects from a set of n+1 objects, when order doesn't matter. For example, with n = 3 (4 objects), the 3 possibilities are (12)(34), (13)(24), and (14)(23). - Brian Parsonnet, Jan 03 2012
Partial sums of A027480. - J. M. Bergot, Jul 09 2013
For the set {1,2,...,n}, the sum of the 2 smallest elements of all subsets with 3 elements is a(n) (see Bulut et al. link). - Serhat Bulut, Jan 20 2015
a(n) is also the number of subgroups of S_{n+1} (the symmetric group on n+1 elements) that are isomorphic to D_4 (the dihedral group of order 8). - Geoffrey Critzer, Sep 13 2015
a(n) is the coefficient of x1^(n-3)*x2^2 in exponential Bell polynomial B_{n+1}(x1,x2,...) (number of ways to select 2 pairs among n+1 objects, see above), hence its link with A000292 and A001296 (see formula). - Cyril Damamme, Feb 26 2018
Also the number of 4-cycles in the complete graph K_{n+1}. - Eric W. Weisstein, Mar 13 2018
Number of chiral pairs of colorings of the 4 edges or vertices of a square using n or fewer colors. Each member of a chiral pair is a reflection, but not a rotation, of the other. - Robert A. Russell, Oct 20 2020

Examples

			For a(3)=3, the chiral pairs of square colorings are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. - _Robert A. Russell_, Oct 20 2020
		

References

  • Arthur T. Benjamin and Jennifer Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 154.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, Problem 1, page 72.
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5, case k=2.

Crossrefs

Cf. A000217, A000332, A033487, A107394, A034827, A210569, Second column of triangle A001498.
Cf. similar sequences listed in A241765.
Cf. (square colorings) A006528 (oriented), A002817 (unoriented), A002411 (achiral),
Row 2 of A325006 (orthoplex facets, orthotope vertices) and A337409 (orthotope edges, orthoplex ridges).
Row 4 of A293496 (cycles of n colors using k or fewer colors).

Programs

  • GAP
    List([0..40],n->3*Binomial(n+1,4)); # Muniru A Asiru, Mar 20 2018
  • Magma
    [3*Binomial(n+1, 4): n in [0..40]]; // Vincenzo Librandi, Feb 14 2015
    
  • Maple
    [seq(binomial(n+1,4)*3,n=0..40)]; # Zerinvary Lajos, Jul 18 2006
  • Mathematica
    Table[Binomial[Binomial[n, 2], 2], {n, 0, 50}] (* Stefan Steinerberger, Apr 08 2006 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 3, 15}, 40] (* Harvey P. Dale, Dec 14 2011 *)
    (* Start from Eric W. Weisstein, Mar 13 2018 *)
    Binomial[Binomial[Range[0, 20], 2], 2]
    Nest[Binomial[#, 2] &, Range[0, 20], 2]
    Nest[PolygonalNumber[# - 1] &, Range[0, 20], 2]
    CoefficientList[Series[3 x^3/(1 - x)^5, {x, 0, 20}], x]
    (* End *)
  • PARI
    a(n)=n*(n+1)*(n-1)*(n-2)/8 \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    x='x+O('x^100); concat([0, 0, 0], Vec(3*x^3/(1-x)^5)) \\ Altug Alkan, Nov 01 2015
    
  • Sage
    [(binomial(binomial(n,2),2)) for n in range(0, 39)] # Zerinvary Lajos, Nov 30 2009
    

Formula

a(n) = 3*binomial(n+1, 4) = 3*A000332(n+1).
From Vladeta Jovovic, May 03 2002: (Start)
Recurrence: a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 3*x^3 / (1-x)^5. (End)
a(n+1) = T(T(n)) - T(n); a(n+2) = T(T(n)+n) where T is A000217. - Jon Perry, Jun 11 2003
a(n+1) = T(n)^2 - T(T(n)) where T is A000217. - Jon Perry, Jul 23 2003
a(n) = T(T(n-1)-1) where T is A000217. - Jon E. Schoenfield, Dec 14 2014
a(n) = 3*C(n, 4) + 3*C(n, 3), for n>3.
From Alexander Adamchuk, Apr 11 2006: (Start)
a(n) = (1/2)*Sum_{k=1..n} k*(k-1)*(k-2).
a(n) = A033487(n-2)/2, n>1.
a(n) = C(n-1,2)*C(n+1,2)/2, n>2. (End)
a(n) = A052762(n+1)/8. - Zerinvary Lajos, Apr 26 2007
a(n) = (4x^4 - 4x^3 - x^2 + x)/2 where x = floor(n/2)*(-1)^n for n >= 0. - William A. Tedeschi, Aug 24 2010
E.g.f.: x^3*exp(x)*(4+x)/8. - Robert Israel, Nov 01 2015
a(n) = Sum_{k=1..n} Sum_{i=1..k} (n-i-1)*(n-k). - Wesley Ivan Hurt, Sep 12 2017
a(n) = A001296(n-1) - A000292(n-1). - Cyril Damamme, Feb 26 2018
Sum_{n>=3} 1/a(n) = 4/9. - Vaclav Kotesovec, May 01 2018
a(n) = A006528(n) - A002817(n) = (A006528(n) - A002411(n)) / 2 = A002817(n) - A002411(n). - Robert A. Russell, Oct 20 2020
Sum_{n>=3} (-1)^(n+1)/a(n) = 32*log(2)/3 - 64/9. - Amiram Eldar, Jan 09 2022
a(n) = Sum_{k=1..2} (-1)^(k+1)*binomial(n,2-k)*binomial(n,2+k). - Gerry Martens, Oct 09 2022

Extensions

Additional comments from Antreas P. Hatzipolakis, May 03 2002

A002414 Octagonal pyramidal numbers: a(n) = n*(n+1)*(2*n-1)/2.

