cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 94 results. Next

A335699 Irregular tree read by rows: take the Stern-Brocot tree A007305(n)/A007306(n) and set a(n) = A007306(n) - A007305(n) mod 3.

Original entry on oeis.org

1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 2, 2, 1, 0, 0, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 0, 0, 2, 1, 0, 0, 2, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 2, 0, 0, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 0, 0, 2, 1, 1, 2, 2, 1, 0, 0, 2, 1, 2, 1, 0, 0, 2
Offset: 0

Views

Author

N. J. A. Sloane, Aug 05 2020

Keywords

Examples

			The initial rows of the tree are 1,0 // 1 // 2,1 // 0,0,2,1 // 1,2,2,1,0,0,2,1 // ...
		

Crossrefs

A002487 Stern's diatomic series (or Stern-Brocot sequence): a(0) = 0, a(1) = 1; for n > 0: a(2*n) = a(n), a(2*n+1) = a(n) + a(n+1).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, 7, 12, 5, 13, 8, 11, 3, 10, 7, 11, 4, 9, 5, 6, 1, 7, 6, 11, 5, 14, 9, 13, 4, 15, 11, 18, 7, 17, 10, 13, 3, 14, 11, 19, 8, 21, 13, 18, 5, 17, 12, 19
Offset: 0

Views

Author

Keywords

Comments

Also called fusc(n) [Dijkstra].
a(n)/a(n+1) runs through all the reduced nonnegative rationals exactly once [Stern; Calkin and Wilf].
If the terms are written as an array:
column 0 1 2 3 4 5 6 7 8 9 ...
row 0: 0
row 1: 1
row 2: 1,2
row 3: 1,3,2,3
row 4: 1,4,3,5,2,5,3,4
row 5: 1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5
row 6: 1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,9,7,12,5,13,8,11,3,10,...
...
then (ignoring row 0) the sum of the k-th row is 3^(k-1), each column is an arithmetic progression and the steps are nothing but the original sequence. - Takashi Tokita (butaneko(AT)fa2.so-net.ne.jp), Mar 08 2003
From N. J. A. Sloane, Oct 15 2017: (Start)
The above observation can be made more precise. Let A(n,k), n >= 0, 0 <= k <= 2^(n-1)-1 for k > 0, denote the entry in row n and column k of the left-justified array above.
The equations for columns 0,1,2,3,4,... are successively (ignoring row 0):
1 (n >= 1),
n (n >= 2),
n-1 (n >= 3),
2n-3 (n >= 3),
n-2 (n >= 4),
3n-7 (n >= 4),
...
and in general column k > 0 is given by
A(n,k) = a(k)*n - A156140(k) for n >= ceiling(log_2(k+1))+1, and 0 otherwise.
(End)
a(n) is the number of odd Stirling numbers S_2(n+1, 2r+1) [Carlitz].
Moshe Newman proved that the fraction a(n+1)/a(n+2) can be generated from the previous fraction a(n)/a(n+1) = x by 1/(2*floor(x) + 1 - x). The successor function f(x) = 1/(floor(x) + 1 - frac(x)) can also be used.
a(n+1) = number of alternating bit sets in n [Finch].
If f(x) = 1/(1 + floor(x) - frac(x)) then f(a(n-1)/a(n)) = a(n)/a(n+1) for n >= 1. If T(x) = -1/x and f(x) = y, then f(T(y)) = T(x) for x > 0. - Michael Somos, Sep 03 2006
a(n+1) is the number of ways of writing n as a sum of powers of 2, each power being used at most twice (the number of hyperbinary representations of n) [Carlitz; Lind].
a(n+1) is the number of partitions of the n-th integer expressible as the sum of distinct even-subscripted Fibonacci numbers (= A054204(n)), into sums of distinct Fibonacci numbers [Bicknell-Johnson, theorem 2.1].
a(n+1) is the number of odd binomial(n-k, k), 0 <= 2*k <= n. [Carlitz], corrected by Alessandro De Luca, Jun 11 2014
a(2^k) = 1. a(3*2^k) = a(2^(k+1) + 2^k) = 2. Sequences of terms between a(2^k) = 1 and a(2^(k+1)) = 1 are palindromes of length 2^k-1 with a(2^k + 2^(k-1)) = 2 in the middle. a(2^(k-1) + 1) = a(2^k - 1) = k+1 for k > 1. - Alexander Adamchuk, Oct 10 2006
The coefficients of the inverse of the g.f. of this sequence form A073469 and are related to binary partitions A000123. - Philippe Flajolet, Sep 06 2008
It appears that the terms of this sequence are the number of odd entries in the diagonals of Pascal's triangle at 45 degrees slope. - Javier Torres (adaycalledzero(AT)hotmail.com), Aug 06 2009
Let M be an infinite lower triangular matrix with (1, 1, 1, 0, 0, 0, ...) in every column shifted down twice:
1;
1, 0;
1, 1, 0;
0, 1, 0, 0;
0, 1, 1, 0, 0;
0, 0, 1, 0, 0, 0;
0, 0, 1, 1, 0, 0, 0;
...
Then this sequence A002487 (without initial 0) is the first column of lim_{n->oo} M^n. (Cf. A026741.) - Gary W. Adamson, Dec 11 2009 [Edited by M. F. Hasler, Feb 12 2017]
Member of the infinite family of sequences of the form a(n) = a(2*n); a(2*n+1) = r*a(n) + a(n+1), r = 1 for A002487 = row 1 in the array of A178239. - Gary W. Adamson, May 23 2010
Equals row 1 in an infinite array shown in A178568, sequences of the form
a(2*n) = r*a(n), a(2*n+1) = a(n) + a(n+1); r = 1. - Gary W. Adamson, May 29 2010
Row sums of A125184, the Stern polynomials. Equivalently, B(n,1), the n-th Stern polynomial evaluated at x = 1. - T. D. Noe, Feb 28 2011
The Kn1y and Kn2y triangle sums, see A180662 for their definitions, of A047999 lead to the sequence given above, e.g., Kn11(n) = A002487(n+1) - A000004(n), Kn12(n) = A002487(n+3) - A000012(n), Kn13(n) = A002487(n+5) - A000034(n+1) and Kn14(n) = A002487(n+7) - A157810(n+1). For the general case of the knight triangle sums see the Stern-Sierpiński triangle A191372. This triangle not only leads to Stern's diatomic series but also to snippets of this sequence and, quite surprisingly, their reverse. - Johannes W. Meijer, Jun 05 2011
Maximum of terms between a(2^k) = 1 and a(2^(k+1)) = 1 is the Fibonacci number F(k+2). - Leonid Bedratyuk, Jul 04 2012
Probably the number of different entries per antidiagonal of A223541. That would mean there are exactly a(n+1) numbers that can be expressed as a nim-product 2^x*2^y with x + y = n. - Tilman Piesk, Mar 27 2013
Let f(m,n) be the frequency of the integer n in the interval [a(2^(m-1)), a(2^m-1)]. Let phi(n) be Euler's totient function (A000010). Conjecture: for all integers m,n n<=m f(m,n) = phi(n). - Yosu Yurramendi, Sep 08 2014
Back in May 1995, it was proved that A000360 is the modulo 3 mapping, (+1,-1,+0)/2, of this sequence A002487 (without initial 0). - M. Jeremie Lafitte (Levitas), Apr 24 2017
Define a sequence chf(n) of Christoffel words over an alphabet {-,+}: chf(1) = '-'; chf(2*n+0) = negate(chf(n)); chf(2*n+1) = negate(concatenate(chf(n),chf(n+1))). Then the length of the chf(n) word is fusc(n) = a(n); the number of '-'-signs in the chf(n) word is c-fusc(n) = A287729(n); the number of '+'-signs in the chf(n) word is s-fusc(n) = A287730(n). See examples below. - I. V. Serov, Jun 01 2017
The sequence can be extended so that a(n) = a(-n), a(2*n) = a(n), a(2*n+1) = a(n) + a(n+1) for all n in Z. - Michael Somos, Jun 25 2019
Named after the German mathematician Moritz Abraham Stern (1807-1894), and sometimes also after the French clockmaker and amateur mathematician Achille Brocot (1817-1878). - Amiram Eldar, Jun 06 2021
It appears that a(n) is equal to the multiplicative inverse of A007305(n+1) mod A007306(n+1). For example, a(12) is 2, the multiplicative inverse of A007305(13) mod A007306(13), where A007305(13) is 4 and A007306(13) is 7. - Gary W. Adamson, Dec 18 2023

Examples

			Stern's diatomic array begins:
  1,1,
  1,2,1,
  1,3,2,3,1,
  1,4,3,5,2,5,3,4,1,
  1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5,1,
  1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,9,7,12,5,13,8,11,3,10,7,11,4,9,...
  ...
a(91) = 19, because 91_10 = 1011011_2; b_6=b_4=b_3=b_1=b_0=1, b_5=b_2=0;  L=5; m_1=0, m_2=1, m_3=3, m_4=4, m_5=6; c_1=2, c_2=3, c_3=2, c_4=3; f(1)=1, f(2)=2, f(3)=5, f(4)=8, f(5)=19. - _Yosu Yurramendi_, Jul 13 2016
From _I. V. Serov_, Jun 01 2017: (Start)
a(n) is the length of the Christoffel word chf(n):
n  chf(n) A070939(n)   a(n)
1   '-'       1          1
2   '+'       2          1
3   '+-'      2          2
4   '-'       3          1
5   '--+'     3          3
6   '-+'      3          2
... (End)
G.f. = x + x^2 + 2*x^3 + x^4 + 3*x^5 + 2*x^6 + 3*x^7 + x^8 + ... - _Michael Somos_, Jun 25 2019
		

