A050534
Tritriangular numbers: a(n) = binomial(binomial(n,2),2) = n*(n+1)*(n-1)*(n-2)/8.
Original entry on oeis.org
0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990, 1485, 2145, 3003, 4095, 5460, 7140, 9180, 11628, 14535, 17955, 21945, 26565, 31878, 37950, 44850, 52650, 61425, 71253, 82215, 94395, 107880, 122760, 139128, 157080, 176715, 198135, 221445, 246753, 274170, 303810, 335790
Offset: 0
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999
For a(3)=3, the chiral pairs of square colorings are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. - _Robert A. Russell_, Oct 20 2020
- Arthur T. Benjamin and Jennifer Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 154.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, Problem 1, page 72.
- Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5, case k=2.
- William A. Tedeschi, Table of n, a(n) for n = 0..10000
- Serhat Bulut and Oktay Erkan Temizkan, Subset Sum Problem, Jan 20 2015.
- Alexander Burstein, Sergey Kitaev and Toufik Mansour, Partially ordered patterns and their combinatorial interpretations, PU. M. A., Vol. 19, No. 2-3 (2008), pp. 27-38.
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 9.
- Frank Harary and Bennet Manvel, On the number of cycles in a graph, Matemat. casop. 21 (1971) 55-63, Theorem 1 for 4-cycles in complete graph.
- Louis H. Kauffman, Non-Commutative Worlds-Classical Constraints, Relativity and the Bianchi Identity, arXiv preprint arXiv:1109.1085 [math-ph], 2011. (See Appendix)
- Alexander Kreinin, Integer Sequences and Laplace Continued Fraction, Journal of Integer Sequences, Vol. 19 (2016), Article 16.6.2.
- Ronald Orozco López, Solution of the Differential Equation y^(k)= e^(a*y), Special Values of Bell Polynomials and (k,a)-Autonomous Coefficients, Universidad de los Andes (Colombia 2021).
- Frank Ruskey and Jennifer Woodcock, The Rand and block distances of pairs of set partitions, in Combinatorial Algorithms, 287-299, Lecture Notes in Comput. Sci., 7056, Springer, Heidelberg, 2011.
- C. N. Schmall, Problem 432, The American Mathematical Monthly, Vol. 22, No. 4 (1915), p. 130.
- Eric Weisstein's World of Mathematics, Complete Graph.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Tritriangular Number.
- Chai Wah Wu, Graphs whose normalized Laplacian matrices are separable as density matrices in quantum mechanics, arXiv:1407.5663 [quant-ph], 2014.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf. similar sequences listed in
A241765.
Row 2 of
A325006 (orthoplex facets, orthotope vertices) and
A337409 (orthotope edges, orthoplex ridges).
Row 4 of
A293496 (cycles of n colors using k or fewer colors).
-
List([0..40],n->3*Binomial(n+1,4)); # Muniru A Asiru, Mar 20 2018
-
[3*Binomial(n+1, 4): n in [0..40]]; // Vincenzo Librandi, Feb 14 2015
-
[seq(binomial(n+1,4)*3,n=0..40)]; # Zerinvary Lajos, Jul 18 2006
-
Table[Binomial[Binomial[n, 2], 2], {n, 0, 50}] (* Stefan Steinerberger, Apr 08 2006 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 3, 15}, 40] (* Harvey P. Dale, Dec 14 2011 *)
(* Start from Eric W. Weisstein, Mar 13 2018 *)
Binomial[Binomial[Range[0, 20], 2], 2]
Nest[Binomial[#, 2] &, Range[0, 20], 2]
Nest[PolygonalNumber[# - 1] &, Range[0, 20], 2]
CoefficientList[Series[3 x^3/(1 - x)^5, {x, 0, 20}], x]
(* End *)
-
a(n)=n*(n+1)*(n-1)*(n-2)/8 \\ Charles R Greathouse IV, Nov 20 2012
-
x='x+O('x^100); concat([0, 0, 0], Vec(3*x^3/(1-x)^5)) \\ Altug Alkan, Nov 01 2015
-
[(binomial(binomial(n,2),2)) for n in range(0, 39)] # Zerinvary Lajos, Nov 30 2009
Additional comments from Antreas P. Hatzipolakis, May 03 2002
A002414
Octagonal pyramidal numbers: a(n) = n*(n+1)*(2*n-1)/2.
