cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 93 results. Next

A309428 Irregular triangle read by rows: T(n,k) is the multiplicative order of {{A038566(n,k), 1}, {0, 1}} modulo n, n >= 1, 1 <= k <= A000010(n).

Original entry on oeis.org

1, 2, 3, 2, 4, 2, 5, 4, 4, 2, 6, 2, 7, 3, 6, 3, 6, 2, 8, 4, 8, 2, 9, 6, 9, 6, 9, 2, 10, 4, 4, 2, 11, 10, 5, 5, 5, 10, 10, 10, 5, 2, 12, 4, 6, 2, 13, 12, 3, 6, 4, 12, 12, 4, 3, 6, 12, 2, 14, 6, 6, 6, 6, 2, 15, 4, 6, 12, 4, 10, 12, 2, 16, 8, 16, 4, 16, 8, 16, 2, 17, 8, 16, 4, 16, 16, 16, 8
Offset: 1

Views

Author

Jianing Song, Sep 18 2019

Keywords

Comments

Let M = {{r, 1}, {0, 1}}, then M^e = {{r^e, 1 + r + r^2 + ... + r^(e-1)}, {0, 1}}. As a result, for gcd(r, n) = 1, the multiplicative order of {{r, 1}, {0, 1}} modulo n is n if r == 1 (mod n) and ord(r,n*(r-1)) otherwise, where ord(r,t) is the multiplicative order of r modulo t.

Examples

			Table starts
  1,
  2,
  3, 2,
  4, 2,
  5, 4, 4, 2,
  6, 2,
  7, 3, 6, 3, 6, 2,
  8, 4, 8, 2,
  9, 6, 9, 6, 9, 2,
  10, 4, 4, 2,
  11, 10, 5, 5, 5, 10, 10, 10, 5, 2,
  12, 4, 6, 2,
  13, 12, 3, 6, 4, 12, 12, 4, 3, 6, 12, 2,
  14, 6, 6, 6, 6, 2,
  15, 4, 6, 12, 4, 10, 12, 2,
  16, 8, 16, 4, 16, 8, 16, 2,
  17, 8, 16, 4, 16, 16, 16, 8, 8, 16, 16, 16, 4, 16, 8, 2,
  18, 6, 18, 6, 18, 2,
  19, 18, 18, 9, 9, 9, 3, 6, 9, 18, 3, 6, 18, 18, 18, 9, 9, 2,
  20, 4, 4, 4, 10, 4, 4, 2,
  ...
For n = 14 and k = 4, let M = {{A038566(n,k), 1}, {0, 1}} = {{9, 1}, {0, 1}}, then:
- M^2 mod 14 = {{11, 10}, {0, 1}};
- M^3 mod 14 = {{1, 7}, {0, 1}};
- M^4 mod 14 = {{9, 8}, {0, 1}};
- M^5 mod 14 = {{11, 3}, {0, 1}};
- M^6 mod 14 = {{1, 0}, {0, 1}}.
So T(14,4) = d(14,9) = 6.
		

Crossrefs

Programs

  • PARI
    row(n) = my(v=vector(n,i,i),u=vector(eulerphi(n),i,n)); v=select(i->gcd(n,i)==1,v); for(i=2, #v, u[i]=znorder(Mod(v[i], n*(v[i]-1)))); u

Formula

For gcd(n,r) = 1, 1 <= r <= n, let d(n,r) be the multiplicative order of {{r, 1}, {0, 1}}, then T(n,k) = d(n,A038566(k)).
(a) If p is an odd prime, then d(p^e,r) = p^e if r == 1 (mod p), ord(r,p^e) otherwise;
(b) d(2^e,r) = 2^(e+1-v2(r+1)), where v2(t) is the 2-adic valuation of t;
(c) For gcd(m,n) = 1, d(m*n,r) = lcm(d(m,r mod m),d(n,r mod n)).
The LCM of the n-th row is A174824(n).

A002260 Triangle read by rows: T(n,k) = k for n >= 1, k = 1..n.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Offset: 1

Views

Author

Angele Hamel (amh(AT)maths.soton.ac.uk)

Keywords

Comments

Old name: integers 1 to k followed by integers 1 to k+1 etc. (a fractal sequence).
Start counting again and again.
This is a "doubly fractal sequence" - see the Franklin T. Adams-Watters link.
The PARI functions t1, t2 can be used to read a square array T(n,k) (n >= 1, k >= 1) by antidiagonals downwards: n -> T(t1(n), t2(n)). - Michael Somos, Aug 23 2002
Reading this sequence as the antidiagonals of a rectangular array, row n is (n,n,n,...); this is the weight array (Cf. A144112) of the array A127779 (rectangular). - Clark Kimberling, Sep 16 2008
The upper trim of an arbitrary fractal sequence s is s, but the lower trim of s, although a fractal sequence, need not be s itself. However, the lower trim of A002260 is A002260. (The upper trim of s is what remains after the first occurrence of each term is deleted; the lower trim of s is what remains after all 0's are deleted from the sequence s-1.) - Clark Kimberling, Nov 02 2009
Eigensequence of the triangle = A001710 starting (1, 3, 12, 60, 360, ...). - Gary W. Adamson, Aug 02 2010
The triangle sums, see A180662 for their definitions, link this triangle of natural numbers with twenty-three different sequences, see the crossrefs. The mirror image of this triangle is A004736. - Johannes W. Meijer, Sep 22 2010
A002260 is the self-fission of the polynomial sequence (q(n,x)), where q(n,x) = x^n + x^(n-1) + ... + x + 1. See A193842 for the definition of fission. - Clark Kimberling, Aug 07 2011
Sequence B is called a reluctant sequence of sequence A, if B is triangle array read by rows: row number k coincides with first k elements of the sequence A. Sequence A002260 is reluctant sequence of sequence 1,2,3,... (A000027). - Boris Putievskiy, Dec 12 2012
This is the maximal sequence of positive integers, such that once an integer k has occurred, the number of k's always exceeds the number of (k+1)'s for the remainder of the sequence, with the first occurrence of the integers being in order. - Franklin T. Adams-Watters, Oct 23 2013
A002260 are the k antidiagonal numerators of rationals in Cantor's proof of 1-to-1 correspondence between rationals and naturals; the denominators are k-numerator+1. - Adriano Caroli, Mar 24 2015
T(n,k) gives the distance to the largest triangular number < n. - Ctibor O. Zizka, Apr 09 2020

Examples

			First six rows:
  1
  1   2
  1   2   3
  1   2   3   4
  1   2   3   4   5
  1   2   3   4   5   6
		

References

  • Clark Kimberling, "Fractal sequences and interspersions," Ars Combinatoria 45 (1997) 157-168. (Introduces upper trimming, lower trimming, and signature sequences.)
  • M. Myers, Smarandache Crescendo Subsequences, R. H. Wilde, An Anthology in Memoriam, Bristol Banner Books, Bristol, 1998, p. 19.
  • F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006.