References

  • M. Aigner and G. M. Ziegler, Proofs from THE BOOK, 3rd ed., Berlin, Heidelberg, New York: Springer-Verlag, 2004, p. 97.
  • Elwyn R. Berlekamp, John H. Conway and Richard K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 114.
  • Krishna Dasaratha, Laure Flapan, Chansoo Lee, Cornelia Mihaila, Nicholas Neumann-Chun, Sarah Peluse and Matthew Stroegeny, A family of multi-dimensional continued fraction Stern sequences, Abtracts Amer. Math. Soc., Vol. 33 (#1, 2012), #1077-05-2543.
  • Edsger W. Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232 (sequence is called fusc).
  • F. G. M. Eisenstein, Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abhaengen und durch gewisse lineare Funktional-Gleichungen definirt werden, Verhandlungen der Koenigl. Preuss. Akademie der Wiss. Berlin (1850), pp. 36-42, Feb 18, 1850. Werke, II, pp. 705-711.
  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.16.3; pp. 148-149.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 117.
  • Thomas Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001, p. 98.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Record values are in A212289.
If the 1's are replaced by pairs of 1's we obtain A049456.
Inverse: A020946.
Cf. a(A001045(n)) = A000045(n). a(A062092(n)) = A000032(n+1).
Cf. A064881-A064886 (Stern-Brocot subtrees).
A column of A072170.
Cf. A049455 for the 0,1 version of Stern's diatomic array.
Cf. A000119, A262097 for analogous sequences in other bases and A277189, A277315, A277328 for related sequences with similar graphs.
Cf. A086592 and references therein to other sequences related to Kepler's tree of fractions.

Programs

  • Haskell
    a002487 n = a002487_list !! n
    a002487_list = 0 : 1 : stern [1] where
       stern fuscs = fuscs' ++ stern fuscs' where
         fuscs' = interleave fuscs $ zipWith (+) fuscs $ (tail fuscs) ++ [1]
       interleave []     ys = ys
       interleave (x:xs) ys = x : interleave ys xs
    -- Reinhard Zumkeller, Aug 23 2011
    
  • Julia
    using Nemo
    function A002487List(len)
        a, A = QQ(0), [0,1]
        for n in 1:len
            a = next_calkin_wilf(a)
            push!(A, denominator(a))
        end
    A end
    A002487List(91) |> println # Peter Luschny, Mar 13 2018
    
  • Magma
    [&+[(Binomial(k, n-k-1) mod 2): k in [0..n]]: n in [0..100]]; // Vincenzo Librandi, Jun 18 2019
    
  • Maple
    A002487 := proc(n) option remember; if n <= 1 then n elif n mod 2 = 0 then procname(n/2); else procname((n-1)/2)+procname((n+1)/2); fi; end: seq(A002487(n),n=0..91);
    A002487 := proc(m) local a,b,n; a := 1; b := 0; n := m; while n>0 do if type(n,odd) then b := a+b else a := a+b end if; n := floor(n/2); end do; b; end proc: seq(A002487(n),n=0..91); # Program adapted from E. Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232. - Igor Urbiha (urbiha(AT)math.hr), Oct 28 2002. Since A007306(n) = a(2*n+1), this program can be adapted for A007306 by replacing b := 0 by b := 1.
    A002487 := proc(n::integer) local k; option remember; if n = 0 then 0 elif n=1 then 1 else add(K(k,n-1-k)*procname(n - k), k = 1 .. n) end if end proc:
    K := proc(n::integer, k::integer) local KC; if 0 <= k and k <= n and n-k <= 2 then KC:=1; else KC:= 0; end if; end proc: seq(A002487(n),n=0..91); # Thomas Wieder, Jan 13 2008
    # next Maple program:
    a:= proc(n) option remember; `if`(n<2, n,
          (q-> a(q)+(n-2*q)*a(n-q))(iquo(n, 2)))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 11 2021
    fusc := proc(n) local a, b, c; a := 1; b := 0;
        for c in convert(n, base, 2) do
            if c = 0 then a := a + b else b := a + b fi od;
        b end:
    seq(fusc(n), n = 0..91); # Peter Luschny, Nov 09 2022
    Stern := proc(n, u) local k, j, b;
        b := j -> nops({seq(Bits:-Xor(k, j-k), k = 0..j)}):
        ifelse(n=0, 1-u, seq(b(j), j = 2^(n-1)-1..2^n-1-u)) end:
    seq(print([n], Stern(n, 1)), n = 0..5); # As shown in the comments.
    seq(print([n], Stern(n, 0)), n = 0..5); # As shown in the examples. # Peter Luschny, Sep 29 2024
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := If[ EvenQ[n], a[n/2], a[(n-1)/2] + a[(n+1)/2]]; Table[ a[n], {n, 0, 100}] (* end of program *)
    Onemore[l_] := Transpose[{l, l + RotateLeft[l]}] // Flatten;
    NestList[Onemore, {1}, 5] // Flatten  (*gives [a(1), ...]*) (* Takashi Tokita, Mar 09 2003 *)
    ToBi[l_] := Table[2^(n - 1), {n, Length[l]}].Reverse[l]; Map[Length,
    Split[Sort[Map[ToBi, Table[IntegerDigits[n - 1, 3], {n, 500}]]]]]  (*give [a(1), ...]*) (* Takashi Tokita, Mar 10 2003 *)
    A002487[m_] := Module[{a = 1, b = 0, n = m}, While[n > 0, If[OddQ[n], b = a+b, a = a+b]; n = Floor[n/2]]; b]; Table[A002487[n], {n, 0, 100}] (* Jean-François Alcover, Sep 06 2013, translated from 2nd Maple program *)
    a[0] = 0; a[1] = 1;
    Flatten[Table[{a[2*n] = a[n], a[2*n + 1] = a[n] + a[n + 1]}, {n, 0, 50}]] (* Horst H. Manninger, Jun 09 2021 *)
    nmax = 100; CoefficientList[Series[x*Product[(1 + x^(2^k) + x^(2^(k+1))), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2022 *)
  • PARI
    {a(n) = n=abs(n); if( n<2, n>0, a(n\2) + if( n%2, a(n\2 + 1)))};
    
  • PARI
    fusc(n)=local(a=1,b=0);while(n>0,if(bitand(n,1),b+=a,a+=b);n>>=1);b \\ Charles R Greathouse IV, Oct 05 2008
    
  • PARI
    A002487(n,a=1,b=0)=for(i=0,logint(n,2),if(bittest(n,i),b+=a,a+=b));b \\ M. F. Hasler, Feb 12 2017, updated Feb 14 2019
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def a(n): return n if n<2 else a(n//2) if n%2==0 else a((n - 1)//2) + a((n + 1)//2) # Indranil Ghosh, Jun 08 2017; corrected by Reza K Ghazi, Dec 27 2021
    
  • Python
    def a(n):
        a, b = 1, 0
        while n > 0:
            if n & 1:
                b += a
            else:
                a += b
            n >>= 1
        return b
    # Reza K Ghazi, Dec 29 2021
    
  • Python
    def A002487(n): return sum(int(not (n-k-1) & ~k) for k in range(n)) # Chai Wah Wu, Jun 19 2022
    
  • Python
    # (fast way for big vectors)
    from math import log, ceil
    import numpy
    how_many_terms = 2**20  # (Powers of 2 recommended but other integers are also possible.)
    A002487, A002487[1]  = numpy.zeros(2**(ce:=ceil(log(how_many_terms,2))), dtype=object), 1
    for exponent in range(1,ce):
        L, L2 = 2**exponent, 2**(exponent+1)
        A002487[L2 - 1] = exponent + 1
        A002487[L:L2][::2] = A002487[L >> 1: L]
        A002487[L + 1:L2 - 2][::2] = A002487[L:L2 - 3][::2]  +  A002487[L + 2:L2 - 1][::2]
    print(list(A002487[0:100])) # Karl-Heinz Hofmann, Jul 22 2025
  • R
    N <- 50 # arbitrary
    a <- 1
    for (n in 1:N)
    {
      a[2*n    ] = a[n]
      a[2*n + 1] = a[n] + a[n+1]
      a
    }
    a
    # Yosu Yurramendi, Oct 04 2014
    
  • R
    # Given n, compute a(n) by taking into account the binary representation of n
    a <- function(n){
      b <- as.numeric(intToBits(n))
      l <- sum(b)
      m <- which(b == 1)-1
      d <- 1
      if(l > 1) for(j in 1:(l-1)) d[j] <- m[j+1]-m[j]+1
      f <- c(0,1)
      if(l > 1) for(j in 3:(l+1)) f[j] <- d[j-2]*f[j-1]-f[j-2]
      return(f[l+1])
    } # Yosu Yurramendi, Dec 13 2016
    
  • R
    # computes the sequence as a vector A, rather than function a() as above.
    A <- c(1,1)
    maxlevel <- 5 # by choice
    for(m in 1:maxlevel) {
      A[2^(m+1)] <- 1
      for(k in 1:(2^m-1)) {
        r <- m - floor(log2(k)) - 1
        A[2^r*(2*k+1)] <- A[2^r*(2*k)] + A[2^r*(2*k+2)]
    }}
    A # Yosu Yurramendi, May 08 2018
    
  • Sage
    def A002487(n):
        M = [1, 0]
        for b in n.bits():
            M[b] = M[0] + M[1]
        return M[1]
    print([A002487(n) for n in (0..91)])
    # For a dual see A174980. Peter Luschny, Nov 28 2017
    
