cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 143 results. Next

A034851 Rows of Losanitsch's triangle T(n, k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 6, 6, 3, 1, 1, 3, 9, 10, 9, 3, 1, 1, 4, 12, 19, 19, 12, 4, 1, 1, 4, 16, 28, 38, 28, 16, 4, 1, 1, 5, 20, 44, 66, 66, 44, 20, 5, 1, 1, 5, 25, 60, 110, 126, 110, 60, 25, 5, 1, 1, 6, 30, 85, 170, 236, 236, 170, 85, 30, 6, 1, 1, 6, 36, 110, 255
Offset: 0

Views

Author

Keywords

Comments

Sometimes erroneously called "Lossnitsch's triangle". But the author's name is Losanitsch (I have seen the original paper in Chem. Ber.). This is a German version of the Serbian name Lozanic. - N. J. A. Sloane, Jun 29 2008
For n >= 3, a(n-3,k) is the number of series-reduced (or homeomorphically irreducible) trees which become a path P(k+1) on k+1 nodes, k >= 0, when all leaves are omitted (see illustration). Proof by Pólya's enumeration theorem. - Wolfdieter Lang, Jun 08 2001
The number of ways to put beads of two colors in a line, but take symmetry into consideration, so that 011 and 110 are considered the same. - Yong Kong (ykong(AT)nus.edu.sg), Jan 04 2005
Alternating row sums are 1,0,1,0,2,0,4,0,8,0,16,0,... - Gerald McGarvey, Oct 20 2008
The triangle sums, see A180662 for their definitions, link Losanitsch's triangle A034851 with several sequences, see the crossrefs. We observe that the Ze3 and Ze4 sums link Losanitsch's triangle with A005683, i.e., R. K. Guy's Twopins game. - Johannes W. Meijer, Jul 14 2011
T(n-(L-1)k, k) is the number of ways to cover an n-length line by exactly k L-length segments excluding symmetric covers. For L=2 it is corresponds to A102541, for L=3 to A228570 and for L=4 to A228572. - Philipp O. Tsvetkov, Nov 08 2013
Also the number of equivalence classes of ways of placing k 1 X 1 tiles in an n X 1 rectangle under all symmetry operations of the rectangle. - Christopher Hunt Gribble, Feb 16 2014
T(n, k) is the number of non-isomorphic outer planar graphs of order n+3, size n+3+k, and maximum degree k+2. - Christian Barrientos, Oct 18 2018
From Álvar Ibeas, Jun 01 2020: (Start)
T(n, k) is the sum of even-degree coefficients of the Gaussian polynomial [n, k]_q. The area below a NE lattice path between (0,0) and (k, n-k) is even for T(n, k) paths and odd for A034852(n, k) of them.
For a (non-reversible) string of k black and n-k white beads, consider the minimum number of bead transpositions needed to place the black ones to the left and the white ones to the right (in other words, the number of inversions of the permutation obtained by labeling the black beads by integers 1,...,k and the white ones by k+1,...,n, in the same order they take on the string). It is even for T(n, k) strings and odd for A034852(n, k) cases.
(End)
Named after the Serbian chemist, politician and diplomat Simeon Milivoje "Sima" Lozanić (1847-1935). - Amiram Eldar, Jun 10 2021
T(n, k) is the number of caterpillars with a perfect matching, with 2n+2 vertices and diameter 2n-1-k. - Christian Barrientos, Sep 12 2023

Examples

			Triangle begins
  1;
  1,  1;
  1,  1,  1;
  1,  2,  2,  1;
  1,  2,  4,  2,  1;
  1,  3,  6,  6,  3,  1;
  1,  3,  9, 10,  9,  3,  1;
  1,  4, 12, 19, 19, 12,  4,  1;
  1,  4, 16, 28, 38, 28, 16,  4,  1;
  1,  5, 20, 44, 66, 66, 44, 20,  5,  1;
		

Crossrefs

Triangle sums (see the comments): A005418 (Row), A011782 (Related to Row2), A102526 (Related to Kn11, Kn12, Kn13, Kn21, Kn22, Kn23), A005207 (Kn3, Kn4), A005418 (Fi1, Fi2), A102543 (Ca1, Ca2), A192928 (Gi1, Gi2), A005683 (Ze3, Ze4).
Sums of squares of terms in rows equal A211208.