Crossrefs

Cf. A140756 (alternating signs).
Triangle sums (see the comments): A000217 (Row1, Kn11); A004526 (Row2); A000096 (Kn12); A055998 (Kn13); A055999 (Kn14); A056000 (Kn15); A056115 (Kn16); A056119 (Kn17); A056121 (Kn18); A056126 (Kn19); A051942 (Kn110); A101859 (Kn111); A132754 (Kn112); A132755 (Kn113); A132756 (Kn114); A132757 (Kn115); A132758 (Kn116); A002620 (Kn21); A000290 (Kn3); A001840 (Ca2); A000326 (Ca3); A001972 (Gi2); A000384 (Gi3).
Cf. A108872.

Programs

  • Haskell
    a002260 n k = k
    a002260_row n = [1..n]
    a002260_tabl = iterate (\row -> map (+ 1) (0 : row)) [1]
    -- Reinhard Zumkeller, Aug 04 2014, Jul 03 2012
    
  • Maple
    at:=0; for n from 1 to 150 do for i from 1 to n do at:=at+1; lprint(at,i); od: od: # N. J. A. Sloane, Nov 01 2006
    seq(seq(i,i=1..k),k=1..13); # Peter Luschny, Jul 06 2009
  • Mathematica
    FoldList[{#1, #2} &, 1, Range[2, 13]] // Flatten (* Robert G. Wilson v, May 10 2011 *)
    Flatten[Table[Range[n],{n,20}]] (* Harvey P. Dale, Jun 20 2013 *)
  • Maxima
    T(n,k):=sum((i+k)*binomial(i+k-1,i)*binomial(k,n-i-k+1)*(-1)^(n-i-k+1),i,max(0,n+1-2*k),n-k+1); /* Vladimir Kruchinin, Oct 18 2013 */
    
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2*n)),2) /* this sequence */
    
  • PARI
    A002260(n)=n-binomial((sqrtint(8*n)+1)\2,2) \\ M. F. Hasler, Mar 10 2014
    
  • Python
    from math import isqrt, comb
    def A002260(n): return n-comb((m:=isqrt(k:=n<<1))+(k>m*(m+1)),2) # Chai Wah Wu, Nov 08 2024

Formula

a(n) = 1 + A002262(n).
n-th term is n - m*(m+1)/2 + 1, where m = floor((sqrt(8*n+1) - 1) / 2).
The above formula is for offset 0; for offset 1, use a(n) = n-m*(m+1)/2 where m = floor((-1+sqrt(8*n-7))/2). - Clark Kimberling, Jun 14 2011
a(k * (k + 1) / 2 + i) = i for k >= 0 and 0 < i <= k + 1. - Reinhard Zumkeller, Aug 14 2001
a(n) = (2*n + round(sqrt(2*n)) - round(sqrt(2*n))^2)/2. - Brian Tenneson, Oct 11 2003
a(n) = n - binomial(floor((1+sqrt(8*n))/2), 2). - Paul Barry, May 25 2004
T(n,k) = A001511(A118413(n,k)); T(n,k) = A003602(A118416(n,k)). - Reinhard Zumkeller, Apr 27 2006
a(A000217(n)) = A000217(n) - A000217(n-1), a(A000217(n-1) + 1) = 1, a(A000217(n) - 1) = A000217(n) - A000217(n-1) - 1. - Alexander R. Povolotsky, May 28 2008
a(A169581(n)) = A038566(n). - Reinhard Zumkeller, Dec 02 2009
T(n,k) = Sum_{i=1..k} i*binomial(k,i)*binomial(n-k,n-i) (regarded as triangle, see the example). - Mircea Merca, Apr 11 2012
T(n,k) = Sum_{i=max(0,n+1-2*k)..n-k+1} (i+k)*binomial(i+k-1,i)*binomial(k,n-i-k+1)*(-1)^(n-i-k+1). - Vladimir Kruchinin, Oct 18 2013
G.f.: x*y / ((1 - x) * (1 - x*y)^2) = Sum_{n,k>0} T(n,k) * x^n * y^k. - Michael Somos, Sep 17 2014
a(n) = n - S(n) where S(n) = sum of distinct terms in {a(1), a(2), ..., a(n-1)}. - David James Sycamore, Mar 10 2025

Extensions

More terms from Reinhard Zumkeller, Apr 27 2006
Incorrect program removed by Franklin T. Adams-Watters, Mar 19 2010
New name from Omar E. Pol, Jul 15 2012

A003418 Least common multiple (or LCM) of {1, 2, ..., n} for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 0

Views

Author

Roland Anderson (roland.anderson(AT)swipnet.se)

