A053141
a(0)=0, a(1)=2 then a(n) = a(n-2) + 2*sqrt(8*a(n-1)^2 + 8*a(n-1) + 1).
Original entry on oeis.org
0, 2, 14, 84, 492, 2870, 16730, 97512, 568344, 3312554, 19306982, 112529340, 655869060, 3822685022, 22280241074, 129858761424, 756872327472, 4411375203410, 25711378892990, 149856898154532, 873430010034204, 5090723162050694, 29670908962269962, 172934730611569080
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.
- A. Behera and G. K. Panda, On the Square Roots of Triangular Numbers, Fib. Quart., 37 (1999), pp. 98-105.
- Martin V. Bonsangue, Gerald E. Gannon and Laura J. Pheifer, Misinterpretations can sometimes be a good thing, Math. Teacher, vol. 95, No. 6 (2002) pp. 446-449.
- P. Catarino, H. Campos, and P. Vasco, On some identities for balancing and cobalancing numbers, Annales Mathematicae et Informaticae, 45 (2015) pp. 11-24.
- Refik Keskin and Olcay Karaatli, Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.4.
- aBa Mbirika, Janee Schrader, and Jürgen Spilker, Pell and Associated Pell Braid Sequences as GCDs of Sums of k Consecutive Pell, Balancing, and Related Numbers, J. Int. Seq. (2023) Vol. 26, Art. 23.6.4.
- J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004:14000 [math.NT], April 2020.
- G. K. Panda, Sequence balancing and cobalancing numbers, Fib. Q., Vol. 45, No. 3 (2007), 265-271. See p. 266.
- Michael Penn, (co) balancing numbers, YouTube video, 2022.
- Robert Phillips, Polynomials of the form 1+4ke+4ke^2, 2008.
- Robert Phillips, A triangular number result, 2009.
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Congruence Properties of Indices of Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2103.03019 [math.GM], 2021.
- Vladimir Pletser, Searching for multiple of triangular numbers being triangular numbers, 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2021.
- Burkard Polster, Nice merging together, Mathologer video (2015).
- B. Polster and M. Ross, Marching in squares, arXiv preprint arXiv:1503.04658 [math.HO], 2015.
- A. Tekcan, M. Tayat, and M. E. Ozbek, The diophantine equation 8x^2-y^2+8x(1+t)+(2t+1)^2=0 and t-balancing numbers, ISRN Combinatorics, Volume 2014, Article ID 897834, 5 pages.
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
-
a053141 n = a053141_list !! n
a053141_list = 0 : 2 : map (+ 2)
(zipWith (-) (map (* 6) (tail a053141_list)) a053141_list)
-- Reinhard Zumkeller, Jan 10 2012
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(2*x/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018
-
A053141 := proc(n)
option remember;
if n <= 1 then
op(n+1,[0,2]) ;
else
6*procname(n-1)-procname(n-2)+2 ;
end if;
end proc: # R. J. Mathar, Feb 05 2016
-
Join[{a=0,b=1}, Table[c=6*b-a+1; a=b; b=c, {n,60}]]*2 (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
a[n_] := Floor[1/8*(2+Sqrt[2])*(3+2*Sqrt[2])^n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 28 2013 *)
Table[(Fibonacci[2n + 1, 2] - 1)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
-
concat(0,Vec(2/(1-x)/(1-6*x+x^2)+O(x^30))) \\ Charles R Greathouse IV, May 14 2012
-
{x=1+sqrt(2); y=1-sqrt(2); P(n) = (x^n - y^n)/(x-y)};
a(n) = round((P(2*n+1) - 1)/2);
for(n=0, 30, print1(a(n), ", ")) \\ G. C. Greubel, Jul 15 2018
-
[(lucas_number1(2*n+1, 2, -1)-1)/2 for n in range(30)] # G. C. Greubel, Apr 27 2020
A029549
a(n + 3) = 35*a(n + 2) - 35*a(n + 1) + a(n), with a(0) = 0, a(1) = 6, a(2) = 210.