Original entry on oeis.org

1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, 1386, 1794, 2275, 2835, 3480, 4216, 5049, 5985, 7030, 8190, 9471, 10879, 12420, 14100, 15925, 17901, 20034, 22330, 24795, 27435, 30256, 33264, 36465, 39865, 43470, 47286, 51319, 55575, 60060, 64780
Offset: 1

Views

Author

Keywords

Comments

Number of ways of covering a 2n X 2n lattice with 2n^2 dominoes with exactly 2 horizontal dominoes. - Yong Kong (ykong@curagen.com), May 06 2000
Equals binomial transform of [0, 1, 7, 6, 0, 0, 0, ...]. - Gary W. Adamson, Jun 14 2008, corrected Oct 25 2012
Sequence of the absolute values of the z^1 coefficients of the polynomials in the GF3 denominators of A156927. See A157704 for background information. - Johannes W. Meijer, Mar 07 2009
This sequence is related to A000326 by a(n) = n*A000326(n) - Sum_{i=0..n-1} A000326(i) and this is the case d=3 in the identity n*(n*(d*n-d+2)/2)-Sum_{k=0..n-1} k*(d*k-d+2)/2 = n*(n+1)*(2*d*n-2*d+3)/6. - Bruno Berselli, Apr 21 2010
2*a(n) gives the principal diagonal of the convolution array A213819. - Clark Kimberling, Jul 04 2012
Partial sums of the figurate octagonal numbers A000567. For each sequence with a linear recurrence with constant coefficients, the values reduced modulo some constant m generate a periodic sequence. For this sequence, these Pisano periods have length 1, 4, 3, 8, 5, 12, 7, 16, 9, 20, 11, 24, 13, 28, 15, 32, 17, ... for m >= 1. - Ant King, Oct 26 2012
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 773", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
On a square grid of side length n+1, the number of embedded rectangles (where each side is greater than 1). For example, in a 2 X 2 square there is one rectangle, in a 3 X 3 square there are nine rectangles, etc. - Peter Woodward, Nov 26 2017
a(n) is the sum of the numbers in the n X n square array A204154(n). - Ali Sada, Jun 21 2019
Sum of all multiples of n and n+1 that are <= n^2. - Wesley Ivan Hurt, May 25 2023

Examples

			a(2) = 9 since there are 9 ways to cover a 4 X 4 lattice with 8 dominoes, 2 of which is horizontal and the other 6 are vertical. - Yong Kong (ykong@curagen.com), May 06 2000
G.f. = x + 9*x^2 + 30*x^3 + 70*x^4 + 135*x^5 + 231*x^6 + 364*x^7 + 540*x^8 + 765*x^9 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093563 (( 6, 1) Pascal, column m=3). A000567 (differences).
Cf. A156927, A157704. - Johannes W. Meijer, Mar 07 2009
Cf. A000326.
Cf. similar sequences listed in A237616.
Cf. A260234 (largest prime factor of a(n+1)).

Programs

  • Magma
    [n*(n+1)*(2*n-1)/2: n in [1..50]]; // Vincenzo Librandi, May 24 2016
  • Maple
    A002414 := n-> 1/2*n*(n+1)*(2*n-1): seq(A002414(n), n=1..100);
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,9,30,70},40] (* Harvey P. Dale, Apr 12 2013 *)
  • PARI
    {a(n) = (2*n - 1) * n * (n + 1) / 2} \\ Michael Somos, Mar 17 2011
    

Formula

a(n) = odd numbers * triangular numbers = (2*n-1)* binomial(n+1,2). - Xavier Acloque, Oct 27 2003
G.f.: x*(1+5*x)/(1-x)^4. [Conjectured by Simon Plouffe in his 1992 dissertation.]
a(n) = A000578(n) + A000217(n-1). - Kieren MacMillan, Mar 19 2007
a(-n) = -A160378(n). - Michael Somos, Mar 17 2011
From Ant King, Oct 26 2012: (Start)
a(n) = a(n-1) + n*(3*n-2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = n*A000326(n) - A002411(n-1), see Berselli's comment.
a(n) = (n+1)*(2*A000567(n)+n)/6.
a(n) = A000292(n) + 5*A000292(n-1) = binomial(n+2,3)+5*binomial(n+1,3).
a(n) = A002413(n) + A000292(n-1).
a(n) = A000217(n) + 6*A000292(n-1).
Sum_{n>=1} 1/a(n) = 2*(4*log(2)-1)/3 = 1.1817258148265...
(End)
a(n) = Sum_{i=0..n-1} (n-i)*(6*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(2 + 7*x + 2*x^2)*exp(x)/2. - Ilya Gutkovskiy, May 23 2016
a(n) = A080851(6,n-1). - R. J. Mathar, Jul 28 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(Pi + 1 - 4*log(2))/3. - Amiram Eldar, Jul 02 2020

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 09 2000
Incorrect formula deleted by Ant King, Oct 04 2012

A006331 a(n) = n*(n+1)*(2*n+1)/3.

Original entry on oeis.org

0, 2, 10, 28, 60, 110, 182, 280, 408, 570, 770, 1012, 1300, 1638, 2030, 2480, 2992, 3570, 4218, 4940, 5740, 6622, 7590, 8648, 9800, 11050, 12402, 13860, 15428, 17110, 18910, 20832, 22880, 25058, 27370, 29820, 32412, 35150, 38038, 41080, 44280
Offset: 0

Views

Author

Keywords

Comments

Triangles in rhombic matchstick arrangement of side n.
Maximum accumulated number of electrons at energy level n. - Scott A. Brown, Feb 28 2000
Let M_n denote the n X n matrix M_n(i,j)=i^2+j^2; then the characteristic polynomial of M_n is x^n - a(n)x^(n-1) - .... - Michael Somos, Nov 14 2002
Convolution of odds (A005408) and evens (A005843). - Graeme McRae, Jun 06 2006
a(n) is the number of non-monotonic functions with domain {0,1,2} and codomain {0,1,...,n}. - Dennis P. Walsh, Apr 25 2011
For any odd number 2n+1, find Sum_{aJ. M. Bergot, Jul 16 2011
a(n) gives the number of (n+1) X (n+1) symmetric (0,1)-matrices containing three ones (see [Cameron]). - L. Edson Jeffery, Feb 18 2012
a(n) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n} and |w - x| < y. - Clark Kimberling, Jun 02 2012
Partial sums of A001105. - Omar E. Pol, Jan 12 2013
Total number of square diagonals (of any size) in an n X n square grid. - Wesley Ivan Hurt, Mar 24 2015
Number of diagonal attacks of two queens on (n+1) X (n+1) chessboard. - Antal Pinter, Sep 20 2015
a(n) is the minimum value obtainable by partitioning either the set {x in the natural numbers | 1 <= x <= 2n} or the set {x in the natural numbers | 0 <= x <= 2n+1} into pairs, taking the product of all such pairs, and taking the sum of all such products. - Thomas Anton, Oct 21 2020
a(n) is the irregularity of the n-th power of a path of length at least 3*n. (The irregularity of a graph is the sum of the differences between the degrees over all edges of the graph.) - Allan Bickle, Jun 16 2023
a(n) is the maximum possible total number of inversions in all rows and all columns of a Latin square of order n+1. - Ivaylo Kortezov, Jun 28 2025

Examples

			For n=2, a(2)=10 since there are 10 non-monotonic functions f from {0,1,2} to {0,1,2}, namely, functions f = <f(1),f(2),f(3)> given by <0,1,0>, <0,2,0>, <0,2,1>, <1,0,1>, <1,0,2>, <1,2,0>, <1,2,1>, <2,0,1>, <2,0,2>, and <2,1,2>. - _Dennis P. Walsh_, Apr 25 2011
Let n=4, 2*n+1 = 9. Since 9 = 1+8 = 3+6 = 5+4 = 7+2, a(4) = 1*8 + 3*6 + 5*4 + 7*2 = 60. - _Vladimir Shevelev_, May 11 2012
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of A132339.
Cf. A002378, A046092, A028896 (irregularities of maximal k-degenerate graphs).