Programs

  • Haskell
    a034851 n k = a034851_row n !! k
    a034851_row 0 = [1]
    a034851_row 1 = [1,1]
    a034851_row n = zipWith (-) (zipWith (+) ([0] ++ losa) (losa ++ [0]))
                                ([0] ++ a204293_row (n-2) ++ [0])
       where losa = a034851_row (n-1)
    a034851_tabl = map a034851_row [0..]
    -- Reinhard Zumkeller, Jan 14 2012
  • Maple
    A034851 := proc(n,k) option remember; local t; if k = 0 or k = n then return(1) fi; if n mod 2 = 0 and k mod 2 = 1 then t := binomial(n/2-1,(k-1)/2) else t := 0; fi; A034851(n-1,k-1)+A034851(n-1,k)-t; end: seq(seq(A034851(n, k), k=0..n), n=0..11);
  • Mathematica
    t[n_?EvenQ, k_?OddQ] := Binomial[n, k]/2; t[n_, k_] := (Binomial[n, k] + Binomial[Quotient[n, 2], Quotient[k, 2]])/2; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]](* Jean-François Alcover, Feb 07 2012, after PARI *)
  • PARI
    {T(n, k) = (1/2) *(binomial(n, k) + binomial(n%2, k%2) * binomial(n\2, k\2))}; /* Michael Somos, Oct 20 1999 */
    

Formula

T(n, k) = (1/2) * (A007318(n, k) + A051159(n, k)).
G.f. for k-th column (if formatted as lower triangular matrix a(n, k)): x^k*Pe(floor((k+1)/2), x^2)/(((1-x)^(k+1))*(1+x)^(floor((k+1)/2))), where Pe(n, x^2) := Sum_{m=0..floor(n/2)} A034839(n, m)*x^(2*m) (row polynomials of Pascal array even numbered columns). - Wolfdieter Lang, May 08 2001
a(n, k) = a(n-1, k-1) + a(n-1, k) - C(n/2-1, (k-1)/2), where the last term is present only if n is even and k is odd (see Sloane link).
T(n, k) = T(n-2, k-2) + T(n-2, k) + C(n-2, k-1), n > 1.
Let P(n, x, y) = Sum_{m=0..n} a(n, m)*x^m*y^(n-m), then for x > 0, y > 0 we have P(n, x, y) = (x+y)*P(n-1, x, y) for n odd and P(n, x, y) = (x+y)*P(n-1, x, y) - x*y*(x^2+y^2)^((n-2)/2) for n even. - Gerald McGarvey, Feb 15 2005
T(n, k) = T(n-1, k-1) + T(n-1, k) - A204293(n-2, k-1), 0 < k <= n and n > 1. - Reinhard Zumkeller, Jan 14 2012
From Christopher Hunt Gribble, Feb 25 2014: (Start)
It appears that:
T(n,k) = C(n,k)/2, n even, k odd;
T(n,k) = (C(n,k) + C(n/2,k/2))/2, n even, k even;
T(n,k) = (C(n,k) + C((n-1)/2,(k-1)/2))/2, n odd, k odd;
T(n,k) = (C(n,k) + C((n-1)/2,k/2))/2, n odd, k even.
(End)

Extensions

More terms from James Sellers, May 04 2000
Name edited by Johannes W. Meijer, Aug 26 2013

A028246 Triangular array a(n,k) = (1/k)*Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*i^n; n >= 1, 1 <= k <= n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 12, 6, 1, 15, 50, 60, 24, 1, 31, 180, 390, 360, 120, 1, 63, 602, 2100, 3360, 2520, 720, 1, 127, 1932, 10206, 25200, 31920, 20160, 5040, 1, 255, 6050, 46620, 166824, 317520, 332640, 181440, 40320, 1, 511, 18660, 204630, 1020600, 2739240, 4233600, 3780000, 1814400, 362880
Offset: 1