Original entry on oeis.org
0, 6, 210, 7140, 242556, 8239770, 279909630, 9508687656, 323015470680, 10973017315470, 372759573255306, 12662852473364940, 430164224521152660, 14612920781245825506, 496409142337836914550, 16863297918705209269200, 572855720093639278238256
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..100
- H. J. Hindin, Stars, hexes, triangular numbers and Pythagorean triples, J. Rec. Math., 16 (1983/1984), 191-193. (Annotated scanned copy)
- Shyam Sunder Gupta Fascinating Triangular Numbers
- Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Congruence Properties of Indices of Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2103.03019 [math.GM], 2021.
- Vladimir Pletser, Searching for multiple of triangular numbers being triangular numbers, 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2021.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Cf.
A000217,
A001109,
A001652,
A002315,
A002378,
A011900,
A029546,
A046090,
A046729,
A053141,
A084159,
A096979,
A157259,
A165518.
-
List([0..20], n-> (Lucas(2,-1, 4*n+2)[2] -6)/32 ); # G. C. Greubel, Jan 13 2020
-
a029549 n = a029549_list !! n
a029549_list = [0,6,210] ++
zipWith (+) a029549_list
(map (* 35) $ tail delta)
where delta = zipWith (-) (tail a029549_list) a029549_list
-- Reinhard Zumkeller, Sep 19 2011
-
(makelist(binom(n,2),n,1,999999),intersection(%%,2*%%)) /* Bill Gosper, Feb 07 2010 */
-
R:=PowerSeriesRing(Integers(), 25); [0] cat Coefficients(R!(6/(1-35*x+35*x^2-x^3))); // G. C. Greubel, Jul 15 2018
-
A029549 := proc(n)
option remember;
if n <= 1 then
op(n+1,[0,6]) ;
else
34*procname(n-1)-procname(n-2)+6 ;
end if;
end proc: # R. J. Mathar, Feb 05 2016
-
Table[Floor[(Sqrt[2] + 1)^(4n + 2)/32], {n, 0, 20} ] (* Original program from author, corrected by Ray Chandler, Jul 09 2015 *)
CoefficientList[Series[6/(1 - 35x + 35x^2 - x^3), {x, 0, 14}], x]
Intersection[#, 2#] &@ Table[Binomial[n, 2], {n, 999999}] (* Bill Gosper, Feb 07 2010 *)
LinearRecurrence[{35, -35, 1}, {0, 6, 210}, 20] (* Harvey P. Dale, Jun 06 2011 *)
(LucasL[4Range[20] - 2, 2] -6)/32 (* G. C. Greubel, Jan 13 2020 *)
-
concat(0,Vec(6/(1-35*x+35*x^2-x^3)+O(x^25))) \\ Charles R Greathouse IV, Jun 13 2013
-
[(lucas_number2(4*n+2, 2, -1) -6)/32 for n in (0..20)] # G. C. Greubel, Jan 13 2020
-
val triNums = (0 to 39999).map(n => (n * n + n)/2)
triNums.filter( % 2 == 0).filter(n => (triNums.contains(n/2))) // _Alonso del Arte, Jan 12 2020
A038761
a(n) = 6*a(n-1) - a(n-2), n >= 2, a(0)=1, a(1)=9.
Original entry on oeis.org
1, 9, 53, 309, 1801, 10497, 61181, 356589, 2078353, 12113529, 70602821, 411503397, 2398417561, 13979001969, 81475594253, 474874563549, 2767771787041, 16131756158697, 94022765165141, 548004834832149, 3194006243827753, 18616032628134369, 108502189524978461
Offset: 0
A038762(3)^2 - 2*a(4)^2 = 2547^2 - 2*1801^2 = +7. - _Wolfdieter Lang_, Feb 05 2015
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
Cf.