Programs

  • Haskell
    a006331 n = sum $ zipWith (*) [2*n-1, 2*n-3 .. 1] [2, 4 ..]
    -- Reinhard Zumkeller, Feb 11 2012
  • Magma
    [n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
    
  • Maple
    A006331 := proc(n)
        n*(n+1)*(2*n+1)/3 ;
    end proc:
    seq(A006331(n),n=0..80) ; # R. J. Mathar, Sep 27 2013
  • Mathematica
    Table[n(n+1)(2n+1)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,2,10,28},50] (* Harvey P. Dale, Apr 12 2013 *)
  • PARI
    a(n)=if(n<0,0,n*(n+1)*(2*n+1)/3)
    

Formula

G.f.: 2*x*(1 + x)/(1 - x)^4. - Simon Plouffe (in his 1992 dissertation)
a(n) = 2*binomial(n+1,3) + 2*binomial(n+2,3).
a(n) = 2*A000330(n) = A002492(n)/2.
a(n) = Sum_{i=0..n} T(i,n-i), array T as in A048147. - N. J. A. Sloane, Dec 11 1999
From the formula for the sum of squares of positive integers 1^2 + 2^2 + 3^2 + ... + n^2 = n*(n+1)(2*n+1)/6, if we multiply both sides by 2 we get Sum_{k=0..n} 2*k^2 = n*(n+1)*(2*n+1)/3, which is an alternative formula for this sequence. - Mike Warburton, Sep 08 2007
10*a(n) = A016755(n) - A001845(n); since A016755 are odd cubes and A001845 centered octahedral numbers, 10*a(n) are the "odd cubes without their octahedral contents." - Damien Pras, Mar 19 2011
a(n) = sum(a*b), where the summing is over all unordered partitions 2*n+1=a+b. - Vladimir Shevelev, May 11 2012
a(n) = binomial(2*n+2, 3)/2. - Ronan Flatley, Dec 13 2012
a(n) = A000292(n) + A002411(n). - Omar E. Pol, Jan 11 2013
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3, with a(0)=0, a(1)=2, a(2)=10, a(3)=28. - Harvey P. Dale, Apr 12 2013
a(n) = A208532(n+1,2). - Philippe Deléham, Dec 05 2013
Sum_{n>0} 1/a(n) = 9 - 12*log(2). - Enrique Pérez Herrero, Dec 03 2014
a(n) = A000292(n-1) + (n+1)*A000217(n). - J. M. Bergot, Sep 02 2015
a(n) = 2*(A000332(n+3) - A000332(n+1)). - Antal Pinter, Sep 20 2015
From Bruno Berselli, May 17 2018: (Start)
a(n) = n*A002378(n) - Sum_{k=0..n-1} A002378(k) for n>0, a(0)=0. Also:
A163102(n) = n*a(n) - Sum_{k=0..n-1} a(k) for n>0, A163102(0)=0. (End)
a(n) = A005900(n) - A000290(n) = A096000(n) - A000578(n+1) = A000578(n+1) - A084980(n+1) = A000578(n+1) - A077415(n)-1 = A112524(n) + 1 = A188475(n) - 1 = A061317(n) - A100178(n) = A035597(n+1) - A006331(n+1). - Bruce J. Nicholson, Jun 24 2018
E.g.f.: (1/3)*exp(x)*x*(6 + 9*x + 2*x^2). - Stefano Spezia, Jan 05 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi - 9. - Amiram Eldar, Jan 04 2022

A080851 Square array of pyramidal numbers, read by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0

Views

Author

Paul Barry, Feb 21 2003

Keywords

Comments

The first row contains the triangular numbers, which are really two-dimensional, but can be regarded as degenerate pyramidal numbers. - N. J. A. Sloane, Aug 28 2015

Examples

			Array begins (n>=0, k>=0):
1,  3,  6, 10,  15,  21,  28,  36,  45,   55, ... A000217
1,  4, 10, 20,  35,  56,  84, 120, 165,  220, ... A000292
1,  5, 14, 30,  55,  91, 140, 204, 285,  385, ... A000330
1,  6, 18, 40,  75, 126, 196, 288, 405,  550, ... A002411
1,  7, 22, 50,  95, 161, 252, 372, 525,  715, ... A002412
1,  8, 26, 60, 115, 196, 308, 456, 645,  880, ... A002413
1,  9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
		

Crossrefs

Numerous sequences in the database are to be found in the array. Rows include the pyramidal numbers A000217, A000292, A000330, A002411, A002412, A002413, A002414, A007584, A007585, A007586.
Columns include or are closely related to A017029, A017113, A017017, A017101, A016777, A017305. Diagonals include A006325, A006484, A002417.
Cf. A057145, A027660 (antidiagonal sums).
See A257199 for another version of this array.

Programs

  • Derive
    vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
  • Maple
    A080851 := proc(n,k)
        binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
    end proc:
    seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
  • Mathematica
    pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)

Formula

T(n, k) = binomial(k+3, 3) + (n-1)*binomial(k+2, 3), corrected Oct 01 2021.
T(n, k) = T(n-1, k) + C(k+2, 3) = T(n-1, k) + k*(k+1)*(k+2)/6.
G.f. for rows: (1 + n*x)/(1-x)^4, n>=-1.
T(n,k) = sum_{j=1..k+1} A057145(n+2,j). - R. J. Mathar, Jul 28 2016

A277504 Array read by descending antidiagonals: T(n,k) is the number of unoriented strings with n beads of k or fewer colors.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 6, 1, 0, 1, 5, 10, 18, 10, 1, 0, 1, 6, 15, 40, 45, 20, 1, 0, 1, 7, 21, 75, 136, 135, 36, 1, 0, 1, 8, 28, 126, 325, 544, 378, 72, 1, 0, 1, 9, 36, 196, 666, 1625, 2080, 1134, 136, 1, 0, 1, 10, 45, 288, 1225, 3996, 7875, 8320, 3321, 272, 1, 0
Offset: 0