Keywords

Comments

The minimal exponent of the symmetric group S_n, i.e., the least positive integer for which x^a(n)=1 for all x in S_n. - Franz Vrabec, Dec 28 2008
Product over all primes of highest power of prime less than or equal to n. a(0) = 1 by convention.
Also smallest number whose set of divisors contains an n-term arithmetic progression. - Reinhard Zumkeller, Dec 09 2002
An assertion equivalent to the Riemann hypothesis is: | log(a(n)) - n | < sqrt(n) * log(n)^2. - Lekraj Beedassy, Aug 27 2006. (This is wrong for n = 1 and n = 2. Should "for n large enough" be added? - Georgi Guninski, Oct 22 2011)
Corollary 3 of Farhi gives a proof that a(n) >= 2^(n-1). - Jonathan Vos Post, Jun 15 2009
Appears to be row products of the triangle T(n,k) = b(A010766) where b = A130087/A130086. - Mats Granvik, Jul 08 2009
Greg Martin (see link) proved that "the product of the Gamma function sampled over the set of all rational numbers in the open interval (0,1) whose denominator in lowest terms is at most n" equals (2*Pi)^(1/2)*a(n)^(-1/2). - Jonathan Vos Post, Jul 28 2009
a(n) = lcm(A188666(n), A188666(n)+1, ..., n). - Reinhard Zumkeller, Apr 25 2011
a(n+1) is the smallest integer such that all polynomials a(n+1)*(1^i + 2^i + ... + m^i) in m, for i=0,1,...,n, are polynomials with integer coefficients. - Vladimir Shevelev, Dec 23 2011
It appears that A020500(n) = a(n)/a(n-1). - Asher Auel, corrected by Bill McEachen, Apr 05 2024
n-th distinct value = A051451(n). - Matthew Vandermast, Nov 27 2009
a(n+1) = least common multiple of n-th row in A213999. - Reinhard Zumkeller, Jul 03 2012
For n > 2, (n-1) = Sum_{k=2..n} exp(a(n)*2*i*Pi/k). - Eric Desbiaux, Sep 13 2012
First column minus second column of A027446. - Eric Desbiaux, Mar 29 2013
For n > 0, a(n) is the smallest number k such that n is the n-th divisor of k. - Michel Lagneau, Apr 24 2014
Slowest growing integer > 0 in Z converging to 0 in Z^ when considered as profinite integer. - Herbert Eberle, May 01 2016
What is the largest number of consecutive terms that are all equal? I found 112 equal terms from a(370261) to a(370372). - Dmitry Kamenetsky, May 05 2019
Answer: there exist arbitrarily long sequences of consecutive terms with the same value; also, the maximal run of consecutive terms with different values is 5 from a(1) to a(5) (see link Roger B. Eggleton). - Bernard Schott, Aug 07 2019
Related to the inequality (54) in Ramanujan's paper about highly composite numbers A002182, also used in A199337: a(A329570(m))^2 is a (not minimal) bound above which all highly composite numbers are divisible by m, according to the right part of that inequality. - M. F. Hasler, Jan 04 2020
For n > 2, a(n) is of the form 2^e_1 * p_2^e_2 * ... * p_m^e_m, where e_m = 1 and e = floor(log_2(p_m)) <= e_1. Therefore, 2^e * p_m^e_m is a primitive Zumkeler number (A180332). Therefore, 2^e_1 * p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 2, a(n) = 2^e_1 * p_m^e_m * r, where r is relatively prime to 2*p_m, is a Zumkeller number (see my proof at A002182 for details). - Ivan N. Ianakiev, May 10 2020
For n > 1, 2|(a(n)+2) ... n|(a(n)+n), so a(n)+2 .. a(n)+n are all composite and (part of) a prime gap of at least n. (Compare n!+2 .. n!+n). - Stephen E. Witham, Oct 09 2021

Examples

			LCM of {1,2,3,4,5,6} = 60. The primes up to 6 are 2, 3 and 5. floor(log(6)/log(2)) = 2 so the exponent of 2 is 2.
floor(log(6)/log(3)) = 1 so the exponent of 3 is 1.
floor(log(6)/log(5)) = 1 so the exponent of 5 is 1. Therefore, a(6) = 2^2 * 3^1 * 5^1 = 60. - _David A. Corneth_, Jun 02 2017
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 365.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row products of A133233.
Cf. A025528 (number of prime factors of a(n) with multiplicity).
Cf. A275120 (lengths of runs of consecutive equal terms), A276781 (ordinal transform from term a(1)=1 onward).

Programs

  • Haskell
    a003418 = foldl lcm 1 . enumFromTo 2
    -- Reinhard Zumkeller, Apr 04 2012, Apr 25 2011
    
  • Magma
    [1] cat [Exponent(SymmetricGroup(n)) : n in [1..28]]; // Arkadiusz Wesolowski, Sep 10 2013
    
  • Magma
    [Lcm([1..n]): n in [0..30]]; // Bruno Berselli, Feb 06 2015
    
  • Maple
    A003418 := n-> lcm(seq(i,i=1..n));
    HalfFarey := proc(n) local a,b,c,d,k,s; a := 0; b := 1; c := 1; d := n; s := NULL; do k := iquo(n + b, d); a, b, c, d := c, d, k*c - a, k*d - b; if 2*a > b then break fi; s := s,(a/b); od: [s] end: LCM := proc(n) local i; (1/2)*mul(2*sin(Pi*i),i=HalfFarey(n))^2 end: # Peter Luschny
    # next Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, ilcm(n, a(n-1))) end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Jun 10 2021
  • Mathematica
    Table[LCM @@ Range[n], {n, 1, 40}] (* Stefan Steinerberger, Apr 01 2006 *)
    FoldList[ LCM, 1, Range@ 28]
    A003418[0] := 1; A003418[1] := 1; A003418[n_] := A003418[n] = LCM[n,A003418[n-1]]; (* Enrique Pérez Herrero, Jan 08 2011 *)
    Table[Product[Prime[i]^Floor[Log[Prime[i], n]], {i, PrimePi[n]}], {n, 0, 28}] (* Wei Zhou, Jun 25 2011 *)
    Table[Product[Cyclotomic[n, 1], {n, 2, m}], {m, 0, 28}] (* Fred Daniel Kline, May 22 2014 *)
    a1[n_] := 1/12 (Pi^2+3(-1)^n (PolyGamma[1,1+n/2] - PolyGamma[1,(1+n)/2])) // Simplify
    a[n_] := Denominator[Sqrt[a1[n]]];
    Table[If[IntegerQ[a[n]], a[n], a[n]*(a[n])[[2]]], {n, 0, 28}] (* Gerry Martens, Apr 07 2018 [Corrected by Vaclav Kotesovec, Jul 16 2021] *)
  • PARI
    a(n)=local(t); t=n>=0; forprime(p=2,n,t*=p^(log(n)\log(p))); t
    
  • PARI
    a(n)=if(n<1,n==0,1/content(vector(n,k,1/k)))
    
  • PARI
    a(n)=my(v=primes(primepi(n)),k=sqrtint(n),L=log(n+.5));prod(i=1,#v,if(v[i]>k,v[i],v[i]^(L\log(v[i])))) \\ Charles R Greathouse IV, Dec 21 2011
    
  • PARI
    a(n)=lcm(vector(n,i,i)) \\ Bill Allombert, Apr 18 2012 [via Charles R Greathouse IV]
    