A001109,
A001541,
A001542,
A001652,
A001653,
A038762,
A046090,
A048654,
A055997,
A101386,
A124124,
A253811.
-
I:=[1, 9]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 16 2011
-
a[0]:=1: a[1]:=9: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..19); # Zerinvary Lajos, Jul 26 2006
-
LinearRecurrence[{6,-1},{1,9},40] (* Vincenzo Librandi, Nov 16 2011 *)
-
a(n)=([0,1; -1,6]^n*[1;9])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
Edited: Replaced the unspecific Pell comment. Moved a formula from the comment section to the formula section. -
Wolfdieter Lang, Feb 05 2015
A075528
Triangular numbers that are half other triangular numbers.
Original entry on oeis.org
0, 3, 105, 3570, 121278, 4119885, 139954815, 4754343828, 161507735340, 5486508657735, 186379786627653, 6331426236682470, 215082112260576330, 7306460390622912753, 248204571168918457275, 8431648959352604634600, 286427860046819639119128
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..653
- Martin V. Bonsangue, Gerald E. Gannon and Laura J. Pheifer, Misinterpretations can sometimes be a good thing, Math. Teacher, vol. 95, No. 6 (2002) pp. 446-449.
- Harvey J. Hindin, Stars, hexes, triangular numbers and Pythagorean triples, J. Rec. Math., 16 (1983/1984), 191-193. (Annotated scanned copy)
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Congruence Properties of Indices of Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2103.03019 [math.GM], 2021.
- Vladimir Pletser, Searching for multiple of triangular numbers being triangular numbers, 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Cf.
A000129,
A000217,
A001652,
A002315,
A029546,
A029549,
A046090,
A046729,
A053141,
A084159,
A096979.
-
CoefficientList[ Series[ 3x/(1 - 35 x + 35 x^2 - x^3), {x, 0, 15}], x] (* Robert G. Wilson v, Jun 24 2011 *)
-
concat(0, Vec(3*x/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Jun 18 2015
A005319
a(n) = 6*a(n-1) - a(n-2).
Original entry on oeis.org
0, 4, 24, 140, 816, 4756, 27720, 161564, 941664, 5488420, 31988856, 186444716, 1086679440, 6333631924, 36915112104, 215157040700, 1254027132096, 7309005751876, 42600007379160, 248291038523084, 1447146223759344, 8434586304032980
Offset: 0
G.f. = 4*x + 24*x^2 + 140*x^3 + 816*x^4 + 4756*x^5 + ... - _Michael Somos_, Jun 26 2022
- P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 160, middle display.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Marius A. Burtea, Table of n, a(n) for n = 0..100
- K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
- Eric Weisstein's World of Mathematics, Edge Cover
- Eric Weisstein's World of Mathematics, Triangular Snake Graph
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
-
a:=[0,4]; [n le 2 select a[n] else 6*Self(n-1) - Self(n-2):n in [1..22]]; // Marius A. Burtea, Sep 19 2019
-
LinearRecurrence[{6, -1}, {0, 4}, 22] (* Jean-François Alcover, Sep 26 2017 *)
Table[((3 + 2 Sqrt[2])^n - (3 - 2 Sqrt[2])^n)/Sqrt[2], {n, 20}] // Expand (* Eric W. Weisstein, Jun 08 2019 *)
CoefficientList[Series[(4 x)/(1 - 6 x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 08 2019 *)
a[ n_] := 4*ChebyshevU[n-1, 3]; (* Michael Somos, Jun 26 2022 *)
-
{a(n) = 4*polchebyshev(n-1, 2, 3)}; /* Michael Somos, Jun 26 2022 */
A008844
Squares of sequence A001653: y^2 such that x^2 - 2*y^2 = -1 for some x.