  • Scheme
    ;; An implementation of memoization-macro definec can be found for example in: http://oeis.org/wiki/Memoization
    (definec (A002487 n) (cond ((<= n 1) n) ((even? n) (A002487 (/ n 2))) (else (+ (A002487 (/ (- n 1) 2)) (A002487 (/ (+ n 1) 2))))))
    ;; Antti Karttunen, Nov 05 2016
    

Formula

a(n+1) = (2*k+1)*a(n) - a(n-1) where k = floor(a(n-1)/a(n)). - David S. Newman, Mar 04 2001
Let e(n) = A007814(n) = exponent of highest power of 2 dividing n. Then a(n+1) = (2k+1)*a(n)-a(n-1), n > 0, where k = e(n). Moreover, floor(a(n-1)/a(n)) = e(n), in agreement with D. Newman's formula. - Dragutin Svrtan (dsvrtan(AT)math.hr) and Igor Urbiha (urbiha(AT)math.hr), Jan 10 2002
Calkin and Wilf showed 0.9588 <= limsup a(n)/n^(log(phi)/log(2)) <= 1.1709 where phi is the golden mean. Does this supremum limit = 1? - Benoit Cloitre, Jan 18 2004. Coons and Tyler show the limit is A246765 = 0.9588... - Kevin Ryde, Jan 09 2021
a(n) = Sum_{k=0..floor((n-1)/2)} (binomial(n-k-1, k) mod 2). - Paul Barry, Sep 13 2004
a(n) = Sum_{k=0..n-1} (binomial(k, n-k-1) mod 2). - Paul Barry, Mar 26 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + 2*u*v*w - u^2*w. - Michael Somos, May 02 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^3*u6 - 3*u1^2*u2*u6 + 3*u2^3*u6 - u2^3*u3. - Michael Somos, May 02 2005
G.f.: x * Product_{k>=0} (1 + x^(2^k) + x^(2^(k+1))) [Carlitz].
a(n) = a(n-2) + a(n-1) - 2*(a(n-2) mod a(n-1)). - Mike Stay, Nov 06 2006
A079978(n) = (1 + e^(i*Pi*A002487(n)))/2, i=sqrt(-1). - Paul Barry, Jan 14 2005
a(n) = Sum_{k=1..n} K(k, n-k)*a(n - k), where K(n,k) = 1 if 0 <= k AND k <= n AND n-k <= 2 and K(n,k) = 0 else. (When using such a K-coefficient, several different arguments to K or several different definitions of K may lead to the same integer sequence. For example, if we drop the condition k <= n in the above definition, then we arrive at A002083 = Narayana-Zidek-Capell numbers.) - Thomas Wieder, Jan 13 2008
a(k+1)*a(2^n - k) - a(k)*a(2^n - (k+1)) = 1; a(2^n - k) + a(k) = a(2^(n+1) + k). Both formulas hold for 0 <= k <= 2^n - 1. G.f.: G(z) = a(1) + a(2)*z + a(3)*z^2 + ... + a(k+1)*z^k + ... Define f(z) = (1 + z + z^2), then G(z) = lim f(z)*f(z^2)*f(z^4)* ... *f(z^(2^n))*... = (1 + z + z^2)*G(z^2). - Arie Werksma (werksma(AT)tiscali.nl), Apr 11 2008
a(k+1)*a(2^n - k) - a(k)*a(2^n - (k+1)) = 1 (0 <= k <= 2^n - 1). - Arie Werksma (werksma(AT)tiscali.nl), Apr 18 2008
a(2^n + k) = a(2^n - k) + a(k) (0 <= k <= 2^n). - Arie Werksma (werksma(AT)tiscali.nl), Apr 18 2008
Let g(z) = a(1) + a(2)*z + a(3)*z^2 + ... + a(k+1)*z^k + ..., f(z) = 1 + z + z^2. Then g(z) = lim_{n->infinity} f(z)*f(z^2)*f(z^4)*...*f(z^(2^n)), g(z) = f(z)*g(z^2). - Arie Werksma (werksma(AT)tiscali.nl), Apr 18 2008
For 0 <= k <= 2^n - 1, write k = b(0) + 2*b(1) + 4*b(2) + ... + 2^(n-1)*b(n-1) where b(0), b(1), etc. are 0 or 1. Define a 2 X 2 matrix X(m) with entries x(1,1) = x(2,2) = 1, x(1,2) = 1 - b(m), x(2,1) = b(m). Let P(n)= X(0)*X(1)* ... *X(n-1). The entries of the matrix P are members of the sequence: p(1,1) = a(k+1), p(1,2) = a(2^n - (k+1)), p(2,1) = a(k), p(2,2) = a(2^n - k). - Arie Werksma (werksma(AT)tiscali.nl), Apr 20 2008
Let f(x) = A030101(x); if 2^n + 1 <= x <= 2^(n + 1) and y = 2^(n + 1) - f(x - 1) then a(x) = a(y). - Arie Werksma (Werksma(AT)Tiscali.nl), Jul 11 2008
a(n) = A126606(n + 1) / 2. - Reikku Kulon, Oct 05 2008
Equals infinite convolution product of [1,1,1,0,0,0,0,0,0] aerated A000079 - 1 times, i.e., [1,1,1,0,0,0,0,0,0] * [1,0,1,0,1,0,0,0,0] * [1,0,0,0,1,0,0,0,1]. - Mats Granvik and Gary W. Adamson, Oct 02 2009; corrected by Mats Granvik, Oct 10 2009
a(2^(p+2)*n+2^(p+1)-1) - a(2^(p+1)*n+2^p-1) = A007306(n+1), p >= 0 and n >= 0. - Johannes W. Meijer, Feb 07 2013
a(2*n-1) = A007306(n), n > 0. - Yosu Yurramendi, Jun 23 2014
a(n*2^m) = a(n), m>0, n > 0. - Yosu Yurramendi, Jul 03 2014
a(k+1)*a(2^m+k) - a(k)*a(2^m+(k+1)) = 1 for m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Nov 07 2014
a(2^(m+1)+(k+1))*a(2^m+k) - a(2^(m+1)+k)*a(2^m+(k+1)) = 1 for m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Nov 07 2014
a(5*2^k) = 3. a(7*2^k) = 3. a(9*2^k) = 4. a(11*2^k) = 5. a(13*2^k) = 5. a(15*2^k) = 4. In general: a((2j-1)*2^k) = A007306(j), j > 0, k >= 0 (see Adamchuk's comment). - Yosu Yurramendi, Mar 05 2016
a(2^m+2^m'+k') = a(2^m'+k')*(m-m'+1) - a(k'), m >= 0, m' <= m-1, 0 <= k' < 2^m'. - Yosu Yurramendi, Jul 13 2016
From Yosu Yurramendi, Jul 13 2016: (Start)
Let n be a natural number and [b_m b_(m-1) ... b_1 b_0] its binary expansion with b_m=1.
Let L = Sum_{i=0..m} b_i be the number of binary digits equal to 1 (L >= 1).
Let {m_j: j=1..L} be the set of subindices such that b_m_j = 1, j=1..L, and 0 <= m_1 <= m_2 <= ... <= m_L = m.
If L = 1 then c_1 = 1, otherwise let {c_j: j=1..(L-1)} be the set of coefficients such that c_(j) = m_(j+1) - m_j + 1, 1 <= j <= L-1.
Let f be a function defined on {1..L+1} such that f(1) = 0, f(2) = 1, f(j) = c_(j-2)*f(j-1) - f(j-2), 3 <= j <= L+1.
Then a(n) = f(L+1) (see example). (End)
a(n) = A001222(A260443(n)) = A000120(A277020(n)). Also a(n) = A000120(A101624(n-1)) for n >= 1. - Antti Karttunen, Nov 05 2016
(a(n-1) + a(n+1))/a(n) = A037227(n) for n >= 1. - Peter Bala, Feb 07 2017
a(0) = 0; a(3n) = 2*A000360(3n-1); a(3n+1) = 2*A000360(3n) - 1; a(3n+2) = 2*A000360(3n+1) + 1. - M. Jeremie Lafitte (Levitas), Apr 24 2017
From I. V. Serov, Jun 14 2017: (Start)
a(n) = A287896(n-1) - 1*A288002(n-1) for n > 1;
a(n) = A007306(n-1) - 2*A288002(n-1) for n > 1. (End)
From Yosu Yurramendi, Feb 14 2018: (Start)
a(2^(m+2) + 2^(m+1) + k) - a(2^(m+1) + 2^m + k) = 2*a(k), m >= 0, 0 <= k < 2^m.
a(2^(m+2) + 2^(m+1) + k) - a(2^(m+1) + k) = a(2^m + k), m >= 0, 0 <= k < 2^m.
a(2^m + k) = a(k)*(m - floor(log_2(k)) - 1) + a(2^(floor(log_2(k))+1) + k), m >= 0, 0 < k < 2^m, a(2^m) = 1, a(0) = 0. (End)
From Yosu Yurramendi, May 08 2018: (Start)
a(2^m) = 1, m >= 0.
a(2^r*(2*k+1)) = a(2^r*(2*k)) + a(2^r*(2*k+2)), r < - m - floor(log_2(k)) - 1, m > 0, 1 <= k < 2^m. (End)
Trow(n) = [card({k XOR (j-k): k=0..j}) for j = 2^(n-1)-1..2^n-2] when regarded as an irregular table (n >= 1). - Peter Luschny, Sep 29 2024
a(n) = A000120(A168081(n)). - Karl-Heinz Hofmann, Jun 16 2025

Extensions

Additional references and comments from Len Smiley, Joshua Zucker, Rick L. Shepherd and Herbert S. Wilf
Typo in definition corrected by Reinhard Zumkeller, Aug 23 2011
Incorrect formula deleted and text edited by Johannes W. Meijer, Feb 07 2013

A016777 a(n) = 3*n + 1.