  • PARI
    n=1; lim=100; i=1; j=1; until(n==lim, a=lcm(j,i+1); i++; j=a; n++; print(n" "a);); \\ Mike Winkler, Sep 07 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import sieve
    def integerlog(n,b): # find largest integer k>=0 such that b^k <= n
        kmin, kmax = 0,1
        while b**kmax <= n:
            kmax *= 2
        while True:
            kmid = (kmax+kmin)//2
            if b**kmid > n:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmin
    def A003418(n):
        return reduce(mul,(p**integerlog(n,p) for p in sieve.primerange(1,n+1)),1) # Chai Wah Wu, Mar 13 2021
    
  • Python
    # generates initial segment of sequence
    from math import gcd
    from itertools import accumulate
    def lcm(a, b): return a * b // gcd(a, b)
    def aupton(nn): return [1] + list(accumulate(range(1, nn+1), lcm))
    print(aupton(30)) # Michael S. Branicky, Jun 10 2021
  • Sage
    [lcm(range(1,n)) for n in range(1, 30)] # Zerinvary Lajos, Jun 06 2009
    
  • Scheme
    (define (A003418 n) (let loop ((n n) (m 1)) (if (zero? n) m (loop (- n 1) (lcm m n))))) ;; Antti Karttunen, Jan 03 2018
    

Formula

The prime number theorem implies that lcm(1,2,...,n) = exp(n(1+o(1))) as n -> infinity. In other words, log(lcm(1,2,...,n))/n -> 1 as n -> infinity. - Jonathan Sondow, Jan 17 2005
a(n) = Product (p^(floor(log n/log p))), where p runs through primes not exceeding n (i.e., primes 2 through A007917(n)). - Lekraj Beedassy, Jul 27 2004
Greg Martin showed that a(n) = lcm(1,2,3,...,n) = Product_{i = Farey(n), 0 < i < 1} 2*Pi/Gamma(i)^2. This can be rewritten (for n > 1) as a(n) = (1/2)*(Product_{i = Farey(n), 0 < i <= 1/2} 2*sin(i*Pi))^2. - Peter Luschny, Aug 08 2009
Recursive formula useful for computations: a(0)=1; a(1)=1; a(n)=lcm(n,a(n-1)). - Enrique Pérez Herrero, Jan 08 2011
From Enrique Pérez Herrero, Jun 01 2011: (Start)
a(n)/a(n-1) = A014963(n).
if n is a prime power p^k then a(n)=a(p^k)=p*a(n-1), otherwise a(n)=a(n-1).
a(n) = Product_{k=2..n} (1 + (A007947(k)-1)*floor(1/A001221(k))), for n > 1. (End)
a(n) = A079542(n+1, 2) for n > 1.
a(n) = exp(Sum_{k=1..n} Sum_{d|k} moebius(d)*log(k/d)). - Peter Luschny, Sep 01 2012
a(n) = A025529(n) - A027457(n). - Eric Desbiaux, Mar 14 2013
a(n) = exp(Psi(n)) = 2 * Product_{k=2..A002088(n)} (1 - exp(2*Pi*i * A038566(k+1) / A038567(k))), where i is the imaginary unit, and Psi the second Chebyshev's function. - Eric Desbiaux, Aug 13 2014
a(n) = A064446(n)*A038610(n). - Anthony Browne, Jun 16 2016
a(n) = A000142(n) / A025527(n) = A000793(n) * A225558(n). - Antti Karttunen, Jun 02 2017
log(a(n)) = Sum_{k>=1} (A309229(n, k)/k - 1/k). - Mats Granvik, Aug 10 2019
From Petros Hadjicostas, Jul 24 2020: (Start)
Nair (1982) proved that 2^n <= a(n) <= 4^n for n >= 9. See also Farhi (2009). Nair also proved that
a(n) = lcm(m*binomial(n,m): 1 <= m <= n) and
a(n) = gcd(a(m)*binomial(n,m): n/2 <= m <= n). (End)
Sum_{n>=1} 1/a(n) = A064859. - Bernard Schott, Aug 24 2020

A002321 Mertens's function: Sum_{k=1..n} mu(k), where mu is the Moebius function A008683.

Original entry on oeis.org

1, 0, -1, -1, -2, -1, -2, -2, -2, -1, -2, -2, -3, -2, -1, -1, -2, -2, -3, -3, -2, -1, -2, -2, -2, -1, -1, -1, -2, -3, -4, -4, -3, -2, -1, -1, -2, -1, 0, 0, -1, -2, -3, -3, -3, -2, -3, -3, -3, -3, -2, -2, -3, -3, -2, -2, -1, 0, -1, -1, -2, -1, -1, -1, 0, -1, -2, -2, -1, -2, -3, -3, -4, -3, -3, -3, -2, -3, -4, -4, -4
Offset: 1

Views

Author

Keywords

Comments

Partial sums of the Moebius function A008683.
Also determinant of n X n (0,1) matrix defined by A(i,j)=1 if j=1 or i divides j.
The first positive value of Mertens's function for n > 1 is for n = 94. The graph seems to show a negative bias for the Mertens function which is eerily similar to the Chebyshev bias (described in A156749 and A156709). The purported bias seems to be empirically approximated to - (6 / Pi^2) * (sqrt(n) / 4) (by looking at the graph) (see MathOverflow link, May 28 2012) where 6 / Pi^2 = 1 / zeta(2) is the asymptotic density of squarefree numbers (the squareful numbers having Moebius mu of 0). This would be a growth pattern akin to the Chebyshev bias. - Daniel Forgues, Jan 23 2011
All integers appear infinitely often in this sequence. - Charles R Greathouse IV, Aug 06 2012
Soundararajan proves that, on the Riemann Hypothesis, a(n) << sqrt(n) exp(sqrt(log n)*(log log n)^14), sharpening the well-known equivalence. - Charles R Greathouse IV, Jul 17 2015
Balazard & De Roton improve this (on the Riemann Hypothesis) to a(n) << sqrt(n) exp(sqrt(log n)*(log log n)^k) for any k > 5/2, where the implied constant in the Vinogradov symbol depends on k. Saha & Sankaranarayanan reduce the exponent to 5/4 on additional hypotheses. - Charles R Greathouse IV, Feb 02 2023

Examples

			G.f. = x - x^3 - x^4 - 2*x^5 - x^6 - 2*x^7 - 2*x^8 - 2*x^9 - x^10 - 2*x^11 - 2*x^12 - ...
		