Original entry on oeis.org
1, 25, 841, 28561, 970225, 32959081, 1119638521, 38034750625, 1292061882721, 43892069261881, 1491038293021225, 50651409893459761, 1720656898084610641, 58451683124983302025, 1985636569351347658201, 67453191674820837076801, 2291422880374557112953025
Offset: 0
From _Ravi Kumar Davala_, May 26 2013: (Start)
A001333(0)=1, A001333(4)=17, A001333(8)=577, A000129(0)=0, A000129(2)=2, A000129(4)=12, A000129(8)=408 so clearly
a(n+m)=A001333(4*m)*a(n)-(A000129(2*m))^2+A000129(4*m)*sqrt(2*a(n)^2-a(n)), with m=1,2 is true.
A002203(0)=2, A002203(4)=34, A002203(8)=1154 so clearly
a(n+m)=(1/2)*A002203(4*m)*a(n)-(A000129(2*m))^2+A000129(4*m)*sqrt(2*a(n)^2-a(n)) is true for m=1,2
a(n+1)*a(n-1) = (a(n)+4)^2 , with n=1 is 841*1=(25+4)^2, for n=2 , 28561*25=(841+4)^2.
(End)
1 = 1 + 0, 25 = 16 + 9, 841 = 29^2 = 21^2 + 20^2 = 441 + 400.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 256.
- Muniru A Asiru, Table of n, a(n) for n = 0..100
- Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
- M. A. Gruber, Artemas Martin, A. H. Bell, J. H. Drummond, A. H. Holmes, and H. C. Wilkes, Problem 47, Amer. Math. Monthly, 4 (1897), 25-28.
- Thomas Koshy, Products Involving Reciprocals of Gibonacci Polynomials, The Fibonacci Quarterly, Vol. 60, No. 1 (2022), pp. 15-24.
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
- Steven C. Schlicker, Numbers Simultaneously Polygonal and Centered Polygonal, Mathematics Magazine, Vol. 84, No. 5, December 2011
- Eric Weisstein's World of Mathematics, Hexagonal Square Number.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
-
a := [1, 25, 841];; for i in [4..10^2] do a[i] := 35*a[i-1] - 35*a[i-2] + a[i-3]; od; a; # Muniru A Asiru, Jan 17 2018
-
I:=[1,25,841]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jan 20 2018
-
CP := n -> 1+1/2*4*(n^2-n): N:=10: u:=3: v:=1: x:=4: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+8*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp; # Steven Schlicker, Apr 24 2007
-
LinearRecurrence[{35, -35, 1}, {1, 25, 841}, 15] (* Ant King, Nov 09 2011 *)
CoefficientList[Series[(1 - 10 x + x^2) / ((1 - x) (1 - 34 x + x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 20 2018 *)
-
a(n)=if(n<0,0,sqr(subst(poltchebi(n+1)+poltchebi(n),x,3)/4))
-
vector(40, n, n--; (([5, 2; 2, 1]^n)[1, 1])^2) \\ Altug Alkan, Nov 11 2015
A011900
a(n) = 6*a(n-1) - a(n-2) - 2 with a(0) = 1, a(1) = 3.
Original entry on oeis.org
1, 3, 15, 85, 493, 2871, 16731, 97513, 568345, 3312555, 19306983, 112529341, 655869061, 3822685023, 22280241075, 129858761425, 756872327473, 4411375203411, 25711378892991, 149856898154533, 873430010034205, 5090723162050695, 29670908962269963, 172934730611569081
Offset: 0
Mario Velucchi (mathchess(AT)velucchi.it)
G.f. = 1 + 3*x + 15x^2 + 85*x^3 + 493*x^4 + 2871*x^5 + 16731*x^6 + ... - _Michael Somos_, Feb 23 2019
- Mario Velucchi "The Pell's equation ... an amusing application" in Mathematics and Informatics Quarterly, to appear 1997.