Original entry on oeis.org

1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Numbers k such that the concatenation of the first k natural numbers is not divisible by 3. E.g., 16 is in the sequence because we have 123456789101111213141516 == 1 (mod 3).
Ignoring the first term, this sequence represents the number of bonds in a hydrocarbon: a(#of carbon atoms) = number of bonds. - Nathan Savir (thoobik(AT)yahoo.com), Jul 03 2003
n such that Sum_{k=0..n} (binomial(n+k,n-k) mod 2) is even (cf. A007306). - Benoit Cloitre, May 09 2004
Hilbert series for twisted cubic curve. - Paul Barry, Aug 11 2006
If Y is a 3-subset of an n-set X then, for n >= 3, a(n-3) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
a(n) = A144390 (1, 9, 23, 43, 69, ...) - A045944 (0, 5, 16, 33, 56, ...). From successive spectra of hydrogen atom. - Paul Curtz, Oct 05 2008
Number of monomials in the n-th power of polynomial x^3+x^2+x+1. - Artur Jasinski, Oct 06 2008
A145389(a(n)) = 1. - Reinhard Zumkeller, Oct 10 2008
Union of A035504, A165333 and A165336. - Reinhard Zumkeller, Sep 17 2009
Hankel transform of A076025. - Paul Barry, Sep 23 2009
From Jaroslav Krizek, May 28 2010: (Start)
a(n) = numbers k such that the antiharmonic mean of the first k positive integers is an integer.
A169609(a(n-1)) = 1. See A146535 and A169609. Complement of A007494.
See A005408 (odd positive integers) for corresponding values A146535(a(n)). (End)
Apart from the initial term, A180080 is a subsequence; cf. A180076. - Reinhard Zumkeller, Aug 14 2010
Also the maximum number of triangles that n + 2 noncoplanar points can determine in 3D space. - Carmine Suriano, Oct 08 2010
A089911(4*a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013
The number of partitions of 6*n into at most 2 parts. - Colin Barker, Mar 31 2015
For n >= 1, a(n)/2 is the proportion of oxygen for the stoichiometric combustion reaction of hydrocarbon CnH2n+2, e.g., one part propane (C3H8) requires 5 parts oxygen to complete its combustion. - Kival Ngaokrajang, Jul 21 2015
Exponents n > 0 for which 1 + x^2 + x^n is reducible. - Ron Knott, Oct 13 2016
Also the number of independent vertex sets in the n-cocktail party graph. - Eric W. Weisstein, Sep 21 2017
Also the number of (not necessarily maximal) cliques in the n-ladder rung graph. - Eric W. Weisstein, Nov 29 2017
Also the number of maximal and maximum cliques in the n-book graph. - Eric W. Weisstein, Dec 01 2017
For n>=1, a(n) is the size of any snake-polyomino with n cells. - Christian Barrientos and Sarah Minion, Feb 27 2018
The sum of two distinct terms of this sequence is never a square. See Lagarias et al. p. 167. - Michel Marcus, May 20 2018
It seems that, for any n >= 1, there exists no positive integer z such that digit_sum(a(n)*z) = digit_sum(a(n)+z). - Max Lacoma, Sep 18 2019
For n > 2, a(n-2) is the number of distinct values of the magic constant in a normal magic triangle of order n (see formula 5 in Trotter). - Stefano Spezia, Feb 18 2021
Number of 3-permutations of n elements avoiding the patterns 132, 231, 312. See Bonichon and Sun. - Michel Marcus, Aug 20 2022
Erdős & Sárközy conjecture that a set of n positive integers with property P must have some element at least a(n-1) = 3n - 2. Property P states that, for x, y, and z in the set and z < x, y, z does not divide x+y. An example of such a set is {2n-1, 2n, ..., 3n-2}. Bedert proves this for large enough n. (This is an upper bound, and is exact for all known n; I have verified it for n up to 12.) - Charles R Greathouse IV, Feb 06 2023
a(n-1) = 3*n-2 is the dimension of the vector space of all n X n tridiagonal matrices, equals the number of nonzero coefficients: n + 2*(n-1) (see Wikipedia link). - Bernard Schott, Mar 03 2023

Examples

			G.f. = 1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 16*x^5 + 19*x^6 + 22*x^7 + ... - _Michael Somos_, May 27 2019
		

References

  • W. Decker, C. Lossen, Computing in Algebraic Geometry, Springer, 2006, p. 22.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.1 Terminology, p. 264.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269.

Crossrefs

Cf. A007559 (partial products), A051536 (lcm).
First differences of A000326.
Row sums of A131033.
Complement of A007494. - Reinhard Zumkeller, Oct 10 2008
Some subsequences: A002476 (primes), A291745 (nonprimes), A135556 (squares), A016779 (cubes).

Programs

  • Haskell
    a016777 = (+ 1) . (* 3)
    a016777_list = [1, 4 ..]  -- Reinhard Zumkeller, Feb 28 2013, Feb 10 2012
    
  • Magma
    [3*n+1 : n in [1..70]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Mathematica
    Range[1, 199, 3] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *)
    (* Start from Eric W. Weisstein, Sep 21 2017 *)
    3 Range[0, 70] + 1
    Table[3 n + 1, {n, 0, 70}]
    LinearRecurrence[{2, -1}, {1, 4}, 70]
    CoefficientList[Series[(1 + 2 x)/(-1 + x)^2, {x, 0, 70}], x]
    (* End *)
  • Maxima
    A016777(n):=3*n+1$
    makelist(A016777(n),n,0,30); /* Martin Ettl, Oct 31 2012 */
    
  • PARI
    a(n)=3*n+1 \\ Charles R Greathouse IV, Jul 28 2015
    
  • SageMath
    [3*n+1 for n in range(1,71)] # G. C. Greubel, Mar 15 2024

Formula

G.f.: (1+2*x)/(1-x)^2.
a(n) = A016789(n) - 1.
a(n) = 3 + a(n-1).
Sum_{n>=1} (-1)^n/a(n) = (1/3)*(Pi/sqrt(3) + log(2)). [Jolley, p. 16, (79)] - Benoit Cloitre, Apr 05 2002
(1 + 4*x + 7*x^2 + 10*x^3 + ...) = (1 + 2*x + 3*x^2 + ...)/(1 - 2*x + 4*x^2 - 8*x^3 + ...). - Gary W. Adamson, Jul 03 2003
E.g.f.: exp(x)*(1+3*x). - Paul Barry, Jul 23 2003
a(n) = 2*a(n-1) - a(n-2); a(0)=1, a(1)=4. - Philippe Deléham, Nov 03 2008
a(n) = 6*n - a(n-1) - 1 (with a(0) = 1). - Vincenzo Librandi, Nov 20 2010
Sum_{n>=0} 1/a(n)^2 = A214550. - R. J. Mathar, Jul 21 2012
a(n) = A238731(n+1,n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-5)^k. - Philippe Deléham, Mar 05 2014
Sum_{i=0..n} (a(i)-i) = A000290(n+1). - Ivan N. Ianakiev, Sep 24 2014
From Wolfdieter Lang, Mar 09 2018: (Start)
a(n) = denominator(Sum_{k=0..n-1} 1/(a(k)*a(k+1))), with the numerator n = A001477(n), where the sum is set to 0 for n = 0. [Jolley, p. 38, (208)]
G.f. for {n/(1 + 3*n)}_{n >= 0} is (1/3)*(1-hypergeom([1, 1], [4/3], -x/(1-x)))/(1-x). (End)
a(n) = -A016789(-1-n) for all n in Z. - Michael Somos, May 27 2019

Extensions

Better description from T. D. Noe, Aug 15 2002
Partially edited by Joerg Arndt, Mar 11 2010