Original entry on oeis.org
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, 1386, 1794, 2275, 2835, 3480, 4216, 5049, 5985, 7030, 8190, 9471, 10879, 12420, 14100, 15925, 17901, 20034, 22330, 24795, 27435, 30256, 33264, 36465, 39865, 43470, 47286, 51319, 55575, 60060, 64780
Offset: 1
a(2) = 9 since there are 9 ways to cover a 4 X 4 lattice with 8 dominoes, 2 of which is horizontal and the other 6 are vertical. - Yong Kong (ykong@curagen.com), May 06 2000
G.f. = x + 9*x^2 + 30*x^3 + 70*x^4 + 135*x^5 + 231*x^6 + 364*x^7 + 540*x^8 + 765*x^9 + ...
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..1000
- B. Berselli, A description of the transform in Comments lines: website Matem@ticamente (in Italian).
- M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Physical Review, 124 (1961), 1664-1672.
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
- P. W. Kasteleyn, The Statistics of Dimers on a Lattice, Physica, 27 (1961), 1209-1225.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to dominoes
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf. similar sequences listed in
A237616.
Cf.
A260234 (largest prime factor of a(n+1)).
-
[n*(n+1)*(2*n-1)/2: n in [1..50]]; // Vincenzo Librandi, May 24 2016
-
A002414 := n-> 1/2*n*(n+1)*(2*n-1): seq(A002414(n), n=1..100);
-
LinearRecurrence[{4,-6,4,-1},{1,9,30,70},40] (* Harvey P. Dale, Apr 12 2013 *)
-
{a(n) = (2*n - 1) * n * (n + 1) / 2} \\ Michael Somos, Mar 17 2011
More terms from Larry Reeves (larryr(AT)acm.org), May 09 2000
Incorrect formula deleted by
Ant King, Oct 04 2012
A006331
a(n) = n*(n+1)*(2*n+1)/3.
Original entry on oeis.org
0, 2, 10, 28, 60, 110, 182, 280, 408, 570, 770, 1012, 1300, 1638, 2030, 2480, 2992, 3570, 4218, 4940, 5740, 6622, 7590, 8648, 9800, 11050, 12402, 13860, 15428, 17110, 18910, 20832, 22880, 25058, 27370, 29820, 32412, 35150, 38038, 41080, 44280
Offset: 0
For n=2, a(2)=10 since there are 10 non-monotonic functions f from {0,1,2} to {0,1,2}, namely, functions f = <f(1),f(2),f(3)> given by <0,1,0>, <0,2,0>, <0,2,1>, <1,0,1>, <1,0,2>, <1,2,0>, <1,2,1>, <2,0,1>, <2,0,2>, and <2,1,2>. - _Dennis P. Walsh_, Apr 25 2011
Let n=4, 2*n+1 = 9. Since 9 = 1+8 = 3+6 = 5+4 = 7+2, a(4) = 1*8 + 3*6 + 5*4 + 7*2 = 60. - _Vladimir Shevelev_, May 11 2012
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359.
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]
- Rowan Beckworth, Basic atomic information.
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- P. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes, Electron. J. Combin. 13 (2006), #R85, p. 11.
- Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 25.
- N. S. S. Gu, H. Prodinger and S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat., Vol. 31 (2010), pp. 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2 at n=3.
- JBMO 2025, 29th Junior Balkan Mathematical Olympiad, Problem 4, author: Boris Mihov
- Germain Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, Vol. 6 (1965), circa p. 82.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Dennis Walsh, Notes on finite monotonic and non-monotonic functions.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a006331 n = sum $ zipWith (*) [2*n-1, 2*n-3 .. 1] [2, 4 ..]