- Colin Barker, Table of n, a(n) for n = 0..1000
- H. J. Hindin, Stars, hexes, triangular numbers and Pythagorean triples, J. Rec. Math., 16 (1983/1984), 191-193. (Annotated scanned copy)
- Giovanni Lucca, Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences, Forum Geometricorum, Volume 16 (2016) 419-427.
- S. Northshield, An Analogue of Stern's Sequence for Z[sqrt(2)], Journal of Integer Sequences, 18 (2015), #15.11.6.
- S. N. Perepechko, Number of perfect matchings on triangular lattices of fixed width, DIMA'2015 slides. [see: page 12]
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
Cf.
A000194,
A001109,
A001541,
A001653,
A002024,
A006062,
A011906,
A029549,
A046090,
A053141,
A075528,
A156035.
-
I:=[1,3]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2) - 2: n in [1..40]]; // Vincenzo Librandi, Dec 05 2015
-
f:= gfun:-rectoproc({a(n)=6*a(n-1)-a(n-2)-2,a(0)=1,a(1)=3},a(n),remember):
seq(f(n),n=0..40); # Robert Israel, Dec 16 2015
-
a[0] = 1; a[1] = 3; a[n_]:= a[n]= 6 a[n-1] -a[n-2] -2; Table[a@ n, {n,0,40}] (* Michael De Vlieger, Dec 05 2015 *)
Table[(Fibonacci[2n + 1, 2] + 1)/2, {n, 0, 40}] (* Vladimir Reshetnikov, Sep 16 2016 *)
LinearRecurrence[{7,-7,1},{1,3,15},40] (* Harvey P. Dale, Feb 16 2017 *)
a[ n_] := (4 + ChebyshevT[n, 3] + ChebyshevT[n + 1, 3])/8; (* Michael Somos, Feb 23 2019 *)
-
Vec((1-4*x+x^2)/((1-x)*(1-6*x+x^2)) + O(x^50)) \\ Altug Alkan, Dec 06 2015
-
[(1+lucas_number1(2*n+1,2,-1))//2 for n in range(41)] # G. C. Greubel, Oct 17 2024
Original entry on oeis.org
0, 1, 7, 42, 246, 1435, 8365, 48756, 284172, 1656277, 9653491, 56264670, 327934530, 1911342511, 11140120537, 64929380712, 378436163736, 2205687601705, 12855689446495, 74928449077266, 436715005017102, 2545361581025347, 14835454481134981, 86467365305784540
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., Vol. 58, No. 2 (2020), 140-142.
- Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
Cf.
A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018
-
Join[{a=0,b=1}, Table[c=6*b-a+1; a=b; b=c, {n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
Table[(Fibonacci[2n + 1, 2] - 1)/4, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
LinearRecurrence[{7, -7, 1}, {0, 1, 7}, 30] (* G. C. Greubel, Jul 15 2018 *)
-
{a=1+sqrt(2); b=1-sqrt(2); P(n) = (a^n - b^n)/(a-b)};
for(n=0, 30, print1(round((P(2*n+1) - 1)/4), ", ")) \\ G. C. Greubel, Jul 15 2018
-
x='x+O('x^30); Vec(x/((1-x)*(1-6*x+x^2))) \\ G. C. Greubel, Jul 15 2018
A055997
Numbers k such that k*(k - 1)/2 is a square.
Original entry on oeis.org
1, 2, 9, 50, 289, 1682, 9801, 57122, 332929, 1940450, 11309769, 65918162, 384199201, 2239277042, 13051463049, 76069501250, 443365544449, 2584123765442, 15061377048201, 87784138523762, 511643454094369, 2982076586042450, 17380816062160329, 101302819786919522
Offset: 1
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.
- P. Tauvel, Exercices d'Algèbre Générale et d'Arithmétique, Dunod, 2004, Exercice 35 pages 346-347.
- Colin Barker, Table of n, a(n) for n = 1..100
- Dario Alpern, a^4+b^3=c^2.