A047999 Sierpiński's [Sierpinski's] triangle (or gasket): triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 2.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Restored the alternative spelling of Sierpinski to facilitate searching for this triangle using regular-expression matching commands in ASCII. - N. J. A. Sloane, Jan 18 2016
Also triangle giving successive states of cellular automaton generated by "Rule 60" and "Rule 102". - Hans Havermann, May 26 2002
Also triangle formed by reading triangle of Eulerian numbers (A008292) mod 2. - Philippe Deléham, Oct 02 2003
Self-inverse when regarded as an infinite lower triangular matrix over GF(2).
Start with [1], repeatedly apply the map 0 -> [00/00], 1 -> [10/11] [Allouche and Berthe]
Also triangle formed by reading triangles A011117, A028338, A039757, A059438, A085881, A086646, A086872, A087903, A104219 mod 2. - Philippe Deléham, Jun 18 2005
J. H. Conway writes (in Math Forum): at least the first 31 rows give odd-sided constructible polygons (sides 1, 3, 5, 15, 17, ... see A001317). The 1's form a Sierpiński sieve. - M. Dauchez (mdzzdm(AT)yahoo.fr), Sep 19 2005
When regarded as an infinite lower triangular matrix, its inverse is a (-1,0,1)-matrix with zeros undisturbed and the nonzero entries in every column form the Prouhet-Thue-Morse sequence (1,-1,-1,1,-1,1,1,-1,...) A010060 (up to relabeling). - David Callan, Oct 27 2006
Triangle read by rows: antidiagonals of an array formed by successive iterates of running sums mod 2, beginning with (1, 1, 1, ...). - Gary W. Adamson, Jul 10 2008
T(n,k) = A057427(A143333(n,k)). - Reinhard Zumkeller, Oct 24 2010
The triangle sums, see A180662 for their definitions, link Sierpiński’s triangle A047999 with seven sequences, see the crossrefs. The Kn1y(n) and Kn2y(n), y >= 1, triangle sums lead to the Sierpiński-Stern triangle A191372. - Johannes W. Meijer, Jun 05 2011
Used to compute the total Steifel-Whitney cohomology class of the Real Projective space. This was an essential component of the proof that there are no product operations without zero divisors on R^n for n not equal to 1, 2, 4 or 8 (real numbers, complex numbers, quaternions, Cayley numbers), proved by Bott and Milnor. - Marcus Jaiclin, Feb 07 2012
T(n,k) = A134636(n,k) mod 2. - Reinhard Zumkeller, Nov 23 2012
T(n,k) = 1 - A219463(n,k), 0 <= k <= n. - Reinhard Zumkeller, Nov 30 2012
From Vladimir Shevelev, Dec 31 2013: (Start)
Also table of coefficients of polynomials s_n(x) of degree n which are defined by formula s_n(x) = Sum_{i=0..n} (binomial(n,i) mod 2)*x^k. These polynomials we naturally call Sierpiński's polynomials. They also are defined by the recursion: s_0(x)=1, s_(2*n+1)(x) = (x+1)*s_n(x^2), n>=0, and s_(2*n)(x) = s_n(x^2), n>=1.
Note that: s_n(1) = A001316(n),
s_n(2) = A001317(n),
s_n(3) = A100307(n),
s_n(4) = A001317(2*n),
s_n(5) = A100308(n),
s_n(6) = A100309(n),
s_n(7) = A100310(n),
s_n(8) = A100311(n),
s_n(9) = A100307(2*n),
s_n(10) = A006943(n),
s_n(16) = A001317(4*n),
s_n(25) = A100308(2*n), etc.
The equality s_n(10) = A006943(n) means that sequence A047999 is obtained from A006943 by the separation by commas of the digits of its terms. (End)
Comment from N. J. A. Sloane, Jan 18 2016: (Start)
Take a diamond-shaped region with edge length n from the top of the triangle, and rotate it by 45 degrees to get a square S_n. Here is S_6:
[1, 1, 1, 1, 1, 1]
[1, 0, 1, 0, 1, 0]
[1, 1, 0, 0, 1, 1]
[1, 0, 0, 0, 1, 0]
[1, 1, 1, 1, 0, 0]
[1, 0, 1, 0, 0, 0].
Then (i) S_n contains no square (parallel to the axes) with all four corners equal to 1 (cf. A227133); (ii) S_n can be constructed by using the greedy algorithm with the constraint that there is no square with that property; and (iii) S_n contains A064194(n) 1's. Thus A064194(n) is a lower bound on A227133(n). (End)
See A123098 for a multiplicative encoding of the rows, i.e., product of the primes selected by nonzero terms; e.g., 1 0 1 => 2^1 * 3^0 * 5^1. - M. F. Hasler, Sep 18 2016
From Valentin Bakoev, Jul 11 2020: (Start)
The Sierpinski's triangle with 2^n rows is a part of a lower triangular matrix M_n of dimension 2^n X 2^n. M_n is a block matrix defined recursively: M_1= [1, 0], [1, 1], and for n>1, M_n = [M_(n-1), O_(n-1)], [M_(n-1), M_(n-1)], where M_(n-1) is a block matrix of the same type, but of dimension 2^(n-1) X 2^(n-1), and O_(n-1) is the zero matrix of dimension 2^(n-1) X 2^(n-1). Here is how M_1, M_2 and M_3 look like:
1 0 1 0 0 0 1 0 0 0 0 0 0 0
1 1 1 1 0 0 1 1 0 0 0 0 0 0 - It is seen the self-similarity of the
1 0 1 0 1 0 1 0 0 0 0 0 matrices M_1, M_2, ..., M_n, ...,
1 1 1 1 1 1 1 1 0 0 0 0 analogously to the Sierpinski's fractal.
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1
M_n can also be defined as M_n = M_1 X M_(n-1) where X denotes the Kronecker product. M_n is an important matrix in coding theory, cryptography, Boolean algebra, monotone Boolean functions, etc. It is a transformation matrix used in computing the algebraic normal form of Boolean functions. Some properties and links concerning M_n can be seen in LINKS. (End)
Sierpinski's gasket has fractal (Hausdorff) dimension log(A000217(2))/log(2) = log(3)/log(2) = 1.58496... (and cf. A020857). This gasket is the first of a family of gaskets formed by taking the Pascal triangle (A007318) mod j, j >= 2 (see CROSSREFS). For prime j, the dimension of the gasket is log(A000217(j))/log(j) = log(j(j + 1)/2)/log(j) (see Reiter and Bondarenko references). - Richard L. Ollerton, Dec 14 2021

Examples

			Triangle begins:
              1,
             1,1,
            1,0,1,
           1,1,1,1,
          1,0,0,0,1,
         1,1,0,0,1,1,
        1,0,1,0,1,0,1,
       1,1,1,1,1,1,1,1,
      1,0,0,0,0,0,0,0,1,
     1,1,0,0,0,0,0,0,1,1,
    1,0,1,0,0,0,0,0,1,0,1,
   1,1,1,1,0,0,0,0,1,1,1,1,
  1,0,0,0,1,0,0,0,1,0,0,0,1,
  ...
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • Brand, Neal; Das, Sajal; Jacob, Tom. The number of nonzero entries in recursively defined tables modulo primes. Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990). Congr. Numer. 78 (1990), 47--59. MR1140469 (92h:05004).
  • John W. Milnor and James D. Stasheff, Characteristic Classes, Princeton University Press, 1974, pp. 43-49 (sequence appears on p. 46).
  • H.-O. Peitgen, H. Juergens and D. Saupe: Chaos and Fractals (Springer-Verlag 1992), p. 408.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.

Crossrefs

Sequences based on the triangles formed by reading Pascal's triangle mod m: (this sequence) (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Other versions: A090971, A038183.
From Johannes W. Meijer, Jun 05 2011: (Start)
A106344 is a skew version of this triangle.
Triangle sums (see the comments): A001316 (Row1; Related to Row2), A002487 (Related to Kn11, Kn12, Kn13, Kn21, Kn22, Kn23), A007306 (Kn3, Kn4), A060632 (Fi1, Fi2), A120562 (Ca1, Ca2), A112970 (Gi1, Gi2), A127830 (Ze3, Ze4). (End)

Programs

  • Haskell
    import Data.Bits (xor)
    a047999 :: Int -> Int -> Int
    a047999 n k = a047999_tabl !! n !! k
    a047999_row n = a047999_tabl !! n
    a047999_tabl = iterate (\row -> zipWith xor ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Dec 11 2011, Oct 24 2010
    
  • Magma
    A047999:= func< n,k | BitwiseAnd(n-k, k) eq 0 select 1 else 0 >;
    [A047999(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 03 2024
  • Maple
    # Maple code for first M rows (here M=10) - N. J. A. Sloane, Feb 03 2016
    ST:=[1,1,1]; a:=1; b:=2; M:=10;
    for n from 2 to M do ST:=[op(ST),1];
    for i from a to b-1 do ST:=[op(ST), (ST[i+1]+ST[i+2]) mod 2 ]; od:
    ST:=[op(ST),1];
    a:=a+n; b:=a+n; od:
    ST; # N. J. A. Sloane
    # alternative
    A047999 := proc(n,k)
        modp(binomial(n,k),2) ;
    end proc:
    seq(seq(A047999(n,k),k=0..n),n=0..12) ; # R. J. Mathar, May 06 2016
  • Mathematica
    Mod[ Flatten[ NestList[ Prepend[ #, 0] + Append[ #, 0] &, {1}, 13]], 2] (* Robert G. Wilson v, May 26 2004 *)
    rows = 14; ca = CellularAutomaton[60, {{1}, 0}, rows-1]; Flatten[ Table[ca[[k, 1 ;; k]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *)
    Mod[#,2]&/@Flatten[Table[Binomial[n,k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 26 2019 *)
    A047999[n_,k_]:= Boole[BitAnd[n-k,k]==0];
    Table[A047999[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 03 2025 *)
  • PARI
    \\ Recurrence for Pascal's triangle mod p, here p = 2.
    p = 2; s=13; T=matrix(s,s); T[1,1]=1;
    for(n=2,s, T[n,1]=1; for(k=2,n, T[n,k] = (T[n-1,k-1] + T[n-1,k])%p ));
    for(n=1,s,for(k=1,n,print1(T[n,k],", "))) \\ Gerald McGarvey, Oct 10 2009
    
  • PARI
    A011371(n)=my(s);while(n>>=1,s+=n);s
    T(n,k)=A011371(n)==A011371(k)+A011371(n-k) \\ Charles R Greathouse IV, Aug 09 2013
    
  • PARI
    T(n,k)=bitand(n-k,k)==0 \\ Charles R Greathouse IV, Aug 11 2016
    
  • Python
    def A047999_T(n,k):
        return int(not ~n & k) # Chai Wah Wu, Feb 09 2016
    