Views

Author

Jean-François Alcover, Oct 18 2016

Keywords

Comments

From Petros Hadjicostas, Jul 07 2018: (Start)
Column k of this array is the "BIK" (reversible, indistinct, unlabeled) transform of k,0,0,0,....
Consider the input sequence (c_k(n): n >= 1) with g.f. C_k(x) = Sum_{n>=1} c_k(n)*x^n. Let a_k(n) = BIK(c_k(n): n >= 1) be the output sequence under Bower's BIK transform. It can proved that the g.f. of BIK(c_k(n): n >= 1) is A_k(x) = (1/2)*(C_k(x)/(1-C_k(x)) + (C_k(x^2) + C_k(x))/(1-C_k(x^2))). (See the comments for sequence A001224.)
For column k of this two-dimensional array, the input sequence is defined by c_k(1) = k and c_k(n) = 0 for n >= 1. Thus, C_k(x) = k*x, and hence the g.f. of column k is (1/2)*(C_k(x)/(1-C_k(x)) + (C_k(x^2) + C_k(x))/(1-C_k(x^2))) = (1/2)*(k*x/(1-k*x) + (k*x^2 + k*x)/(1-k*x^2)) = (2 + (1-k)*x - 2*k*x^2)*k*x/(2*(1-k*x^2)*(1-k*x)).
Using the first form the g.f. above and the expansion 1/(1-y) = 1 + y + y^2 + ..., we can easily prove J.-F. Alcover's formula T(n,k) = (k^n + k^((n + mod(n,2))/2))/2.
(End)

Examples

			Array begins with T(0,0):
1 1   1     1      1       1        1         1         1          1 ...
0 1   2     3      4       5        6         7         8          9 ...
0 1   3     6     10      15       21        28        36         45 ...
0 1   6    18     40      75      126       196       288        405 ...
0 1  10    45    136     325      666      1225      2080       3321 ...
0 1  20   135    544    1625     3996      8575     16640      29889 ...
0 1  36   378   2080    7875    23436     58996    131328     266085 ...
0 1  72  1134   8320   39375   140616    412972   1050624    2394765 ...
0 1 136  3321  32896  195625   840456   2883601   8390656   21526641 ...
0 1 272  9963 131584  978125  5042736  20185207  67125248  193739769 ...
0 1 528 29646 524800 4884375 30236976 141246028 536887296 1743421725 ...
...
		

References

Crossrefs

Columns 0-6 are A000007, A000012, A005418(n+1), A032120, A032121, A032122, A056308.
Rows 0-20 are A000012, A001477, A000217 (triangular numbers), A002411 (pentagonal pyramidal numbers), A037270, A168178, A071232, A168194, A071231, A168372, A071236, A168627, A071235, A168663, A168664, A170779, A170780, A170790, A170791, A170801, A170802.
Main diagonal is A275549.
Transpose is A284979.
Cf. A003992 (oriented), A293500 (chiral), A321391 (achiral).

Programs

  • Magma
    [[n le 0 select 1 else ((n-k)^k + (n-k)^Ceiling(k/2))/2: k in [0..n]]: n in [0..15]]; // G. C. Greubel, Nov 15 2018
  • Mathematica
    Table[If[n>0, ((n-k)^k + (n-k)^Ceiling[k/2])/2, 1], {n, 0, 15}, {k, 0, n}] // Flatten (* updated Jul 10 2018 *) (* Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018 *)
  • PARI
    for(n=0,15, for(k=0,n, print1(if(n==0,1, ((n-k)^k + (n-k)^ceil(k/2))/2), ", "))) \\ G. C. Greubel, Nov 15 2018
    
  • PARI
    T(n,k) = {(k^n + k^ceil(n/2)) / 2} \\ Andrew Howroyd, Sep 13 2019
    

Formula

T(n,k) = [n==0] + [n>0] * (k^n + k^ceiling(n/2)) / 2. [Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018]
G.f. for column k: (1 - binomial(k+1,2)*x^2) / ((1-k*x)*(1-k*x^2)). - Petros Hadjicostas, Jul 07 2018 [Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018]
From Robert A. Russell, Nov 13 2018: (Start)
T(n,k) = (A003992(k,n) + A321391(n,k)) / 2.
T(n,k) = A003992(k,n) - A293500(n,k) = A293500(n,k) + A321391(n,k).
G.f. for row n: (Sum_{j=0..n} S2(n,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=0..ceiling(n/2)} S2(ceiling(n/2),j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f. for row n>0: x*Sum_{k=0..n-1} A145882(n,k) * x^k / (1-x)^(n+1).
E.g.f. for row n: (Sum_{k=0..n} S2(n,k)*x^k + Sum_{k=0..ceiling(n/2)} S2(ceiling(n/2),k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
T(0,k) = 1; T(1,k) = k; T(2,k) = binomial(k+1,2); for n>2, T(n,k) = k*(T(n-3,k)+T(n-2,k)-k*T(n-1,k)).
For k>n, T(n,k) = Sum_{j=1..n+1} -binomial(j-n-2,j) * T(n,k-j). (End)

Extensions

Array transposed for greater consistency by Andrew Howroyd, Apr 04 2017
Origin changed to T(0,0) by Robert A. Russell, Nov 13 2018

A049451 Twice second pentagonal numbers.