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 46, 56.
- Phil Lafer, Discovering the square-triangular numbers, Fib. Quart., 9 (1971), 93-105.
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
- Kenneth Ramsey, Generalized Proof re Square Triangular Numbers, message 62 in Triangular_and_Fibonacci_Numbers Yahoo group, Oct 10, 2011.
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
A001109(n-1) = sqrt{[(a(n))^2 - (a(n))]/2}.
Identical to
A115599, but with additional leading term.
-
I:=[1,2,9]; [n le 3 select I[n] else 7*Self(n-1)-7*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Mar 20 2015
-
A:= gfun:-rectoproc({a(n) = 6*a(n-1)-a(n-2)-2, a(1) = 1, a(2) = 2}, a(n), remember):
map(A,[$1..100]); # Robert Israel, Jul 22 2015
-
Table[ 1/4*(2 + (3 - 2*Sqrt[2])^k + (3 + 2*Sqrt[2])^k ) // Simplify, {k, 0, 20}] (* Jean-François Alcover, Mar 06 2013 *)
CoefficientList[Series[(1 - 5 x + 2 x^2) / ((1 - x) (1 - 6 x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
(1 + ChebyshevT[#, 3])/2 & /@ Range[0, 20] (* Bill Gosper, Jul 20 2015 *)
a[1]=1;a[2]=2;a[n_]:=(a[n-1]+1)^2/a[n-2];a/@Range[25] (* Bradley Klee, Jul 25 2015 *)
LinearRecurrence[{7,-7,1},{1,2,9},30] (* Harvey P. Dale, Dec 06 2015 *)
-
Vec((1-5*x+2*x^2)/((1-x)*(1-6*x+x^2))+O(x^66)) /* Joerg Arndt, Mar 06 2013 */
-
t(n)=(1+sqrt(2))^(n-1);
for(k=1,24,print1(round((1/4)*(t(k)^2 + t(k)^(-2) + 2)),", ")) \\ Hugo Pfoertner, Nov 29 2019
-
a(n) = (1 + polchebyshev(n-1, 1, 3))/2; \\ Michel Marcus, Apr 21 2020
A046729
Expansion of 4*x/((1+x)*(1-6*x+x^2)).
Original entry on oeis.org
0, 4, 20, 120, 696, 4060, 23660, 137904, 803760, 4684660, 27304196, 159140520, 927538920, 5406093004, 31509019100, 183648021600, 1070379110496, 6238626641380, 36361380737780, 211929657785304, 1235216565974040, 7199369738058940, 41961001862379596, 244566641436218640
Offset: 0
[1,0,1]*[1,2,2; 2,1,2; 2,2,3]^0 gives (degenerate) primitive Pythagorean triple [1, 0, 1], so a(0) = 0. [1,0,1]*[1,2,2; 2,1,2; 2,2,3]^7 gives primitive Pythagorean triple [137903, 137904, 195025] so a(7) = 137904.
G.f. = 4*x + 20*x^2 + 120*x^3 + 696*x^4 + 4060*x^5 + 23660*x^6 + ...
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
- W. Sierpiński, Pythagorean triangles, Dover Publications, Inc., Mineola, NY, 2003, p. 17. MR2002669.
-
[4*Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)-2*(-1)^n) / 16): n in [0..30]]; // Vincenzo Librandi, Jul 29 2019
-
LinearRecurrence[{5,5,-1}, {0,4,20}, 25] (* Vincenzo Librandi, Jul 29 2019 *)
-
a(n)=n%2+(real((1+quadgen(8))^(2*n+1))-1)/2
-
a(n)=if(n<0,-a(-1-n),polcoeff(4*x/(1+x)/(1-6*x+x^2)+x*O(x^n),n))
-
[(lucas_number2(2*n+1,2,-1) -2*(-1)^n)/4 for n in range(41)] # G. C. Greubel, Feb 11 2023
Comments