Formula

Lucas's Theorem is that T(n,k) = 1 if and only if the 1's in the binary expansion of k are a subset of the 1's in the binary expansion of n; or equivalently, k AND NOT n is zero, where AND and NOT are bitwise operators. - Chai Wah Wu, Feb 09 2016 and N. J. A. Sloane, Feb 10 2016
Sum_{k>=0} T(n, k) = A001316(n) = 2^A000120(n).
T(n,k) = T(n-1,k-1) XOR T(n-1,k), 0 < k < n; T(n,0) = T(n,n) = 1. - Reinhard Zumkeller, Dec 13 2009
T(n,k) = (T(n-1,k-1) + T(n-1,k)) mod 2 = |T(n-1,k-1) - T(n-1,k)|, 0 < k < n; T(n,0) = T(n,n) = 1. - Rick L. Shepherd, Feb 23 2018
From Vladimir Shevelev, Dec 31 2013: (Start)
For polynomial {s_n(x)} we have
s_0(x)=1; for n>=1, s_n(x) = Product_{i=1..A000120(n)} (x^(2^k_i) + 1),
if the binary expansion of n is n = Sum_{i=1..A000120(n)} 2^k_i;
G.f. Sum_{n>=0} s_n(x)*z^n = Product_{k>=0} (1 + (x^(2^k)+1)*z^(2^k)) (0
Let x>1, t>0 be real numbers. Then
Sum_{n>=0} 1/s_n(x)^t = Product_{k>=0} (1 + 1/(x^(2^k)+1)^t);
Sum_{n>=0} (-1)^A000120(n)/s_n(x)^t = Product_{k>=0} (1 - 1/(x^(2^k)+1)^t).
In particular, for t=1, x>1, we have
Sum_{n>=0} (-1)^A000120(n)/s_n(x) = 1 - 1/x. (End)
From Valentin Bakoev, Jul 11 2020: (Start)
(See my comment about the matrix M_n.) Denote by T(i,j) the number in the i-th row and j-th column of M_n (0 <= i, j < 2^n). When i>=j, T(i,j) is the j-th number in the i-th row of the Sierpinski's triangle. For given i and j, we denote by k the largest integer of the type k=2^m and k
T(i,0) = T(i,i) = 1, or
T(i,j) = 0 if i < j, or
T(i,j) = T(i-k,j), if j < k, or
T(i,j) = T(i-k,j-k), if j >= k.
Thus, for given i and j, T(i,j) can be computed in O(log_2(i)) steps. (End)

Extensions

Additional links from Lekraj Beedassy, Jan 22 2004

A025480 a(2n) = n, a(2n+1) = a(n).

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 3, 0, 4, 2, 5, 1, 6, 3, 7, 0, 8, 4, 9, 2, 10, 5, 11, 1, 12, 6, 13, 3, 14, 7, 15, 0, 16, 8, 17, 4, 18, 9, 19, 2, 20, 10, 21, 5, 22, 11, 23, 1, 24, 12, 25, 6, 26, 13, 27, 3, 28, 14, 29, 7, 30, 15, 31, 0, 32, 16, 33, 8, 34, 17, 35, 4, 36, 18, 37, 9, 38, 19, 39, 2, 40, 20, 41, 10
Offset: 0

Comments

These are the Grundy values or nim-values for heaps of n beans in the game where you're allowed to take up to half of the beans in a heap. - R. K. Guy, Mar 30 2006. See Levine 2004/2006 for more about this. - N. J. A. Sloane, Aug 14 2016
When n > 0 is written as (2k+1)*2^j then k = a(n-1) and j = A007814(n), so: when n is written as (2k+1)*2^j-1 then k = a(n) and j = A007814(n+1), when n > 1 is written as (2k+1)*2^j+1 then k = a(n-2) and j = A007814(n-1). - Henry Bottomley, Mar 02 2000 [sequence id corrected by Peter Munn, Jun 22 2022]
According to the comment from Deuard Worthen (see Example section), this may be regarded as a triangle where row r=1,2,3,... has length 2^(r-1) and values T(r,2k-1)=T(r-1,k), T(r,2k)=2^(r-1)+k-1; i.e., previous row gives 1st, 3rd, 5th, ... term and 2nd, 4th, ... terms are numbers 2^(r-1),...,2^r-1 (i.e., those following the last one from the previous row). - M. F. Hasler, May 03 2008
Let StB be a Stern-Brocot tree hanging between (pseudo)fractions Left and Right, then StB(1) = mediant(Left,Right) and for n>1: StB(n) = if a(n-1)<>0 and a(n)<>0 then mediant(StB(a(n-1)),StB(a(n))) else if a(n)=0 then mediant(StB(a(n-1)),Right) else mediant(Left,StB(a(n-1))), where mediant(q1,q2) = ((numerator(q1)+numerator(q2)) / (denominator(q1)+denominator(q2))). - Reinhard Zumkeller, Dec 22 2008
This sequence is the unique fixed point of the function (a(0), a(1), a(2), ...) |--> (0, a(0), 1, a(1), 2, a(2), ...) which interleaves the nonnegative integers between the elements of a sequence. - Cale Gibbard (cgibbard(AT)gmail.com), Nov 18 2009
Also the number of remaining survivors in a Josephus problem after the person originally first in line has been eliminated (see A225381). - Marcus Hedbring, May 18 2013
A fractal sequence - see Levine 2004/2006. - N. J. A. Sloane, Aug 14 2016
From David James Sycamore, Apr 29 2020: (Start)
One of a family of fractal sequences, S_k; defined as follows for k >= 2: a(k*n) = n, a(k*n+r) = a((k-1)*n + (r-1)), r = 1..(k-1). S_2 is A025480; S_3 gives: a(3*n) = n, a(3*n + 1) = a(2*n), a(3*n + 2) = a(2*n + 1), which is A263390.
The subsequence of all nonzero terms is A131987. (End)
Similar to but different from A108202. - N. J. A. Sloane, Nov 26 2020
This sequence can be otherwise defined in two alternative (but related) ways, with a(0)=0, as follows: (i) If a(n) is a novel term, then a(n+1) = a(a(n)); if a(n) has been seen before, most recently at a(m), then a(n+1) = n-m (as in A181391). (ii) As above for novel a(n), then if a(n) has been seen before, a(n+1) = smallest k < a(n) which is not already a term. - David James Sycamore, Jul 13 2021
From a binary perspective, the sequence can be seen as even,odd pairs where the odd value is the previous even value, dropping the rightmost bits up to and including the lowest zero bit, aka right-shifted past the lowest clear bit. E.g., (5)101 -> 1, (17)10001 -> (4)100, (29)11101 -> (7)111, (39)100111 -> (2)10. - Joe Nellis, Oct 09 2022

Examples

			From Deuard Worthen (deuard(AT)raytheon.com), Jan 27 2006: (Start)
The sequence can be constructed as a triangle as:
  0
  0  1
  0  2  1  3
  0  4  2  5  1  6  3  7
  0  8  4  9  2 10  5 11  1 12  6 13  3 14  7 15
  ...
At each stage we interleave the next 2^m numbers in the previous row. (End)
Left=0/1, Right=1/0: StB=A007305/A047679; Left=0/1, Right=1/1: StB=A007305/A007306; Left=1/3, Right=2/3: StB=A153161/A153162. - _Reinhard Zumkeller_, Dec 22 2008
		

References

  • L. Levine, Fractal sequences and restricted Nim, Ars Combin. 80 (2006), 113-127.

Crossrefs

Programs

  • Haskell
    import Data.List
    interleave xs ys = concat . transpose $ [xs,ys]
    a025480 = interleave [0..] a025480
    -- Cale Gibbard, Nov 18 2009
    
  • Haskell
    Cf. comments by Worthen and Hasler.
    import Data.List (transpose)
    a025480 n k = a025480_tabf !! n !! k
    a025480_row n = a025480_tabf !! n
    a025480_tabf = iterate (\xs -> concat $
       transpose [xs, [length xs .. 2 * length xs - 1]]) [0]
    a025480_list = concat $ a025480_tabf
    -- Reinhard Zumkeller, Apr 29 2012
    
  • Maple
    A025480 := proc(n)
        option remember ;
        if type(n,'even') then
            n/2 ;
        else
            procname((n-1)/2) ;
        end if;
    end proc:
    seq(A025480(n),n=0..100) ; # R. J. Mathar, Jul 16 2020
  • Mathematica
    a[n_] := a[n] = If[OddQ@n, a[(n - 1)/2], n/2]; Table[ a[n], {n, 0, 83}] (* Robert G. Wilson v, Mar 30 2006 *)
    Table[BitShiftRight[n, IntegerExponent[n, 2] + 1], {n, 100}] (* IWABUCHI Yu(u)ki, Oct 13 2012 *)
  • PARI
    a(n)={while(n%2,n\=2);n\2} \\ M. F. Hasler, May 03 2008
    
  • PARI
    A025480(n)=n>>valuation(n*2+2,2) \\ M. F. Hasler, Apr 12 2012
    
  • Python
    def A025480(n): return n>>((~(n+1)&n).bit_length()+1) # Chai Wah Wu, Jul 13 2022
  • Sage
    A025480 = lambda n: odd_part(n+1)//2
    [A025480(n) for n in (0..83)] # Peter Luschny, May 20 2014
    

Formula

a(n) = A003602(n+1) - 1. [Corrected by Max Alekseyev, May 05 2022]
a(n) = (A000265(n+1)-1)/2 = ((n+1)/A006519(n+1)-1)/2.
a(n) = A153733(n)/2. - Reinhard Zumkeller, Dec 31 2008
2^A007814(n+1)*(2*a(n)+1) = n+1. (See functions hd, tl and cons in [Paul Tarau 2009].) - Paul Tarau (paul.tarau(AT)gmail.com), Mar 21 2010
a(3*n + 1) = A173732(n). - Reinhard Zumkeller, Apr 29 2012
a((2*n+1)*2^p-1) = n, p >= 0 and n >= 0. - Johannes W. Meijer, Jan 24 2013
a(n) = n - A225381(n). - Marcus Hedbring, May 18 2013
G.f.: -1/(1-x) + Sum_{k>=0} x^(2^k-1)/(1-2*x^2^(k+1)+x^2^(k+2)). - Ralf Stephan, May 19 2013
a(n) = A049084(A181363(n+1)). - Reinhard Zumkeller, Mar 22 2014
a(n) = floor(n / 2^A001511(n+1)). - Adam Shelly, Mar 05 2019
Recursion: a(0) = 0; a(n + 1) = a(a(n)) if a(n) is a first occurrence of a term, else a(n + 1) = n - a(n-1). - David James Sycamore, Apr 29 2020
a(n) * 2^(A007814(n+1)+1) + 2^A007814(n+1) - 1 = n (equivalent to the formula given in the comment by Paul Tarau). - Ruud H.G. van Tol, Apr 14 2023
Sum_{k=1..n} a(k) = n^2/6 + O(n). - Amiram Eldar, Aug 07 2023