-- Reinhard Zumkeller, Feb 11 2012
-
[n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
-
A006331 := proc(n)
n*(n+1)*(2*n+1)/3 ;
end proc:
seq(A006331(n),n=0..80) ; # R. J. Mathar, Sep 27 2013
-
Table[n(n+1)(2n+1)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,2,10,28},50] (* Harvey P. Dale, Apr 12 2013 *)
-
a(n)=if(n<0,0,n*(n+1)*(2*n+1)/3)
A080851
Square array of pyramidal numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0
Array begins (n>=0, k>=0):
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... A000217
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
See
A257199 for another version of this array.
-
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
-
A080851 := proc(n,k)
binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
end proc:
seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)
A277504
Array read by descending antidiagonals: T(n,k) is the number of unoriented strings with n beads of k or fewer colors.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 6, 1, 0, 1, 5, 10, 18, 10, 1, 0, 1, 6, 15, 40, 45, 20, 1, 0, 1, 7, 21, 75, 136, 135, 36, 1, 0, 1, 8, 28, 126, 325, 544, 378, 72, 1, 0, 1, 9, 36, 196, 666, 1625, 2080, 1134, 136, 1, 0, 1, 10, 45, 288, 1225, 3996, 7875, 8320, 3321, 272, 1, 0
Offset: 0
Array begins with T(0,0):
1 1 1 1 1 1 1 1 1 1 ...
0 1 2 3 4 5 6 7 8 9 ...
0 1 3 6 10 15 21 28 36 45 ...
0 1 6 18 40 75 126 196 288 405 ...
0 1 10 45 136 325 666 1225 2080 3321 ...
0 1 20 135 544 1625 3996 8575 16640 29889 ...
0 1 36 378 2080 7875 23436 58996 131328 266085 ...
0 1 72 1134 8320 39375 140616 412972 1050624 2394765 ...
0 1 136 3321 32896 195625 840456 2883601 8390656 21526641 ...
0 1 272 9963 131584 978125 5042736 20185207 67125248 193739769 ...
0 1 528 29646 524800 4884375 30236976 141246028 536887296 1743421725 ...
...
Rows 0-20 are
A000012,
A001477,
A000217 (triangular numbers),
A002411 (pentagonal pyramidal numbers),
A037270,
A168178,
A071232,
A168194,
A071231,
A168372,
A071236,
A168627,
A071235,
A168663,
A168664,
A170779,
A170780,
A170790,
A170791,
A170801,
A170802.
-
[[n le 0 select 1 else ((n-k)^k + (n-k)^Ceiling(k/2))/2: k in [0..n]]: n in [0..15]]; // G. C. Greubel, Nov 15 2018
-
Table[If[n>0, ((n-k)^k + (n-k)^Ceiling[k/2])/2, 1], {n, 0, 15}, {k, 0, n}] // Flatten (* updated Jul 10 2018 *) (* Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018 *)
-
for(n=0,15, for(k=0,n, print1(if(n==0,1, ((n-k)^k + (n-k)^ceil(k/2))/2), ", "))) \\ G. C. Greubel, Nov 15 2018
-
T(n,k) = {(k^n + k^ceil(n/2)) / 2} \\ Andrew Howroyd, Sep 13 2019
Array transposed for greater consistency by
Andrew Howroyd, Apr 04 2017
A049451
Twice second pentagonal numbers.
Original entry on oeis.org
0, 4, 14, 30, 52, 80, 114, 154, 200, 252, 310, 374, 444, 520, 602, 690, 784, 884, 990, 1102, 1220, 1344, 1474, 1610, 1752, 1900, 2054, 2214, 2380, 2552, 2730, 2914, 3104, 3300, 3502, 3710, 3924, 4144, 4370, 4602, 4840, 5084, 5334, 5590, 5852, 6120, 6394, 6674, 6960, 7252, 7550, 7854
Offset: 0
Joe Keane (jgk(AT)jgk.org)
From _Dmitry Kamenetsky_, Dec 14 2008, with slight rewording by Raymond Martineau (mart0258(AT)yahoo.com), Dec 16 2008: (Start)
For an N x N Minesweeper grid the highest sum of numbers is (N-1)(3*N-2). This is achieved by filling every second row with mines (shown as 'X'). For example, when N=5 the best grids are:
.