References

  • E. Landau, Vorlesungen über Zahlentheorie, Chelsea, NY, Vol. 2, p. 157.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
  • F. Mertens, "Über eine zahlentheoretische Funktion", Akademie Wissenschaftlicher Wien Mathematik-Naturlich Kleine Sitzungsber, IIa 106, (1897), p. 761-830.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VI.1.
  • Biswajyoti Saha and Ayyadurai Sankaranarayanan, On estimates of the Mertens function, International Journal of Number Theory, Vol. 15, No. 02 (2019), pp. 327-337.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge, 1999, see p. 482.

Crossrefs

First column of A134541.
First column of A179287.

Programs

  • Haskell
    import Data.List (genericIndex)
    a002321 n = genericIndex a002321_list (n-1)
    a002321_list = scanl1 (+) a008683_list
    -- Reinhard Zumkeller, Jul 14 2014, Dec 26 2012
    
  • Magma
    [&+[MoebiusMu(k): k in [1..n]]: n in [1..81]]; // Bruno Berselli, Jul 12 2021
  • Maple
    with(numtheory); A002321 := n->add(mobius(k),k=1..n);
  • Mathematica
    Rest[ FoldList[ #1+#2&, 0, Array[ MoebiusMu, 100 ] ] ]
    Accumulate[Array[MoebiusMu,100]] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n) = sum( k=1, n, moebius(k))
    
  • PARI
    a(n) = if( n<1, 0, matdet( matrix(n, n, i, j, j==1 || 0==j%i)))
    
  • PARI
    a(n)=my(s); forsquarefree(k=1,n, s+=moebius(k)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy import mobius
    def M(n): return sum(mobius(k) for k in range(1,n + 1))
    print([M(n) for n in range(1, 151)]) # Indranil Ghosh, Mar 18 2017
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A002321(n):
        if n == 0:
            return 0
        c, j = n, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A002321(k1)
            j, k1 = j2, n//j2
        return j-c # Chai Wah Wu, Mar 30 2021
    

Formula

Assuming the Riemann hypothesis, a(n) = O(x^(1/2 + eps)) for every eps > 0 (Littlewood - see Landau p. 161).
Lambert series: Sum_{n >= 1} a(n)*(x^n/(1-x^n)-x^(n+1)/(1-x^(n+1))) = x and -1/x. - Mats Granvik, Sep 09 2010 and Sep 23 2010
a(n)+2 = A192763(n,1) for n>1, and A192763(1,k) for k>1 (conjecture). - Mats Granvik, Jul 10 2011
Sum_{k = 1..n} a(floor(n/k)) = 1. - David W. Wilson, Feb 27 2012
a(n) = Sum_{k = 1..n} tau_{-2}(k) * floor(n/k), where tau_{-2} is A007427. - Enrique Pérez Herrero, Jan 23 2013
a(n) = Sum_{k=1..A002088(n)} exp(2*Pi*i*A038566(k)/A038567(k-1)) where i is the imaginary unit. - Eric Desbiaux, Jul 31 2014
Schoenfeld proves that |a(n)| < 5.3*n/(log n)^(10/9) for n > 1. - Charles R Greathouse IV, Jan 17 2018
G.f. A(x) satisfies: A(x) = (1/(1 - x)) * (x - Sum_{k>=2} (1 - x^k) * A(x^k)). - Ilya Gutkovskiy, Aug 11 2021

A023896 Sum of positive integers in smallest positive reduced residue system modulo n. a(1) = 1 by convention.

Original entry on oeis.org

1, 1, 3, 4, 10, 6, 21, 16, 27, 20, 55, 24, 78, 42, 60, 64, 136, 54, 171, 80, 126, 110, 253, 96, 250, 156, 243, 168, 406, 120, 465, 256, 330, 272, 420, 216, 666, 342, 468, 320, 820, 252, 903, 440, 540, 506, 1081, 384, 1029, 500, 816, 624, 1378, 486, 1100, 672
Offset: 1

Views

Author

Keywords

Comments

Sum of totatives of n, i.e., sum of integers up to n and coprime to n.
a(1) = 1, since 1 is coprime to any positive integer.
Row sums of A038566. - Wolfdieter Lang, May 03 2015
Islam & Manzoor prove that a(n) is an injection for n > 1, see links. In other words, if a(m) = a(n), and min(m, n) > 1, then m = n. - Muhammed Hedayet, May 19 2024

Examples

			G.f. = x + x^2 + 3*x^3 + 4*x^4 + 10*x^5 + 6*x^6 + 21*x^7 + 16*x^8 + 27*x^9 + ...
a(12) = 1 + 5 + 7 + 11 = 24.
n = 40: The smallest positive reduced residue system modulo 40 is {1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39}. The sum is a(40) = 320. Average is 20.
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 16, the function phi_1(n).
  • David M. Burton, Elementary Number Theory, p. 171.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 2001, p. 163.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 111.

Crossrefs

Programs

  • Haskell
    a023896 = sum . a038566_row  -- Reinhard Zumkeller, Mar 04 2012
    
  • Magma
    [1] cat [n*EulerPhi(n)/2: n in [2..70]]; // Vincenzo Librandi, May 16 2015
    
  • Maple
    A023896 := proc(n)
        if n = 1 then
            1;
        else
            n*numtheory[phi](n)/2 ;
        end if;
    end proc: # R. J. Mathar, Sep 26 2013
  • Mathematica
    a[ n_ ] = n/2*EulerPhi[ n ]; a[ 1 ] = 1; Table[a[n], {n, 56}]
    a[ n_] := If[ n < 2, Boole[n == 1], Sum[ k Boole[1 == GCD[n, k]], { k, n}]]; (* Michael Somos, Jul 08 2014 *)
  • PARI
    {a(n) = if(n<2, n>0, n*eulerphi(n)/2)};
    
  • PARI
    A023896(n)=n*eulerphi(n)\/2 \\ about 10% faster. - M. F. Hasler, Feb 01 2021
    
  • Python
    from sympy import totient
    def A023896(n): return 1 if n == 1 else n*totient(n)//2 # Chai Wah Wu, Apr 08 2022
    
  • SageMath
    def A023896(n): return 1 if n == 1 else n*euler_phi(n)//2
    print([A023896(n) for n in range(1, 57)])  # Peter Luschny, Dec 03 2023