Original entry on oeis.org

0, 4, 14, 30, 52, 80, 114, 154, 200, 252, 310, 374, 444, 520, 602, 690, 784, 884, 990, 1102, 1220, 1344, 1474, 1610, 1752, 1900, 2054, 2214, 2380, 2552, 2730, 2914, 3104, 3300, 3502, 3710, 3924, 4144, 4370, 4602, 4840, 5084, 5334, 5590, 5852, 6120, 6394, 6674, 6960, 7252, 7550, 7854
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) is the sequence found by reading the line from 0 in the direction 0,4,... . The spiral begins:
.
52
. \
33--32--31--30 51
/ . \ \
34 16--15--14 29 50
/ / . \ \ \
35 17 5---4 13 28 49
/ / / . \ \ \ \
36 18 6 0 3 12 27 48
/ / / / / / / /
37 19 7 1---2 11 26 47
\ \ \ / / /
38 20 8---9--10 25 46
\ \ / /
39 21--22--23--24 45
\ /
40--41--42--43--44
(End)
Number of edges in the join of the complete bipartite graph of order 2n and the cycle graph of order n, K_n,n * C_n. - Roberto E. Martinez II, Jan 07 2002
The average of the first n elements starting from a(1) is equal to (n+1)^2. - Mario Catalani (mario.catalani(AT)unito.it), Apr 10 2003
If Y is a 4-subset of an n-set X then, for n >= 4, a(n-4) is the number of (n-4)-subsets of X having either one element or two elements in common with Y. - Milan Janjic, Dec 28 2007
With offset 1: the maximum possible sum of numbers in an N x N standard Minesweeper grid. - Dmitry Kamenetsky, Dec 14 2008
a(n) = A001399(6*n-2), number of partitions of 6*n-2 into parts < 4. For example a(2)=14 where the partitions of 6*2-2=10 into parts < 4 are [1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,3], [1,1,1,1,1,1,2,2], [1,1,1,1,1,2,3], [1,1,1,1,2,2,2], [1,1,1,1,3,3], [1,1,1,2,2,3], [1,1,2,2,2,2], [1,1,2,3,3], [1,2,2,2,3], [2,2,2,2,2], [1,3,3,3], [2,2,3,3]. - Adi Dani, Jun 07 2011
A003056 is the following array A read by antidiagonals:
0, 1, 2, 3, 4, 5, ...
1, 2, 3, 4, 5, 6, ...
2, 3, 4, 5, 6, 7, ...
3, 4, 5, 6, 7, 8, ...
4, 5, 6, 7, 8, 9, ...
5, 6, 7, 8, 9, 10, ...
and a(n) is the hook sum Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). - R. J. Mathar, Jun 30 2013
a(n)*Pi is the total length of 3 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A016957. The spiral length ratio rounded down [floor(L(n)/L(1))] is A001651. See illustration in links. - Kival Ngaokrajang, Dec 27 2013
Partial sums give A114364. - Leo Tavares, Feb 25 2022
For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n+1; {2, 2n-1, 1, 4, 1, 2n-1, 2, 18n+2}]. - Magus K. Chu, Oct 13 2022

Examples

			From _Dmitry Kamenetsky_, Dec 14 2008, with slight rewording by Raymond Martineau (mart0258(AT)yahoo.com), Dec 16 2008: (Start)
For an N x N Minesweeper grid the highest sum of numbers is (N-1)(3*N-2). This is achieved by filling every second row with mines (shown as 'X'). For example, when N=5 the best grids are:
.
  X X X X X
  4 6 6 6 4
  X X X X X
  4 6 6 6 4
  X X X X X
.
  and
.
  2 3 3 3 2
  X X X X X
  4 6 6 6 4
  X X X X X
  2 3 3 3 2
.
each giving a total of 52. (End)
		

References

  • L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 12.

Crossrefs

Similar sequences are listed in A316466.

Programs

Formula

a(n) = n*(3*n+1).
G.f.: 2*x*(2+x)/(1-x)^3.
Sum_{i=1..n} a(i) = A045991(n+1). - Gary W. Adamson, Dec 20 2006
a(n) = 2*A005449(n). - Omar E. Pol, Dec 18 2008
a(n) = a(n-1) + 6*n -2, n > 0. - Vincenzo Librandi, Aug 06 2010
a(n) = A100104(n+1) - A100104(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 4, a(2) = 14. - Philippe Deléham, Mar 26 2013
a(n) = A174709(6*n+3). - Philippe Deléham, Mar 26 2013
a(n) = (24/(n+2)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j^(n+2). - Bruno Berselli, Jun 04 2013 - after the similar formula of Vladimir Kruchinin in A002411
a(n) = A002061(n+1) + A056220(n). - Bruce J. Nicholson, Sep 21 2017
a(n) = Sum_{i = 2..5} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018
E.g.f.: x*(4 + 3*x)*exp(x). - G. C. Greubel, Sep 01 2019
a(n) = A003215(n) - A005408(n). - Leo Tavares, Feb 25 2022
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = 3 - Pi/(2*sqrt(3)) - 3*log(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(3) + 2*log(2) - 3. (End)
a(n) = A001105(n) + A002378(n). - Torlach Rush, Jul 11 2022

A008778 a(n) = (n+1)*(n^2 +8*n +6)/6. Number of n-dimensional partitions of 4. Number of terms in 4th derivative of a function composed with itself n times.

Original entry on oeis.org

1, 5, 13, 26, 45, 71, 105, 148, 201, 265, 341, 430, 533, 651, 785, 936, 1105, 1293, 1501, 1730, 1981, 2255, 2553, 2876, 3225, 3601, 4005, 4438, 4901, 5395, 5921, 6480, 7073, 7701, 8365, 9066, 9805, 10583, 11401, 12260, 13161, 14105, 15093, 16126, 17205, 18331
Offset: 0

Views

Author

Keywords

Comments

Let m(i,1)=i; m(1,j)=j; m(i,j)=m(i-1,j)-m(i-1,j-1); then a(n)=m(n+3,3) - Benoit Cloitre, May 08 2002
a(n) = number of (n+6)-bit binary sequences with exactly 6 1's none of which is isolated. - David Callan, Jul 15 2004
If a 2-set Y and 2-set Z, having one element in common, are subsets of an n-set X then a(n-4) is the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 03 2007
Sum of first n triangular numbers plus previous triangular number. - Vladimir Joseph Stephan Orlovsky, Oct 13 2009
a(n) = Sum of first (n+1) triangular numbers plus n-th triangular number (see penultimate formula by Henry Bottomley). - Vladimir Joseph Stephan Orlovsky, Oct 13 2009
For n > 0, a(n-1) is the number of compositions of n+6 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
The binomial transform of [1,4,4,1,0,0,0,...], the 4th row in A116672. - R. J. Mathar, Jul 18 2017

Examples

			G.f. = 1 + 5*x + 13*x^2 + 26*x^3 + 45*x^4 + 71*x^5 + 105*x^6 + 148*x^7 + 201*x^8 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190 eq. (11.4.7).

Crossrefs

Column 1 of triangle A094415.
Row n=4 of A022818.
Cf. A002411, A008779, A005712 (partial sums), A034856 (first diffs).