X X X X X
4 6 6 6 4
X X X X X
4 6 6 6 4
X X X X X
.
and
.
2 3 3 3 2
X X X X X
4 6 6 6 4
X X X X X
2 3 3 3 2
.
each giving a total of 52. (End)
- L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 12.
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Raghavendra N. Bhat, Cristian Cobeli, and Alexandru Zaharescu, A lozenge triangulation of the plane with integers, arXiv:2403.10500 [math.NT], 2024.
- Kival Ngaokrajang, Illustration of 3 points circle center spiral.
- Leo Tavares, Illustration: Double Hexagonal Trapezoids.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Similar sequences are listed in
A316466.
-
List([0..55], n-> n*(3*n+1)); # G. C. Greubel, Sep 01 2019
-
a049451 n = n * (3 * n + 1) -- Reinhard Zumkeller, Jul 07 2012
-
[n*(3*n+1): n in [0..55]]; // G. C. Greubel, Sep 01 2019
-
Table[n(3n+1), {n,0,55}] (* or *) CoefficientList[Series[2x(2+x)/(1-x)^3, {x,0,55}], x] (* Michael De Vlieger, Apr 05 2017 *)
-
a(n)=n*(3*n+1) \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(3*n+1) for n in range(60)] # Gennady Eremin, Feb 27 2022
-
[n*(3*n+1) for n in (0..55)] # G. C. Greubel, Sep 01 2019
A008778
a(n) = (n+1)*(n^2 +8*n +6)/6. Number of n-dimensional partitions of 4. Number of terms in 4th derivative of a function composed with itself n times.
Original entry on oeis.org
1, 5, 13, 26, 45, 71, 105, 148, 201, 265, 341, 430, 533, 651, 785, 936, 1105, 1293, 1501, 1730, 1981, 2255, 2553, 2876, 3225, 3601, 4005, 4438, 4901, 5395, 5921, 6480, 7073, 7701, 8365, 9066, 9805, 10583, 11401, 12260, 13161, 14105, 15093, 16126, 17205, 18331
Offset: 0
G.f. = 1 + 5*x + 13*x^2 + 26*x^3 + 45*x^4 + 71*x^5 + 105*x^6 + 148*x^7 + 201*x^8 + ...
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190 eq. (11.4.7).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003.
- Francisco Javier de Vega, Some Variants of Integer Multiplication, Axioms (2023) Vol. 12, 905. See p. 15.
- Milan Janjic, Two Enumerative Functions
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
- László Németh, Tetrahedron trinomial coefficient transform, arXiv:1905.13475 [math.CO], 2019.
- W. C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
List([0..50], n-> (n+1)*(n^2 +8*n +6)/6); # G. C. Greubel, Sep 11 2019
-
[(n+1)*(n^2+8*n+6)/6: n in [0..50]]; // Vincenzo Librandi, May 21 2011
-
seq(1+4*k+4*binomial(k, 2)+binomial(k, 3), k=0..45);
-
Table[(n+1)*(n^2+8*n+6)/6, {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009, modified by G. C. Greubel, Sep 11 2019 *)
LinearRecurrence[{4,-6,4,-1}, {1,5,13,26}, 51] (* G. C. Greubel, Sep 11 2019 *)
-
Vec((1+x-x^2)/(1-x)^4 + O(x^50)) \\ Altug Alkan, Jan 07 2016
-
[(n+1)*(n^2 +8*n +6)/6 for n in (0..50)] # G. C. Greubel, Sep 11 2019
A028421
Triangle read by rows: T(n, k) = (k+1)*A132393(n+1, k+1), for 0 <= k <= n.