Views

Author

N. J. A. Sloane, Doug McKenzie (mckfam4(AT)aol.com)

Keywords

Comments

Let M = n X n matrix with (i,j)-th entry a(n+1-j, n+1-i), e.g., if n = 3, M = [1 1 1; 3 1 0; 2 0 0]. Given a sequence s = [s(0)..s(n-1)], let b = [b(0)..b(n-1)] be its inverse binomial transform and let c = [c(0)..c(n-1)] = M^(-1)*transpose(b). Then s(k) = Sum_{i=0..n-1} b(i)*binomial(k,i) = Sum_{i=0..n-1} c(i)*k^i, k=0..n-1. - Gary W. Adamson, Nov 11 2001
From Gary W. Adamson, Aug 09 2008: (Start)
Julius Worpitzky's 1883 algorithm generates Bernoulli numbers.
By way of example [Wikipedia]:
B0 = 1;
B1 = 1/1 - 1/2;
B2 = 1/1 - 3/2 + 2/3;
B3 = 1/1 - 7/2 + 12/3 - 6/4;
B4 = 1/1 - 15/2 + 50/3 - 60/4 + 24/5;
B5 = 1/1 - 31/2 + 180/3 - 390/4 + 360/5 - 120/6;
B6 = 1/1 - 63/2 + 602/3 - 2100/4 + 3360/5 - 2520/6 + 720/7;
...
Note that in this algorithm, odd n's for the Bernoulli numbers sum to 0, not 1, and the sum for B1 = 1/2 = (1/1 - 1/2). B3 = 0 = (1 - 7/2 + 13/3 - 6/4) = 0. The summation for B4 = -1/30. (End)
Pursuant to Worpitzky's algorithm and given M = A028246 as an infinite lower triangular matrix, M * [1/1, -1/2, 1/3, ...] (i.e., the Harmonic series with alternate signs) = the Bernoulli numbers starting [1/1, 1/2, 1/6, ...]. - Gary W. Adamson, Mar 22 2012
From Tom Copeland, Oct 23 2008: (Start)
G(x,t) = 1/(1 + (1-exp(x*t))/t) = 1 + 1 x + (2 + t)*x^2/2! + (6 + 6t + t^2)*x^3/3! + ... gives row polynomials for A090582, the f-polynomials for the permutohedra (see A019538).
G(x,t-1) = 1 + 1*x + (1 + t)*x^2 / 2! + (1 + 4t + t^2)*x^3 / 3! + ... gives row polynomials for A008292, the h-polynomials for permutohedra.
G[(t+1)x,-1/(t+1)] = 1 + (1+ t) x + (1 + 3t + 2 t^2) x^2 / 2! + ... gives row polynomials for the present triangle. (End)
The Worpitzky triangle seems to be an apt name for this triangle. - Johannes W. Meijer, Jun 18 2009
If Pascal's triangle is written as a lower triangular matrix and multiplied by A028246 written as an upper triangular matrix, the product is a matrix where the (i,j)-th term is (i+1)^j. For example,
1,0,0,0 1,1,1, 1 1,1, 1, 1
1,1,0,0 * 0,1,3, 7 = 1,2, 4, 8
1,2,1,0 0,0,2,12 1,3, 9,27
1,3,3,1 0,0,0, 6 1,4,16,64
So, numbering all three matrices' rows and columns starting at 0, the (i,j) term of the product is (i+1)^j. - Jack A. Cohen (ProfCohen(AT)comcast.net), Aug 03 2010
The Fi1 and Fi2 triangle sums are both given by sequence A000670. For the definition of these triangle sums see A180662. The mirror image of the Worpitzky triangle is A130850. - Johannes W. Meijer, Apr 20 2011
Let S_n(m) = 1^m + 2^m + ... + n^m. Then, for n >= 0, we have the following representation of S_n(m) as a linear combination of the binomial coefficients:
S_n(m) = Sum_{i=1..n+1} a(i+n*(n+1)/2)*C(m,i). E.g., S_2(m) = a(4)*C(m,1) + a(5)*C(m,2) + a(6)*C(m,3) = C(m,1) + 3*C(m,2) + 2*C(m,3). - Vladimir Shevelev, Dec 21 2011
Given the set X = [1..n] and 1 <= k <= n, then a(n,k) is the number of sets T of size k of subset S of X such that S is either empty or else contains 1 and another element of X and such that any two elemements of T are either comparable or disjoint. - Michael Somos, Apr 20 2013
Working with the row and column indexing starting at -1, a(n,k) gives the number of k-dimensional faces in the first barycentric subdivision of the standard n-dimensional simplex (apply Brenti and Welker, Lemma 2.1). For example, the barycentric subdivision of the 2-simplex (a triangle) has 1 empty face, 7 vertices, 12 edges and 6 triangular faces giving row 4 of this triangle as (1,7,12,6). Cf. A053440. - Peter Bala, Jul 14 2014
See A074909 and above g.f.s for associations among this array and the Bernoulli polynomials and their umbral compositional inverses. - Tom Copeland, Nov 14 2014
