A309428 Irregular triangle read by rows: T(n,k) is the multiplicative order of {{A038566(n,k), 1}, {0, 1}} modulo n, n >= 1, 1 <= k <= A000010(n).
1, 2, 3, 2, 4, 2, 5, 4, 4, 2, 6, 2, 7, 3, 6, 3, 6, 2, 8, 4, 8, 2, 9, 6, 9, 6, 9, 2, 10, 4, 4, 2, 11, 10, 5, 5, 5, 10, 10, 10, 5, 2, 12, 4, 6, 2, 13, 12, 3, 6, 4, 12, 12, 4, 3, 6, 12, 2, 14, 6, 6, 6, 6, 2, 15, 4, 6, 12, 4, 10, 12, 2, 16, 8, 16, 4, 16, 8, 16, 2, 17, 8, 16, 4, 16, 16, 16, 8
Offset: 1
Examples
Table starts 1, 2, 3, 2, 4, 2, 5, 4, 4, 2, 6, 2, 7, 3, 6, 3, 6, 2, 8, 4, 8, 2, 9, 6, 9, 6, 9, 2, 10, 4, 4, 2, 11, 10, 5, 5, 5, 10, 10, 10, 5, 2, 12, 4, 6, 2, 13, 12, 3, 6, 4, 12, 12, 4, 3, 6, 12, 2, 14, 6, 6, 6, 6, 2, 15, 4, 6, 12, 4, 10, 12, 2, 16, 8, 16, 4, 16, 8, 16, 2, 17, 8, 16, 4, 16, 16, 16, 8, 8, 16, 16, 16, 4, 16, 8, 2, 18, 6, 18, 6, 18, 2, 19, 18, 18, 9, 9, 9, 3, 6, 9, 18, 3, 6, 18, 18, 18, 9, 9, 2, 20, 4, 4, 4, 10, 4, 4, 2, ... For n = 14 and k = 4, let M = {{A038566(n,k), 1}, {0, 1}} = {{9, 1}, {0, 1}}, then: - M^2 mod 14 = {{11, 10}, {0, 1}}; - M^3 mod 14 = {{1, 7}, {0, 1}}; - M^4 mod 14 = {{9, 8}, {0, 1}}; - M^5 mod 14 = {{11, 3}, {0, 1}}; - M^6 mod 14 = {{1, 0}, {0, 1}}. So T(14,4) = d(14,9) = 6.
Programs
-
PARI
row(n) = my(v=vector(n,i,i),u=vector(eulerphi(n),i,n)); v=select(i->gcd(n,i)==1,v); for(i=2, #v, u[i]=znorder(Mod(v[i], n*(v[i]-1)))); u
Formula
For gcd(n,r) = 1, 1 <= r <= n, let d(n,r) be the multiplicative order of {{r, 1}, {0, 1}}, then T(n,k) = d(n,A038566(k)).
(a) If p is an odd prime, then d(p^e,r) = p^e if r == 1 (mod p), ord(r,p^e) otherwise;
(b) d(2^e,r) = 2^(e+1-v2(r+1)), where v2(t) is the 2-adic valuation of t;
(c) For gcd(m,n) = 1, d(m*n,r) = lcm(d(m,r mod m),d(n,r mod n)).
The LCM of the n-th row is A174824(n).
Comments