Extensions

Edited by M. F. Hasler, Mar 16 2018

A007305 Numerators of Farey (or Stern-Brocot) tree fractions.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 3, 3, 1, 2, 3, 3, 4, 5, 5, 4, 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5, 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5, 6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, 11, 9, 6, 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5, 6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11
Offset: 0

Comments

From Yosu Yurramendi, Jun 25 2014: (Start)
If the terms (n>0) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
1,2,
1,2,3,3,
1,2,3,3,4,5,5,4,
1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5,
1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5,6,9,11,10,11,13,12,9,9,12,13,11,10,11,9,6,
then the sum of the m-th row is 3^m (m = 0,1,2,), each column k is constant, and the constants are from A007306, denominators of Farey (or Stern-Brocot) tree fractions (see formula).
If the rows are written in a right-aligned fashion:
1,
1,2,
1, 2,3,3,
1, 2, 3, 3, 4, 5,5,4,
1,2, 3, 3, 4, 5, 5,4,5, 7, 8, 7, 7, 8,7,5,
1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5,6,9,11,10,11,13,12,9,9,12,13,11,10,11,9,6,
then each column is an arithmetic sequence. The differences of the arithmetic sequences also give the sequence A007306 (see formula). The first terms of columns are from A007305 itself (a(A004761(n+1)) = a(n), n>0), and the second ones from A049448 (a(A004761(n+1)+2^A070941(n)) = A049448(n), n>0). (End)
If the sequence is considered in blocks of length 2^m, m = 0,1,2,..., the blocks are the reverse of the blocks of A047679: (a(2^m+1+k) = A047679(2^(m+1)-2-k), m = 0,1,2,..., k = 0,1,2,...,2^m-1). - Yosu Yurramendi, Jun 30 2014

Examples

			A007305/A007306 = [ 0/1; 1/1; ] 1/2; 1/3, 2/3; 1/4, 2/5, 3/5, 3/4; 1/5, 2/7, 3/8, 3/7, 4/7, 5/8, 5/7, 4/5, ...
Another version of Stern-Brocot is A007305/A047679 = 1, 2, 1/2, 3, 1/3, 3/2, 2/3, 4, 1/4, 4/3, 3/4, 5/2, 2/5, 5/3, 3/5, 5, 1/5, 5/4, 4/5, ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 117.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 23.
  • J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 141.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A007305 := proc(n) local b; b := proc(n) option remember; local msb, r;
    if n < 3 then return 1 fi; msb := ilog2(n); r := n - 2^msb;
    if ilog2(r) = msb - 1 then b(r) + b(3*2^(msb-1) - r - 1) else b(2^(msb - 1) + r) fi end: if n = 0 then 0 else b(n-1) fi end: # Antti Karttunen, Mar 19 2000 [Corrected and rewritten by Peter Luschny, Apr 24 2024]
    seq(A007305(n), n = 0..92);
  • Mathematica
    sbt[n_] := Module[{R,L,Y}, R={{1,0},{1,1}}; L={{1,1},{0,1}}; Y={{1,0},{0,1}}; w[b_] := Fold[ #1.If[ #2 == 0,L,R] &,Y,b]; u[a_] := {a[[2,1]]+a[[2,2]],a[[1,1]]+a[[1,2]]}; Map[u,Map[w,Tuples[{0,1},n]]]]
    A007305(n) = Flatten[Append[{0,1},Table[Map[First,sbt[i]],{i,0,5}]]]
    A047679(n) = Flatten[Table[Map[Last,sbt[i]],{i,0,5}]]
    (* Peter Luschny, Apr 27 2009 *)
  • R
    a <- 1
    for(m in 1:6) for(k in 0:(2^(m-1)-1)) {
      a[2^m+        k] <- a[2^(m-1)+k]
      a[2^m+2^(m-1)+k] <- a[2^(m-1)+k] + a[2^m-k-1]
    }
    a
    # Yosu Yurramendi, Jun 25 2014

Formula

a(n) = SternBrocotTreeNum(n-1) # n starting from 2 gives the sequence from 1, 1, 2, 1, 2, 3, 3, 1, 2, 3, 3, 4, 5, 5, 4, 1, ...
From Reinhard Zumkeller, Dec 22 2008: (Start)
For n > 1: a(n+2) = if A025480(n-1) != 0 and A025480(n) != 0 then a(A025480(n-1)+2) + a(A025480(n)+2) else if A025480(n)=0 then a(A025480(n-1)+2)+1 else 0 + a(A025480(n-1)+2).
a(A054429(n)+2) = A047679(n).
a(n+2) = A047679(A054429(n)).
A153036(n+1) = floor(a(n+2)/A047679(n)). (End)
From Yosu Yurramendi, Jun 25 2014: (Start)
For m = 1,2,3,..., and k = 0,1,2,...,2^(m-1)-1, with a(1)=1:
a(2^m+k) = a(2^(m-1)+k);
a(2^m+2^(m-1)+k) = a(2^(m-1)+k) + a(2^m-k-1). (End)
a(2^(m+2)-k) = A007306(2^(m+1)-k), m=0,1,2,..., k=0,1,2,...,2^m-1. - Yosu Yurramendi, Jul 04 2014
a(2^(m+1)+2^m+k) - a(2^m+k) = A007306(2^m-k+1), m=1,2,..., k=1,2,...,2^(m-1). - Yosu Yurramendi, Jul 05 2014
From Yosu Yurramendi, Jan 01 2015: (Start)
a(2^m+2^q-1) = q+1, q = 0, 1, 2,..., m = q, q+1, q+2,...
a(2^m+2^q) = q+2, q = 0, 1, 2,..., m = q+1, q+2, q+3,... (End)
a(2^m+k) = A007306(k+1), m >= 0, 0 <= k < 2*m. - Yosu Yurramendi, May 20 2019
a(n) = A002487(A059893(n)), n > 0. - Yosu Yurramendi, Sep 29 2021

A006843 Triangle read by rows: row n gives denominators of Farey series of order n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 3, 1, 1, 4, 3, 2, 3, 4, 1, 1, 5, 4, 3, 5, 2, 5, 3, 4, 5, 1, 1, 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1, 1, 7, 6, 5, 4, 7, 3, 5, 7, 2, 7, 5, 3, 7, 4, 5, 6, 7, 1, 1, 8, 7, 6, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 6, 7, 8, 1, 1, 9, 8, 7, 6, 5, 9, 4, 7, 3, 8, 5, 7, 9, 2, 9, 7, 5, 8, 3, 7, 4, 9, 5, 6, 7, 8, 9, 1
Offset: 1

Keywords

Examples

			0/1, 1/1;
0/1, 1/2, 1/1;
0/1, 1/3, 1/2, 2/3, 1/1;
0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1;
0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1;
... = A006842/A006843.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 152.
  • Martin Gardner, The Last Recreations, Chapter 12: Strong Laws of Small Primes, Springer-Verlag, 1997, pp. 191-205, especially p. 199.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 23.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
  • A. O. Matveev, Farey Sequences, De Gruyter, 2017.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 141.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n has A005728(n) terms. - Michel Marcus, Jun 27 2014
Row sums give A240877.
Cf. A006842 (numerators), A049455, A049456, A007305, A007306.
See also A177405/A177407.

Programs

  • Maple
    Farey := proc(n) sort(convert(`union`({0},{seq(seq(m/k,m=1..k),k=1..n)}),list)) end: seq(denom(Farey(i)),i=1..5); # Peter Luschny, Apr 28 2009
  • Mathematica
    Farey[n_] := Union[ Flatten[ Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; Flatten[ Table[ Denominator[ Farey[n]], {n, 9}]] (* Robert G. Wilson v, Apr 08 2004 *)
    Table[Denominator[FareySequence[n]],{n,10}]//Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 04 2016 *)
  • PARI
    row(n) = {vf = [0]; for (k=1, n, for (m=1, k, vf = concat(vf, m/k););); vf = vecsort(Set(vf)); for (i=1, #vf, print1(denominator(vf[i]), ", "));} \\ Michel Marcus, Jun 27 2014

Extensions

More terms from Robert G. Wilson v, Apr 08 2004
Changed offset (=order of first row) to 1 by R. J. Mathar, Apr 26 2009

A006842 Triangle read by rows: row n gives numerators of Farey series of order n.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 2, 3, 1, 0, 1, 1, 1, 2, 1, 3, 2, 3, 4, 1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 1, 0, 1, 1, 1, 1, 2, 1, 2, 3, 1, 4, 3, 2, 5, 3, 4, 5, 6, 1, 0, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 5, 6, 7, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 4, 1, 5, 4, 3, 5, 2, 5, 3, 7, 4, 5, 6, 7, 8, 1
Offset: 1

Keywords

Examples

			0/1, 1/1;
0/1, 1/2, 1/1;
0/1, 1/3, 1/2, 2/3, 1/1;
0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1;
0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1;
... = A006842/A006843
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 152.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923. See Vol. 1.
  • Guthery, Scott B. A motif of mathematics. Docent Press, 2011.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 23.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
  • A. O. Matveev, Farey Sequences, De Gruyter, 2017.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 141.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n has A005728(n) terms. - Michel Marcus, Jun 27 2014
Cf. A006843 (denominators), A049455, A049456, A007305, A007306. Also A177405/A177407.