Programs

  • GAP
    List([0..50], n-> (n+1)*(n^2 +8*n +6)/6); # G. C. Greubel, Sep 11 2019
  • Magma
    [(n+1)*(n^2+8*n+6)/6: n in [0..50]]; // Vincenzo Librandi, May 21 2011
    
  • Maple
    seq(1+4*k+4*binomial(k, 2)+binomial(k, 3), k=0..45);
  • Mathematica
    Table[(n+1)*(n^2+8*n+6)/6, {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009, modified by G. C. Greubel, Sep 11 2019 *)
    LinearRecurrence[{4,-6,4,-1}, {1,5,13,26}, 51] (* G. C. Greubel, Sep 11 2019 *)
  • PARI
    Vec((1+x-x^2)/(1-x)^4 + O(x^50)) \\ Altug Alkan, Jan 07 2016
    
  • Sage
    [(n+1)*(n^2 +8*n +6)/6 for n in (0..50)] # G. C. Greubel, Sep 11 2019
    

Formula

a(n) = dot_product(n, n-1, ...2, 1)*(2, 3, ..., n, 1) for n = 2, 3, 4, ... [i.e., a(2) = (2, 1)*(2, 1), a(3) = (3, 2, 1)*(2, 3, 1)]. - Clark Kimberling
a(n) = a(n-1) + A034856(n+1) = A000297(n-1) + 1 = A000217(n) + A000292(n+1) = A000290(n-1) + A000292(n). - Henry Bottomley, Oct 25 2001
a(n) = Sum_{0<=k, l<=n; k+l|n} k*l. - Ralf Stephan, May 06 2005
G.f.: (1+x-x^2)/(1-x)^4. - Colin Barker, Jan 06 2012
a(n) = A000330(n+1) - A000292(n-1). - Bruce J. Nicholson, Jul 05 2018
E.g.f.: (6 +24*x +12*x^2 +x^3)*exp(x)/6. - G. C. Greubel, Sep 11 2019

A028421 Triangle read by rows: T(n, k) = (k+1)*A132393(n+1, k+1), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 2, 6, 3, 6, 22, 18, 4, 24, 100, 105, 40, 5, 120, 548, 675, 340, 75, 6, 720, 3528, 4872, 2940, 875, 126, 7, 5040, 26136, 39396, 27076, 9800, 1932, 196, 8, 40320, 219168, 354372, 269136, 112245, 27216, 3822, 288, 9
Offset: 0

Views

Author

Peter Wiggen (wiggen(AT)math.psu.edu)

Keywords

Comments

Previous name was: Number triangle f(n, k) from n-th differences of the sequence {1/m^2}{m >= 1}, for n >= 0; the n-th difference sequence is {(-1)^n*n!*P(n, m)/D(n, m)^2}{m >= 1} where P(n, x) is the row polynomial P(n, x) = Sum_{k=0..n} f(n,k)*x^k and D(n, x) = x*(x+1)*...*(x+n).
From Johannes W. Meijer, Oct 07 2009: (Start)
The higher-order exponential integrals E(x,m,n) are defined in A163931 and the general formula of the asymptotic expansion of E(x,m,n) can be found in A163932.
We used the general formula and the asymptotic expansion of E(x,m=1,n), see A130534, to determine that E(x,m=2,n) ~ (exp(-x)/x^2)*(1 - (1+2*n)/x + (2 + 6*n + 3*n^2)/x^2 - (6 + 22*n + 18*n^2 + 4*n^3)/x^3 + ...) which can be verified with the EA(x,2,n) formula, see A163932. The coefficients in the denominators of this expansion lead to the sequence given above.
The asymptotic expansion of E(x,m=2,n) leads for n from one to ten to known sequences, see the cross-references. With these sequences one can form the triangles A165674 (left hand columns) and A093905 (right hand columns).
(End)
For connections to an operator relation between log(x) and x^n(d/dx)^n, see A238363. - Tom Copeland, Feb 28 2014
From Wolfdieter Lang, Nov 25 2018: (Start)
The signed triangle t(n, k) := (-1)^{n-k}*f(n, k) gives (n+1)*N(-1;n,x) = Sum_{k=0..n} t(n, k)*x^k, where N(-1;n,x) are the Narumi polynomials with parameter a = -1 (see the Weisstein link).
The members of the n-th difference sequence of the sequence {1/m^2}_{m>=1} mentioned above satisfies the recurrence delta(n, m) = delta(n-1, m+1) - delta(n-1, m), for n >= 1, m >= 1, with input delta(0, m) = 1/m^2. The solution is delta(n, m) = (n+1)!*N(-1;n,-m)/risefac(m, n+1)^2, with Narumi polynomials N(-1;n,x) and the rising factorials risefac(x, n+1) = D(n, x) = x*(x+1)*...*(x+n).
The above mentioned row polynomials P satisfy P(n, x) = (-1)^n*(n + 1)*N(-1;n,-x), for n >= 0. The recurrence is P(n, x) = (-x^2*P(n-1, x+1) + (n+x)^2*P(n-1, x))/n, for n >= 1, and P(0, x) = 1. (End)
The triangle is the exponential Riordan square (cf. A321620) of -log(1-x) with an additional main diagonal of zeros. - Peter Luschny, Jan 03 2019

Examples

			The triangle T(n, k) begins:
n\k       0        1        2        3        4       5       6      7     8   9 10
------------------------------------------------------------------------------------
0:        1
1:        1        2
2:        2        6        3
3:        6       22       18        4
4:       24      100      105       40        5
5:      120      548      675      340       75       6
6:      720     3528     4872     2940      875     126       7
7:     5040    26136    39396    27076     9800    1932     196      8
8:    40320   219168   354372   269136   112245   27216    3822    288     9
9:   362880  2053152  3518100  2894720  1346625  379638   66150   6960   405  10
10: 3628800 21257280 38260728 33638000 17084650 5412330 1104411 145200 11880 550 11
... - _Wolfdieter Lang_, Nov 23 2018
		

Crossrefs

Row sums give A000254(n+1), n >= 0.
Cf. A132393 (unsigned Stirling1), A061356, A139526, A321620.
From Johannes W. Meijer, Oct 07 2009: (Start)
A000142, A052517, 3*A000399, 5*A000482 are the first four left hand columns; A000027, A002411 are the first two right hand columns.
The asymptotic expansion of E(x,m=2,n) leads to A000254 (n=1), A001705 (n=2), A001711 (n=3), A001716 (n=4), A001721 (n=5), A051524 (n=6), A051545 (n=7), A051560 (n=8), A051562 (n=9), A051564 (n=10), A093905 (triangle) and A165674 (triangle).
Cf. A163931 (E(x,m,n)), A130534 (m=1), A163932 (m=3), A163934 (m=4), A074246 (E(x,m=2,n+1)). (End)