Formula

a(n) = n*A023022(n) for n > 2.
a(n) = phi(n^2)/2 = n*phi(n)/2 = A002618(n)/2 if n > 1, a(1)=1. See the Apostol reference for this exercise.
a(n) = Sum_{1 <= k < n, gcd(k, n) = 1} k.
If n = p is a prime, a(p) = T(p-1) where T(k) is the k-th triangular number (A000217). - Robert G. Wilson v, Jul 31 2004
Equals A054521 * [1,2,3,...]. - Gary W. Adamson, May 20 2007
a(n) = A053818(n) * A175506(n) / A175505(n). - Jaroslav Krizek, Aug 01 2010
If m,n > 1 and gcd(m,n) = 1 then a(m*n) = 2*a(m)*a(n). - Thomas Ordowski, Nov 09 2014
G.f.: Sum_{n>=1} mu(n)*n*x^n/(1-x^n)^3, where mu(n) = A008683(n). - Mamuka Jibladze, Apr 24 2015
G.f. A(x) satisfies A(x) = x/(1 - x)^3 - Sum_{k>=2} k * A(x^k). - Ilya Gutkovskiy, Sep 06 2019
For n > 1: a(n) = (n*A076512(n)/2)*A009195(n). - Jamie Morken, Dec 16 2019
Sum_{n>=1} 1/a(n) = 2 * A065484 - 1 = 3.407713... . - Amiram Eldar, Oct 09 2023

Extensions

Typos in programs corrected by Zak Seidov, Aug 03 2010
Name and example edited by Wolfdieter Lang, May 03 2015

A038567 Denominators in canonical bijection from positive integers to positive rationals <= 1.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16
Offset: 0

Views

Author

Keywords

Comments

n occurs phi(n) times (cf. A000010).
Least k such that phi(1) + phi(2) + phi(3) + ... + phi(k) >= n. - Benoit Cloitre, Sep 17 2002
Sum of numerator and denominator of fractions arranged by Cantor's ordering (1/1, 2/1, 1/2, 1/3, 3/1, 4/1, 3/2, 2/3, 1/4, 1/5, 5/1, 6/1, ...) with equivalent fractions removed. - Ron R. King, Mar 07 2009 [This applies to a(1, 2, ...) without initial term a(0) = 1 which could correspond to 0/1. - Editor's Note.]
Care has to be taken in considering the offset which may be 0 or 1 in related sequences (see crossrefs), e.g., A038568 & A038569 also have offset 0, in A038566 offset has been changed to 1. - M. F. Hasler, Oct 18 2021

Examples

			Arrange fractions by increasing denominator then by increasing numerator: 1/1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, ...: this is A038566/A038567.
		

References

  • S. Cook, Problem 511: An Enumeration Problem, Journal of Recreational Mathematics, Vol. 9:2 (1976-77), 137. Solution by the Problem Editor, JRM, Vol. 10:2 (1977-78), 122-123.
  • Hans Lauwerier, Fractals, Princeton University Press, 1991, p. 23.

Crossrefs

A054427 gives mapping to Stern-Brocot tree.
Cf. A037162.

Programs

  • Haskell
    import Data.List (genericTake)
    a038567 n = a038567_list !! n
    a038567_list = concatMap (\x -> genericTake (a000010 x) $ repeat x) [1..]
    -- Reinhard Zumkeller, Dec 16 2013, Jul 29 2012
    
  • Maple
    with (numtheory): A038567 := proc (n) local sum, k; sum := 1: k := 2: while (sum < n) do: sum := sum + phi(k): k := k + 1: od: RETURN (k-1): end: # Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    a[n_] := (k = 0; While[ Total[ EulerPhi[ Range[k]]] <= n, k++]; k); Table[ a[n], {n, 0, 77}] (* Jean-François Alcover, Dec 08 2011, after Pari *)
    Flatten[Table[Table[n,{EulerPhi[n]}],{n,20}]] (* Harvey P. Dale, Mar 12 2013 *)
  • PARI
    a(n)=if(n<0,0,s=1; while(sum(i=1,s,eulerphi(i))
    				
  • Python
    from sympy import totient
    def a(n):
        s=1
        while sum(totient(i) for i in range(1, s + 1))Indranil Ghosh, May 23 2017
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A002088(n): # based on second formula in A018805
        if n == 0:
            return 0
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*((A002088(k1)<<1)-1)
            j, k1 = j2, n//j2
        return n*(n-1)-c+j>>1
    def A038567(n):
        kmin, kmax = 0, 1
        while A002088(kmax) <= n:
            kmax <<= 1
        kmin = kmax>>1
        while True:
            kmid = kmax+kmin>>1
            if A002088(kmid) > n:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Jun 10 2025

Formula

From Henry Bottomley, Dec 18 2000: (Start)
a(n) = A020652(n) + A020653(n) for all n > 0, e.g., a(1) = 2 = 1 + 1 = A020652(1) + A020653(1). [Corrected and edited by M. F. Hasler, Dec 10 2021]
n = a(A015614(n)) = a(A002088(n)) - 1 = a(A002088(n-1)). (End)
a(n) = A002024(A169581(n)). - Reinhard Zumkeller, Dec 02 2009
a(A002088(n)) = n for n > 1. - Reinhard Zumkeller, Jul 29 2012
a(n) = A071912(2*n+1). - Reinhard Zumkeller, Dec 16 2013
a(n) ~ c * sqrt(n), where c = Pi/sqrt(3) = 1.813799... (A093602). - Amiram Eldar, Dec 27 2024

Extensions

More terms from Erich Friedman

A001783 n-phi-torial, or phi-torial of n: Product k, 1 <= k <= n, k relatively prime to n.

Original entry on oeis.org

1, 1, 2, 3, 24, 5, 720, 105, 2240, 189, 3628800, 385, 479001600, 19305, 896896, 2027025, 20922789888000, 85085, 6402373705728000, 8729721, 47297536000, 1249937325, 1124000727777607680000, 37182145, 41363226782215962624, 608142583125, 1524503639859200000
Offset: 1

Views

Author

Keywords

Comments

In other words, a(1) = 1 and for n >= 2, a(n) = product of the phi(n) numbers < n and relatively prime to n.
From Gauss's generalization of Wilson's theorem (see Weisstein link) it follows that, for n>1, a(n) == -1 (mod n) if and only if there exists a primitive root modulo n (cf. the Hardy and Wright reference, Theorem 129. p. 102). - Vladimir Shevelev, May 11 2012
Islam & Manzoor prove that a(n) is an injection for n > 1, see links. In other words, if a(m) = a(n), and min(m, n) > 1, then m = n. - Muhammed Hedayet, May 25 2016
Cosgrave & Dilcher propose the name Gauss factorial. Indeed the sequence is the special case N = n of the Gauss factorial N_n! = Product_{1<=j<=N, gcd(j, n)=1} j (see A216919). - Peter Luschny, Feb 07 2018

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, Theorem 129, p. 102.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal gives A216919.