Original entry on oeis.org
1, 1, 2, 2, 6, 3, 6, 22, 18, 4, 24, 100, 105, 40, 5, 120, 548, 675, 340, 75, 6, 720, 3528, 4872, 2940, 875, 126, 7, 5040, 26136, 39396, 27076, 9800, 1932, 196, 8, 40320, 219168, 354372, 269136, 112245, 27216, 3822, 288, 9
Offset: 0
Peter Wiggen (wiggen(AT)math.psu.edu)
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
------------------------------------------------------------------------------------
0: 1
1: 1 2
2: 2 6 3
3: 6 22 18 4
4: 24 100 105 40 5
5: 120 548 675 340 75 6
6: 720 3528 4872 2940 875 126 7
7: 5040 26136 39396 27076 9800 1932 196 8
8: 40320 219168 354372 269136 112245 27216 3822 288 9
9: 362880 2053152 3518100 2894720 1346625 379638 66150 6960 405 10
10: 3628800 21257280 38260728 33638000 17084650 5412330 1104411 145200 11880 550 11
... - _Wolfdieter Lang_, Nov 23 2018
Row sums give
A000254(n+1), n >= 0.
The asymptotic expansion of E(x,m=2,n) leads to
A000254 (n=1),
A001705 (n=2),
A001711 (n=3),
A001716 (n=4),
A001721 (n=5),
A051524 (n=6),
A051545 (n=7),
A051560 (n=8),
A051562 (n=9),
A051564 (n=10),
A093905 (triangle) and
A165674 (triangle).
-
A028421 := proc(n,k) (-1)^(n+k)*(k+1)*Stirling1(n+1,k+1) end:
seq(seq(A028421(n,k), k=0..n), n=0..8);
# Johannes W. Meijer, Oct 07 2009, Revised Sep 09 2012
egf := (1 - t)^(-x - 1)*(1 - x*log(1 - t)):
ser := series(egf, t, 16): coefft := n -> expand(coeff(ser,t,n)):
seq(seq(n!*coeff(coefft(n), x, k), k = 0..n), n = 0..8); # Peter Luschny, Jun 12 2022
-
f[n_, k_] = (k + 1) StirlingS1[n + 1, k + 1] // Abs; Flatten[Table[f[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, Jun 01 2011, after formula *)
-
# uses[riordan_square from A321620]
riordan_square(-ln(1 - x), 10, True) # Peter Luschny, Jan 03 2019
A237616
a(n) = n*(n + 1)*(5*n - 4)/2.
Original entry on oeis.org
0, 1, 18, 66, 160, 315, 546, 868, 1296, 1845, 2530, 3366, 4368, 5551, 6930, 8520, 10336, 12393, 14706, 17290, 20160, 23331, 26818, 30636, 34800, 39325, 44226, 49518, 55216, 61335, 67890, 74896, 82368, 90321, 98770, 107730, 117216, 127243, 137826, 148980, 160720
Offset: 0
After 0, the sequence is provided by the row sums of the triangle:
1;
2, 16;
3, 32, 31;
4, 48, 62, 46;
5, 64, 93, 92, 61;
6, 80, 124, 138, 122, 76;
7, 96, 155, 184, 183, 152, 91;
8, 112, 186, 230, 244, 228, 182, 106;
9, 128, 217, 276, 305, 304, 273, 212, 121;
10, 144, 248, 322, 366, 380, 364, 318, 242, 136; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 15*r-14 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (fifteenth row of the table).
Cf. sequences with formula n*(n+1)*(k*n-k+3)/6:
A000217 (k=0),
A000292 (k=1),
A000330 (k=2),
A002411 (k=3),
A002412 (k=4),
A002413 (k=5),
A002414 (k=6),
A007584 (k=7),
A007585 (k=8),
A007586 (k=9),
A007587 (k=10),
A050441 (k=11),
A172073 (k=12),
A177890 (k=13),
A172076 (k=14), this sequence (k=15),
A172078(k=16),
A237617 (k=17),
A172082 (k=18),
A237618 (k=19),
A172117(k=20),
A256718 (k=21),
A256716 (k=22),
A256645 (k=23),
A256646(k=24),
A256647 (k=25),
A256648 (k=26),
A256649 (k=27),
A256650(k=28).