Programs

  • Maple
    Farey := proc(n) sort(convert(`union`({0},{seq(seq(m/k,m=1..k),k=1..n)}),list)) end: seq(numer(Farey(i)),i=1..5); # Peter Luschny, Apr 28 2009
  • Mathematica
    Farey[n_] := Union[ Flatten[ Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; Flatten[ Table[ Numerator[ Farey[n]], {n, 0, 9}]] (* Robert G. Wilson v, Apr 08 2004 *)
    Table[FareySequence[n] // Numerator, {n, 1, 9}] // Flatten (* Jean-François Alcover, Sep 25 2018 *)
  • PARI
    row(n) = {vf = [0]; for (k=1, n, for (m=1, k, vf = concat(vf, m/k););); vf = vecsort(Set(vf)); for (i=1, #vf, print1(numerator(vf[i]), ", "));} \\ Michel Marcus, Jun 27 2014

Extensions

More terms from Robert G. Wilson v, Apr 08 2004

A047679 Denominators in full Stern-Brocot tree.

Original entry on oeis.org

1, 2, 1, 3, 3, 2, 1, 4, 5, 5, 4, 3, 3, 2, 1, 5, 7, 8, 7, 7, 8, 7, 5, 4, 5, 5, 4, 3, 3, 2, 1, 6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, 11, 9, 6, 5, 7, 8, 7, 7, 8, 7, 5, 4, 5, 5, 4, 3, 3, 2, 1, 7, 11, 14, 13, 15, 18, 17, 13, 14, 19, 21, 18, 17, 19, 16, 11, 11, 16, 19, 17, 18
Offset: 0

Comments

Numerators are A007305.
Write n in binary; list run lengths; add 1 to last run length; make into continued fraction. Sequence gives denominator of fraction obtained.
From Reinhard Zumkeller, Dec 22 2008: (Start)
For n > 1: a(n) = if A025480(n-1) != 0 and A025480(n) != 0 then = a(A025480(n-1)) + a(A025480(n)) else if A025480(n)=0 then a(A025480(n-1))+0 else 1+a(A025480(n-1));
a(n) = A007305(A054429(n)+2) and a(A054429(n)) = A007305(n+2);
A153036(n+1) = floor(A007305(n+2)/a(n)). (End)
From Yosu Yurramendi, Jun 25 2014 and Jun 30 2014: (Start)
If the terms are written as an array a(m, k) = a(2^(m-1)-1+k) with m >= 1 and k = 0, 1, ..., 2^(m-1)-1:
1,
2,1,
3,3, 2, 1,
4,5, 5, 4, 3, 3, 2,1,
5,7, 8, 7, 7, 8, 7,5,4, 5, 5, 4, 3, 3,2,1,
6,9,11,10,11,13,12,9,9,12,13,11,10,11,9,6,5,7,8,7,7,8,7,5,4,5,5,4,3,3,2,1,
then the sum of the m-th row is 3^(m-1), and each column is an arithmetic sequence. The differences of these arithmetic sequences give the sequence A007306(k+1). The first terms of columns are 1 for k = 0 and a(k-1) for k >= 1.
In a row reversed version A(m, k) = a(m, m-(k+1)):
1
1,2
1,2,3,3,
1,2,3,3,4,5,5,4
1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5
1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5,6,9,11,10,11,13,12,12,9,9,12,13,11,10,11,9,6
each column k >= 0 is constant, namely A007306(k+1).
This row reversed version coincides with the array for A007305 (see the Jun 25 2014 comment there). (End)
Looking at the plot, the sequence clearly shows a fractal structure. (The repeating pattern oddly resembles the [first completed] facade of the Sagrada Familia!) - Daniel Forgues, Nov 15 2019

Examples

			E.g., 57->111001->[ 3,2,1 ]->[ 3,2,2 ]->3 + 1/(2 + 1/(2) ) = 17/2. For n=1,2, ... we get 2, 3/2, 3, 4/3, 5/3, 5/2, 4, 5/4, 7/5, 8/5, ...
1; 2,1; 3,3,2,1; 4,5,5,4,3,3,2,1; ....
Another version of Stern-Brocot is A007305/A047679 = 1, 2, 1/2, 3, 1/3, 3/2, 2/3, 4, 1/4, 4/3, 3/4, 5/2, 2/5, 5/3, 3/5, 5, 1/5, 5/4, 4/5, ...
		

Crossrefs

Programs

  • Mathematica
    CFruns[ n_Integer ] := Fold[ #2+1/#1&, Infinity, Reverse[ MapAt[ #+1&, Length/@Split[ IntegerDigits[ n, 2 ] ], {-1} ] ] ]
    (* second program: *)
    a[n_] := Module[{LL = Length /@ Split[IntegerDigits[n, 2]]}, LL[[-1]] += 1; FromContinuedFraction[LL] // Denominator]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 25 2016 *)
  • PARI
    {a(n) = local(v, w); v = binary(n++); w = [1]; for( n=2, #v, if( v[n] != v[n-1], w = concat(w, 1), w[#w]++)); w[#w]++; contfracpnqn(w)[2, 1]} /* Michael Somos, Jul 22 2011 */
    
  • R
    a <- 1
    for(m in 1:6) for(k in 0:(2^(m-1)-1)) {
      a[2^m+        k] = a[2^(m-1)+k] + a[2^m-k-1]
      a[2^m+2^(m-1)+k] = a[2^(m-1)+k]
    }
    a
    # Yosu Yurramendi, Dec 31 2014

Formula

a(n) = SternBrocotTreeDen(n) # n starting from 1.
From Yosu Yurramendi, Jul 02 2014: (Start)
For m >0 and 0 <= k < 2^(m-1), with a(0)=1, a(1)=2:
a(2^m+k-1) = a(2^(m-1)+k-1) + a((2^m-1)-k-1);
a(2^m+2^(m-1)+k-1) = a(2^(m-1)+k-1). (End)
a(2^m-2^q ) = q+1, q >= 0, m > q
a(2^m-2^q-1) = q+2, q >= 0, m > q+1. - Yosu Yurramendi, Jan 01 2015
a(2^(m+1)-1-k) = A007306(k+1), m >= 0, 0 <= k <= 2^m. - Yosu Yurramendi, May 20 2019
a(n) = A002487(1+A059893(n)), n > 0. - Yosu Yurramendi, Sep 29 2021

Extensions

Edited by Wolfdieter Lang, Mar 31 2015

A049456 Triangle T(n,k) = denominator of fraction in k-th term of n-th row of variant of Farey series. This is also Stern's diatomic array read by rows (version 1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 3, 1, 1, 4, 3, 5, 2, 5, 3, 4, 1, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, 7, 12, 5, 13, 8, 11, 3, 10, 7, 11, 4, 9, 5, 6, 1, 1, 7, 6, 11, 5, 14, 9, 13, 4, 15, 11, 18, 7, 17, 10, 13, 3, 14, 11, 19, 8, 21, 13
Offset: 1

Comments

Row n has length 2^(n-1) + 1.
A049455/a(n) gives another version of the Stern-Brocot tree.
Define mediant of a/b and c/d to be (a+c)/(b+d). We get A006842/A006843 if we omit terms from n-th row in which denominator exceeds n.
Largest term of n-th row = A000045(n+1), Fibonacci numbers. - Reinhard Zumkeller, Apr 02 2014

Examples

			0/1, 1/1; 0/1, 1/2, 1/1; 0/1, 1/3, 1/2, 2/3, 1/1; 0/1, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1/1; 0/1, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, ... = A049455/A049456
Array begins
1...............................1
1...............2...............1
1.......3.......2.......3.......1
1...4...3...5...2...5...3...4...1
1.5.4.7.3.8.5.7.2.7.5.8.3.7.4.5.1
.................................
		

References

  • J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.

Crossrefs

Coincides with A002487 if pairs of adjacent 1's are replaced by single 1's.
Cf. A000051 (row lengths), A034472 (row sums), A293160 (distinct terms in each row).

Programs

  • Haskell
    import Data.List (transpose)
    a049456 n k = a049456_tabf !! (n-1) !! (k-1)
    a049456_row n = a049456_tabf !! (n-1)
    a049456_tabf = iterate
       (\row -> concat $ transpose [row, zipWith (+) row $ tail row]) [1, 1]
    -- Reinhard Zumkeller, Apr 02 2014
  • Maple
    A049456 := proc(n,k)
        option remember;
        if n =1 then
            if k >= 0 and k <=1 then
                1;
            else
                0 ;
            end if;
        elif type(k,'even') then
            procname(n-1,k/2) ;
        else
            procname(n-1,(k+1)/2)+procname(n-1,(k-1)/2) ;
        end if;
    end proc: # R. J. Mathar, Dec 12 2014
  • Mathematica
    Flatten[NestList[Riffle[#,Total/@Partition[#,2,1]]&,{1,1},10]] (* Harvey P. Dale, Mar 16 2013 *)

Formula

Each row is obtained by copying the previous row but interpolating the sums of pairs of adjacent terms. E.g. after 1 2 1 we get 1 1+2 2 2+1 1.
Row 1 of Farey tree is 0/1, 1/1. Obtain row n from row n-1 by inserting mediants between each pair of terms.
Previous Showing 21-30 of 94 results. Next