Programs

  • Haskell
    a001783 = product . a038566_row
    -- Reinhard Zumkeller, Mar 04 2012, Aug 26 2011
    
  • Maple
    A001783 := proc(n) local i,t1; t1 := 1; for i from 1 to n do if gcd(i,n)=1 then t1 := t1*i; fi; od; t1; end;
    A001783 := proc(n) local i; mul(i,i=select(k->igcd(n,k)=1,[$1..n])) end; # Peter Luschny, Oct 30 2010
  • Mathematica
    A001783[n_]:=Times@@Select[Range[n],CoprimeQ[n,#]&];
    Array[A001783,20] (* Enrique Pérez Herrero, Jul 23 2011 *)
  • PARI
    A001783(n)=prod(k=2,n-1,k^(gcd(k,n)==1))  \\ M. F. Hasler, Jul 23 2011
    
  • PARI
    a(n)=my(f=factor(n),t=n^eulerphi(f)); fordiv(f,d, t*=(d!/d^d)^moebius(n/d)); t \\ Charles R Greathouse IV, Nov 05 2015
    
  • Sage
    def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
    def A001783(n): return Gauss_factorial(n, n)
    [A001783(n) for n in (1..25)] # Peter Luschny, Oct 01 2012

Formula

a(n) = n^phi(n)*Product_{d|n} (d!/d^d)^mu(n/d); phi=A000010 is the Euler totient function and mu=A008683 the Moebius function (Tom M. Apostol, Introduction to Analytic Number Theory, New York 1984, p. 48). - Franz Vrabec, Jul 08 2005
a(n) = n!/A066570(n). - R. J. Mathar, Mar 10 2011
A001221(a(n)) = A000720(n) - A001221(n) = A048865(n).
A006530(a(n)) = A136548(n). - Enrique Pérez Herrero, Jul 23 2011
a(n) = A124441(n)*A124442(n). - M. F. Hasler, Jul 23 2011
a(n) == (-1)^A211487(n) (mod n). - Vladimir Shevelev, May 13 2012
a(n) = A250269(n) / A193679(n). - Daniel Suteu, Apr 05 2021

Extensions

More terms from James Sellers, Dec 23 1999

A020652 Numerators in canonical bijection from positive integers to positive rationals.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 3, 4, 1, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 7, 1, 2, 4, 5, 7, 8, 1, 3, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 5, 7, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 3, 5, 9, 11, 13, 1, 2, 4, 7, 8, 11, 13, 14, 1, 3, 5, 7, 9, 11, 13, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 5
Offset: 1

Views

Author

Keywords

Comments

a(A002088(n)) = 1 for n > 1. - Reinhard Zumkeller, Jul 29 2012
When read as an irregular table with each 1 entry starting a new row, then the n-th row consists of the set of multiplicative units of Z_{n+1}. These rows form a group under multiplication mod n. - Tom Edgar, Aug 20 2013
The pair of sequences A020652/A020653 is defined by ordering the positive fractions p/q (reduced to lowest terms) by increasing p+q, then increasing p: 1/1; 1/2, 2/1; 1/3, 3/1; 1/4, 2/3, 3/2, 4/1; 1/5, 5/1; 2/5, 3/4, 4/3, 5/2; etc. For given p+q, there are A000010(p+q) fractions, listed starting at index A002088(p+q-1). - M. F. Hasler, Mar 06 2020

Examples

			Arrange positive fractions < 1 by increasing denominator then by increasing numerator: 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6 ... (this is A020652/A038567). - _William Rex Marshall_, Dec 16 2010
		

References

  • S. Cook, Problem 511: An Enumeration Problem, Journal of Recreational Mathematics, Vol. 9:2 (1976-77), 137. Solution by the Problem Editor, JRM, Vol. 10:2 (1977-78), 122-123.
  • Richard Courant and Herbert Robbins. What Is Mathematics?, Oxford, 1941, pp. 79-80.
  • H. Lauwerier, Fractals, Princeton Univ. Press, p. 23.

Crossrefs

Essentially the same as A038566, which is the main entry for this sequence.
A054424 gives mapping to Stern-Brocot tree.
Cf. A037161.

Programs

  • Haskell
    a020652 n = a020652_list !! (n-1)
    a020652_list = map fst [(u,v) | v <- [1..], u <- [1..v-1], gcd u v == 1]
    -- Reinhard Zumkeller, Jul 29 2012
    
  • Maple
    with (numtheory): A020652 := proc (n) local sum, j, k; sum := 0: k := 2: while (sum < n) do: sum := sum + phi(k): k := k + 1: od: sum := sum - phi(k-1): j := 1; while sum < n do: if gcd(j,k-1) = 1 then sum := sum + 1: fi: j := j+1: od: RETURN (j-1): end: # Ulrich Schimke (ulrschimke(AT)aol.com), Nov 06 2001
  • Mathematica
    Reap[Do[If[GCD[num, den] == 1, Sow[num]], {den, 1, 20}, {num, 1, den-1}] ][[2, 1]] (* Jean-François Alcover, Oct 22 2012 *)
  • PARI
    a(n)=my(s,j=1,k=1);while(sCharles R Greathouse IV, Feb 07 2013
    
  • Python
    from sympy import totient, gcd
    def a(n):
        s=0
        k=2
        while sIndranil Ghosh, May 23 2017, after Ulrich Schimke's MAPLE code

A020653 Denominators in a certain bijection from positive integers to positive rationals.