-
List([0..40], n-> n*(n+1)*(5*n-4)/2); # G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(5*n-4)/2: n in [0..40]];
-
I:=[0,1,18,66]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
-
seq(n*(n+1)*(5*n-4)/2, n=0..40); # G. C. Greubel, Aug 30 2019
-
Table[n(n+1)(5n-4)/2, {n, 0, 40}]
CoefficientList[Series[x (1+14x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
LinearRecurrence[{4,-6,4,-1},{0,1,18,66},50] (* Harvey P. Dale, Jan 11 2015 *)
-
a(n)=n*(n+1)*(5*n-4)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(n+1)*(5*n-4)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
A103371
Number triangle T(n,k) = C(n,n-k)*C(n+1,n-k).
Original entry on oeis.org
1, 2, 1, 3, 6, 1, 4, 18, 12, 1, 5, 40, 60, 20, 1, 6, 75, 200, 150, 30, 1, 7, 126, 525, 700, 315, 42, 1, 8, 196, 1176, 2450, 1960, 588, 56, 1, 9, 288, 2352, 7056, 8820, 4704, 1008, 72, 1, 10, 405, 4320, 17640, 31752, 26460, 10080, 1620, 90, 1, 11, 550, 7425, 39600, 97020
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 2 1
2: 3 6 1
3: 4 18 12 1
4: 5 40 60 20 1
5: 6 75 200 150 30 1
6: 7 126 525 700 315 42 1
7: 8 196 1176 2450 1960 588 56 1
8: 9 288 2352 7056 8820 4704 1008 72 1
9: 10 405 4320 17640 31752 26460 10080 1620 90 1
... reformatted. - _Wolfdieter Lang_, Jul 31 2017
From _R. J. Mathar_, Mar 29 2013: (Start)
The matrix inverse starts
1;
-2, 1;
9, -6, 1;
-76, 54, -12, 1;
1055, -760, 180, -20, 1;
-21906, 15825, -3800, 450, -30, 1;
636447, -460026, 110775, -13300, 945, -42, 1; (End)
O.g.f. of 4th diagonal [4, 40,200, ...] is G(3, x) = 4*(1 + 3*x + x^2)/(1 - x)^7, from the n = 3 row [1, 3, 1] of A001263. See a comment above. - _Wolfdieter Lang_, Jul 31 2017
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, Refined Catalan and Narayana cyclic sieving, arXiv:2010.11157 [math.CO], 2020.
- Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 16.
- R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv:1306.4628 [math.CO], 2013.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51-62.
-
a103371 n k = a103371_tabl !! n !! k
a103371_row n = a103371_tabl !! n
a103371_tabl = map reverse a132813_tabl
-- Reinhard Zumkeller, Apr 04 2014
-
/* As triangle */ [[Binomial(n,n-k)*Binomial(n+1,n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 01 2017
-
A103371 := (n,k) -> binomial(n,k)^2*(n+1)/(k+1);
seq(print(seq(A103371(n, k), k=0..n)), n=0..7); # Peter Luschny, Oct 19 2011
-
Flatten[Table[Binomial[n,n-k]Binomial[n+1,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, May 26 2014 *)
CoefficientList[Series[Series[E^(x(1+y))(BesselI[0,2*x*Sqrt[y]]+BesselI[1,2*x*Sqrt[y]]/Sqrt[y]),{x,0,8}],{y,0,8}],{x,y}]*Range[0,8]! (* Natalia L. Skirrow, Apr 14 2025 *)
-
create_list(binomial(n,k)*binomial(n+1,k+1),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
for(n=0,10, for(k=0,n, print1(binomial(n,k)*binomial(n+1,k+1), ", "))) \\ G. C. Greubel, Nov 09 2018
Comments