Programs

  • Maple
    A028421 := proc(n,k) (-1)^(n+k)*(k+1)*Stirling1(n+1,k+1) end:
    seq(seq(A028421(n,k), k=0..n), n=0..8);
    # Johannes W. Meijer, Oct 07 2009, Revised Sep 09 2012
    egf := (1 - t)^(-x - 1)*(1 - x*log(1 - t)):
    ser := series(egf, t, 16): coefft := n -> expand(coeff(ser,t,n)):
    seq(seq(n!*coeff(coefft(n), x, k), k = 0..n), n = 0..8); # Peter Luschny, Jun 12 2022
  • Mathematica
    f[n_, k_] = (k + 1) StirlingS1[n + 1, k + 1] // Abs; Flatten[Table[f[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, Jun 01 2011, after formula *)
  • Sage
    # uses[riordan_square from A321620]
    riordan_square(-ln(1 - x), 10, True) # Peter Luschny, Jan 03 2019

Formula

E.g.f.: d/dt(-log(1-t)/(1-t)^x). - Vladeta Jovovic, Oct 12 2003
The e.g.f. with offset 1: y = x + (1 + 2*t)*x^2/2! + (2 + 6*t + 3*t^2)*x^3/3! + ... has series reversion with respect to x equal to y - (1 + 2*t)*y^2/2! + (1 + 3*t)^2*y^3/3! - (1 + 4*t)^3*y^4/4! + .... This is an e.g.f. for a signed version of A139526. - Peter Bala, Jul 18 2013
Recurrence: T(n, k) = 0 if n < k; if k = 0 then T(0, 0) = 1 and T(n, 0) = n * T(n-1, 0) for n >= 1, otherwise T(n, k) = n*T(n-1, k) + ((k+1)/k)*T(n-1, k-1). From the unsigned Stirling1 recurrence. - Wolfdieter Lang, Nov 25 2018

Extensions

Edited by Wolfdieter Lang, Nov 23 2018

A237616 a(n) = n*(n + 1)*(5*n - 4)/2.

Original entry on oeis.org

0, 1, 18, 66, 160, 315, 546, 868, 1296, 1845, 2530, 3366, 4368, 5551, 6930, 8520, 10336, 12393, 14706, 17290, 20160, 23331, 26818, 30636, 34800, 39325, 44226, 49518, 55216, 61335, 67890, 74896, 82368, 90321, 98770, 107730, 117216, 127243, 137826, 148980, 160720
Offset: 0

Views

Author

Bruno Berselli, Feb 10 2014

Keywords

Comments

Also 17-gonal (or heptadecagonal) pyramidal numbers.
This sequence is related to A226489 by 2*a(n) = n*A226489(n) - Sum_{i=0..n-1} A226489(i).

Examples

			After 0, the sequence is provided by the row sums of the triangle:
   1;
   2,  16;
   3,  32,  31;
   4,  48,  62,  46;
   5,  64,  93,  92,  61;
   6,  80, 124, 138, 122,  76;
   7,  96, 155, 184, 183, 152,  91;
   8, 112, 186, 230, 244, 228, 182, 106;
   9, 128, 217, 276, 305, 304, 273, 212, 121;
  10, 144, 248, 322, 366, 380, 364, 318, 242, 136; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 15*r-14 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (fifteenth row of the table).

Crossrefs

Cf. sequences with formula n*(n+1)*(k*n-k+3)/6: A000217 (k=0), A000292 (k=1), A000330 (k=2), A002411 (k=3), A002412 (k=4), A002413 (k=5), A002414 (k=6), A007584 (k=7), A007585 (k=8), A007586 (k=9), A007587 (k=10), A050441 (k=11), A172073 (k=12), A177890 (k=13), A172076 (k=14), this sequence (k=15), A172078(k=16), A237617 (k=17), A172082 (k=18), A237618 (k=19), A172117(k=20), A256718 (k=21), A256716 (k=22), A256645 (k=23), A256646(k=24), A256647 (k=25), A256648 (k=26), A256649 (k=27), A256650(k=28).

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(5*n-4)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(n+1)*(5*n-4)/2: n in [0..40]];
    
  • Magma
    I:=[0,1,18,66]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
    
  • Maple
    seq(n*(n+1)*(5*n-4)/2, n=0..40); # G. C. Greubel, Aug 30 2019
  • Mathematica
    Table[n(n+1)(5n-4)/2, {n, 0, 40}]
    CoefficientList[Series[x (1+14x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,18,66},50] (* Harvey P. Dale, Jan 11 2015 *)
  • PARI
    a(n)=n*(n+1)*(5*n-4)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(n+1)*(5*n-4)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(1 + 14*x)/(1 - x)^4.
For n>0, a(n) = Sum_{i=0..n-1} (n-i)*(15*i+1). More generally, the sequence with the closed form n*(n+1)*(k*n-k+3)/6 is also given by Sum_{i=0..n-1} (n-i)*(k*i+1) for n>0.
a(n) = A104728(A001844(n-1)) for n>0.
Sum_{n>=1} 1/a(n) = (2*sqrt(5*(5 + 2*sqrt(5)))*Pi + 10*sqrt(5)*arccoth(sqrt(5)) + 25*log(5) - 16)/72 = 1.086617842136293176... . - Vaclav Kotesovec, Dec 07 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 4. - Wesley Ivan Hurt, Dec 18 2020
E.g.f.: exp(x)*x*(2 + 16*x + 5*x^2)/2. - Elmo R. Oliveira, Aug 04 2025

A103371 Number triangle T(n,k) = C(n,n-k)*C(n+1,n-k).

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 18, 12, 1, 5, 40, 60, 20, 1, 6, 75, 200, 150, 30, 1, 7, 126, 525, 700, 315, 42, 1, 8, 196, 1176, 2450, 1960, 588, 56, 1, 9, 288, 2352, 7056, 8820, 4704, 1008, 72, 1, 10, 405, 4320, 17640, 31752, 26460, 10080, 1620, 90, 1, 11, 550, 7425, 39600, 97020
Offset: 0

Views

Author

Paul Barry, Feb 03 2005

Keywords

Comments

Columns include A000027, A002411, A004302, A108647, A134287. Row sums are C(2n+1,n+1) or A001700.
T(n-1,k-1) is the number of ways to put n identical objects into k of altogether n distinguishable boxes. See the partition array A035206 from which this triangle arises after summing over all entries related to partitions with fixed part number k.
T(n, k) is also the number of order-preserving full transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|). - Abdullahi Umar, Oct 02 2008
The o.g.f. of the (n+1)-th diagonal is given by G(n, x) = (n+1)*Sum_{k=1..n} A001263(n, k)*x^(k-1) / (1 - x)^(2*n+1), for n >= 1 and for n = 0 it is G(0, x) = 1/(1-x). - Wolfdieter Lang, Jul 31 2017