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 3, 2, 1, 5, 1, 6, 5, 4, 3, 2, 1, 7, 5, 3, 1, 8, 7, 5, 4, 2, 1, 9, 7, 3, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 11, 7, 5, 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 13, 11, 9, 5, 3, 1, 14, 13, 11, 8, 7, 4, 2, 1, 15, 13, 11, 9, 7, 5, 3, 1, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 17
Offset: 1

Views

Author

Keywords

Comments

This bijection lists the fractions p/q (in lowest terms) by increasing p+q, then by increasing p (see the example). The variant A038569 corresponds to the bijection where each fraction p/q with p < q is followed by its reciprocal q/p. - M. F. Hasler, Oct 25 2021

Examples

			From _M. F. Hasler_, Nov 25 2021: (Start)
This sequence gives the denominators of the positive fractions p/q (in lowest terms) when they are listed by increasing p+q, then by increasing p:
1/1; 1/2, 2/1; 1/3, 3/1; 1/4, 2/3, 3/2, 4/1; 1/5, 5/1; 1/6, 2/5, 3/4, 4/3, 5/2, 6/1; ...
(End)
		

References

  • Richard Courant and Herbert Robbins. What Is Mathematics?, Oxford, 1941, pp. 79-80.
  • H. Lauwerier, Fractals, Princeton Univ. Press, p. 23.

Crossrefs

Programs

  • Haskell
    a020653 n = a020653_list !! (n-1)
    a020653_list = concat $ map reverse $ tail a038566_tabf
    -- Reinhard Zumkeller, Oct 30 2012
    
  • Maple
    with (numtheory): A020653 := proc (n) local sum, j, k; sum := 0: k := 2: while (sum < n) do: sum := sum + phi(k): k := k + 1: od: sum := sum - phi(k-1): j := 1; while sum < n do: if gcd(j,k-1) = 1 then sum := sum + 1: fi: j := j+1: od: RETURN (k-j): end: # Ulrich Schimke (ulrschimke(AT)aol.com), Nov 06 2001
  • Mathematica
    a[n_] := Module[{s=0, k=2}, While [s < n, s = s + EulerPhi[k]; k = k+1]; s = s - EulerPhi[k-1]; j=1; While[s < n , If[GCD[j, k-1] == 1 , s = s+1]; j = j+1]; k-j]; Table[a[n], {n, 1, 96}] (* Jean-François Alcover, Dec 06 2012, after Ulrich Schimke's Maple program *)
    Flatten[Map[Denominator[#/Reverse[#]]&,Table[Flatten[Position[GCD[Map[Mod[#,n]&,Range[n-1]],n],1]],{n,100}]]] (* Peter J. C. Moses, Apr 17 2013 *)
  • PARI
    a(n) = my(s=0, k=1, j=1); while(sRuud H.G. van Tol, May 14 2024
  • Python
    from sympy import totient, gcd
    def a(n):
        s=0
        k=2
        while sIndranil Ghosh, May 23 2017, translated from Ulrich Schimke's MAPLE code
    

Extensions

Definition clarified by N. J. A. Sloane, Nov 25 2021

A048669 The Jacobsthal function g(n): maximal gap in a list of all the integers relatively prime to n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 3, 2, 2, 4, 2, 4, 3, 4, 2, 4, 2, 4, 2, 4, 2, 6, 2, 2, 3, 4, 3, 4, 2, 4, 3, 4, 2, 6, 2, 4, 3, 4, 2, 4, 2, 4, 3, 4, 2, 4, 3, 4, 3, 4, 2, 6, 2, 4, 3, 2, 3, 6, 2, 4, 3, 6, 2, 4, 2, 4, 3, 4, 3, 6, 2, 4, 2, 4, 2, 6, 3, 4, 3, 4, 2, 6, 3, 4, 3, 4, 3, 4, 2, 4, 3, 4, 2, 6, 2, 4, 5
Offset: 1

Views

Author

Keywords

Comments

Equivalently, g(n) is the least integer such that among any g(n) consecutive integers i, i+1, ..., i+g(n)-1 there is at least one which is relatively prime to n.
The definition refers to all integers, not just those in the range 1..n-1.
Differs from A070194 by 1 at the primes. - T. D. Noe, Mar 21 2007
Jacobsthal's function is used in the proofs of Recamán's and Pomerance's conjectures on P-integers--see A192224. - Jonathan Sondow, Jun 14 2014

Examples

			g(6)=4 because the gap between 1 and 5, both being relatively prime to 6, is maximal and 5-1 = 4.
g(7)=2, because the numbers relatively prime to 7 are 1,2,3,4,5,6,8,9,10,..., and the biggest gap is 2. Similarly a(p) = 2 for any prime p. - _N. J. A. Sloane_, Sep 08 2012
		

References

  • E. Jacobsthal, Uber Sequenzen ganzer Zahlen, von denen keine zu n teilerfremd ist, I, II, III. Norske Vid. Selsk. Forh., 33, 1960, 117-139.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Pages 33-34.
  • E. Westzynthius, Uber die Verteilung der Zahlen, die zu der n ersten Primzahlen teilerfremd sind, Comm. Phys. Math. Helsingfors 25 (1931), 1-37.

Crossrefs

Essentially same as A049298. See A132468 for another version.

Programs

  • Haskell
    a048669 n = maximum $ zipWith (-) (tail ts) ts where
       ts = a038566_row n ++ [n + 1]
    -- Reinhard Zumkeller, Oct 01 2012
  • Mathematica
    g[n_] := Module[{L = 1, m = 1}, For[k = 2, k <= n+1, k++, If[GCD[k, n] == 1, If[L+m < k, m = k-L]; L = k]]; m]; Table[g[n], {n, 1, 105}] (* Jean-François Alcover, Sep 03 2013, after M. F. Hasler *)
    Table[Max[Differences[Select[Range[110],CoprimeQ[#,n]&]]],{n,110}] (* Harvey P. Dale, Jan 10 2022 *)
  • PARI
    A048669(n)=my(L=1,m=1);for(k=2,n+1,gcd(k,n)>1 && next;L+mM. F. Hasler, Sep 08 2012
    

Formula

From N. J. A. Sloane, Apr 19 2017 (Start):
g(n) = g(Rad(n)) (cf. A007947). So in studying g(n) we may focus on the case when n is a product of w (say) distinct primes.
g(n) <= 2^w for all w [Kanold].
g(n) <= 2^(1/w) for all w >= e^50 [Kanold].
For some unknown X, g(n) <= X*(w*log(w))^2 for all w [Iwaniec].
(End)
g(n) << (log(n))^2, as proved by Iwaniec. - Charles R Greathouse IV, Sep 08 2012.

Extensions

Edited, changed symbol to g(n), added references pertaining to bounds. - N. J. A. Sloane, Apr 19 2017
Previous Showing 11-20 of 93 results. Next