Examples

			The triangle T(n, k) begins:
n\k  0   1    2     3     4     5     6    7  8 9 ...
0:   1
1:   2   1
2:   3   6    1
3:   4  18   12     1
4:   5  40   60    20     1
5:   6  75  200   150    30     1
6:   7 126  525   700   315    42     1
7:   8 196 1176  2450  1960   588    56    1
8:   9 288 2352  7056  8820  4704  1008   72  1
9:  10 405 4320 17640 31752 26460 10080 1620 90 1
...  reformatted. - _Wolfdieter Lang_, Jul 31 2017
From _R. J. Mathar_, Mar 29 2013: (Start)
The matrix inverse starts
       1;
      -2,       1;
       9,      -6,      1;
     -76,      54,    -12,      1;
    1055,    -760,    180,    -20,   1;
  -21906,   15825,  -3800,    450, -30,   1;
  636447, -460026, 110775, -13300, 945, -42, 1; (End)
O.g.f. of 4th diagonal [4, 40,200, ...] is G(3, x) = 4*(1 + 3*x + x^2)/(1 - x)^7, from the n = 3 row [1, 3, 1] of A001263. See a comment above. - _Wolfdieter Lang_, Jul 31 2017
		

Crossrefs

Cf. A007318, A000894 (central terms), A132813 (mirrored).

Programs

  • Haskell
    a103371 n k = a103371_tabl !! n !! k
    a103371_row n = a103371_tabl !! n
    a103371_tabl = map reverse a132813_tabl
    -- Reinhard Zumkeller, Apr 04 2014
    
  • Magma
    /* As triangle */ [[Binomial(n,n-k)*Binomial(n+1,n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 01 2017
    
  • Maple
    A103371 := (n,k) -> binomial(n,k)^2*(n+1)/(k+1);
    seq(print(seq(A103371(n, k), k=0..n)), n=0..7); # Peter Luschny, Oct 19 2011
  • Mathematica
    Flatten[Table[Binomial[n,n-k]Binomial[n+1,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, May 26 2014 *)
    CoefficientList[Series[Series[E^(x(1+y))(BesselI[0,2*x*Sqrt[y]]+BesselI[1,2*x*Sqrt[y]]/Sqrt[y]),{x,0,8}],{y,0,8}],{x,y}]*Range[0,8]! (* Natalia L. Skirrow, Apr 14 2025 *)
  • Maxima
    create_list(binomial(n,k)*binomial(n+1,k+1),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n,k)*binomial(n+1,k+1), ", "))) \\ G. C. Greubel, Nov 09 2018

Formula

Number triangle T(n, k) = C(n, n-k)*C(n+1, n-k) = C(n, k)*C(n+1, k+1); Column k of this triangle has g.f. Sum_{j=0..k} (C(k, j)*C(k+1, j) * x^(k+j))/(1-x)^(2*k+2); coefficients of the numerators are the rows of the reverse triangle C(n, k)*C(n+1, k).
T(n,k) = C(n, k)*Sum_{j=0..(n-k)} C(n-j, k). - Paul Barry, Jan 12 2006
T(n,k) = (n+1-k)*N(n+1,k+1), with N(n,k):=A001263(n,k), the Narayana triangle (with offset [1,1]).
O.g.f.: ((1-(1-y)*x)/sqrt((1-(1+y)*x)^2-4*x^2*y) -1)/2, (from o.g.f. of A001263, Narayana triangle). - Wolfdieter Lang, Nov 13 2007
From Peter Bala, Jan 24 2008: (Start)
Matrix product of A007318 and A122899.
O.g.f. for row n: (1-x)^n*P(n,1,0,(1+x)/(1-x)) = 1/(2*x)*(1-x)^(n+1)*( Legendre_P(n+1,(1+x)/(1-x)) - Legendre_P(n,(1+x)/(1-x)) ), where P(n,a,b,x) denotes the Jacobi polynomial.
O.g.f. for column k: x^k/(1-x)^(k+2)*P(k,0,1,(1+x)/(1-x)). Compare with A008459. (End)
Let S(n,k) = binomial(2*n,n)^(k+1)*((n+1)^(k+1)-n^(k+1))/(n+1)^k. Then T(2*n,n) = S(n,1). (Cf. A194595, A197653, A197654). - Peter Luschny, Oct 20 2011
T(n,k) = A003056(n+1,k+1)*C(n,k)^2/(k+1). - Peter Luschny, Oct 29 2011
T(n,k) = A007318(n, k)*A135278(n, k), n >= k >= 0. - Wolfdieter Lang, Jul 31 2017
From Natalia L. Skirrow, Apr 14 2025: (Start)
T(n,k) = A008459(n,k) + n*N(n,k+1).
E.g.f.: e^(x*(1+y))*(I_0(2*x*sqrt(y)) + I_1(2*x*sqrt(y))/sqrt(y)), where I_n is the modified Bessel function of the first kind. (The I_0 contributes A008459(n,k), the I_1 contributes n*N(n,k+1))
O.g.f. for row n: (n+1)*2F1(-n,-n;2;y) = (n+1)*2F1(2+n,2+n;2;y)*(1-y)^(2*(n+1)) (by Euler's hypergeometric transformation); (n+1)*2F1(2+n,2+n;2;y) is the o.g.f. for row n of (k+n+1)!^2/(k!*(k+1)!*n!*(n+1)!), which is column n+1 of A132812.
O.g.f. for column k: 2F1(1+k,2+k;1;x)*x^k = 2F1(-k,-1-k;1;x)*x^k/(1-x)^(2+2*k). 2F1(-k,-1-k;1;x) is the kth row of A132813, the reflection of the kth row of this triangle.
O.g.f. for diagonal d (beginning at a(d,0)): (d+1)*x^d*2F1(d+1,d+2;2;x*y). 2F1(d+1,d+2;2;x) = 2F1(1-d,-d;2;x)/(1-x)^(2*d+1), numerator being the o.g.f. of row d of the Narayana triangle.
These respectively yield:
T(n,k) = Sum_{i=0..n+k} C(2*(n+1),i)*(-1)^i*A132812(n+1+k-i,n+1),
T(d+k,k) = Sum_{i=0..k} C(d-i+1+2*k,d-i)*T(k,k-i),
T(d+k,k) = Sum_{i=0..d} C(k-i + 2*d,k-i)*N(d,i+1)*(d+1).
E.g.f. for column k: 1F1(2+k;1;x)*x^k/k!.
E.g.f. for diagonal d: (d+1)*x^d*1F1(d+2;2;x*y)/d!. (End)
Previous Showing 11-20 of 147 results. Next