An e.g.f. G(x,t) = exp[P(.,t)x] = 1/t - 1/[t+(1-t)(1-e^(-xt^2))] = (1-t) * x + (-2t + 3t^2 - t^3) * x^2/2! + (6t^2 - 12t^3 + 7t^4 - t^5) * x^3/3! + ... for the shifted, reverse, signed polynomials with the first element nulled, is generated by the infinitesimal generator g(u,t)d/du = [(1-u*t)(1-(1+u)t)]d/du, i.e., exp[x * g(u,t)d/du] u eval. at u=0 generates the polynomials. See A019538 and the G. Rzadkowski link below for connections to the Bernoulli and Eulerian numbers, a Ricatti differential equation, and a soliton solution to the KdV equation. The inverse in x of this e.g.f. is Ginv(x,t) = (-1/t^2)*log{[1-t(1+x)]/[(1-t)(1-tx)]} = [1/(1-t)]x + [(2t-t^2)/(1-t)^2]x^2/2 + [(3t^2-3t^3+t^4)/(1-t)^3]x^3/3 + [(4t^3-6t^4+4t^5-t^6)/(1-t)^4]x^4/4 + ... . The numerators are signed, shifted A135278 (reversed A074909), and the rational functions are the columns of A074909. Also, dG(x,t)/dx = g(G(x,t),t) (cf. A145271). (Analytic G(x,t) added, and Ginv corrected and expanded on Dec 28 2015.) - Tom Copeland, Nov 21 2014
The operator R = x + (1 + t) + t e^{-D} / [1 + t(1-e^(-D))] = x + (1+t) + t - (t+t^2) D + (t+3t^2+2t^3) D^2/2! - ... contains an e.g.f. of the reverse row polynomials of the present triangle, i.e., A123125 * A007318 (with row and column offset 1 and 1). Umbrally, R^n 1 = q_n(x;t) = (q.(0;t)+x)^n, with q_m(0;t) = (t+1)^(m+1) - t^(m+1), the row polynomials of A074909, and D = d/dx. In other words, R generates the Appell polynomials associated with the base sequence A074909. For example, R 1 = q_1(x;t) = (q.(0;t)+x) = q_1(0;t) + q__0(0;t)x = (1+2t) + x, and R^2 1 = q_2(x;t) = (q.(0;t)+x)^2 = q_2(0:t) + 2q_1(0;t)x + q_0(0;t)x^2 = 1+3t+3t^2 + 2(1+2t)x + x^2. Evaluating the polynomials at x=0 regenerates the base sequence. With a simple sign change in R, R generates the Appell polynomials associated with A248727. - Tom Copeland, Jan 23 2015
For a natural refinement of this array, see A263634. - Tom Copeland, Nov 06 2015
From Wolfdieter Lang, Mar 13 2017: (Start)
The e.g.f. E(n, x) for {S(n, m)}{m>=0} with S(n, m) = Sum{k=1..m} k^n, n >= 0, (with undefined sum put to 0) is exp(x)*R(n+1, x) with the exponential row polynomials R(n, x) = Sum_{k=1..n} a(n, k)*x^k/k!. E.g., e.g.f. for n = 2, A000330: exp(x)*(1*x/1!+3*x^2/2!+2*x^3/3!).
The o.g.f. G(n, x) for {S(n, m)}{m >=0} is then found by Laplace transform to be G(n, 1/p) = p*Sum{k=1..n} a(n+1, k)/(p-1)^(2+k).
Hence G(n, x) = x/(1 - x)^(n+2)*Sum_{k=1..n} A008292(n,k)*x^(k-1).
E.g., n=2: G(2, 1/p) = p*(1/(p-1)^2 + 3/(p-1)^3 + 2/(p-1)^4) = p^2*(1+p)/(p-1)^4; hence G(2, x) = x*(1+x)/(1-x)^4.
This works also backwards: from the o.g.f. to the e.g.f. of {S(n, m)}_{m>=0}. (End)
a(n,k) is the number of k-tuples of pairwise disjoint and nonempty subsets of a set of size n. - Dorian Guyot, May 21 2019
From Rajesh Kumar Mohapatra, Mar 16 2020: (Start)
a(n-1,k) is the number of chains of length k in a partially ordered set formed from subsets of an n-element set ordered by inclusion such that the first term of the chains is either the empty set or an n-element set.
Also, a(n-1,k) is the number of distinct k-level rooted fuzzy subsets of an n-set ordered by set inclusion. (End)
The relations on p. 34 of Hasan (also p. 17 of Franco and Hasan) agree with the relation between A019538 and this entry given in the formula section. - Tom Copeland, May 14 2020
T(n,k) is the size of the Green's L-classes in the D-classes of rank (k-1) in the semigroup of partial transformations on an (n-1)-set. - Geoffrey Critzer, Jan 09 2023
T(n,k) is the number of strongly connected binary relations on [n] that have period k (A367948) and index 1. See Theorem 5.4.25(6) in Ki Hang Kim reference. - Geoffrey Critzer, Dec 07 2023

Examples

			The triangle a(n, k) starts:
n\k 1   2    3     4      5      6      7      8     9
1:  1
2:  1   1
3:  1   3    2
4:  1   7   12     6
5:  1  15   50    60     24
6:  1  31  180   390    360    120
7:  1  63  602  2100   3360   2520    720
8:  1 127 1932 10206  25200  31920  20160   5040
9:  1 255 6050 46620 166824 317520 332640 181440 40320
... [Reformatted by _Wolfdieter Lang_, Mar 26 2015]
-----------------------------------------------------
Row 5 of triangle is {1,15,50,60,24}, which is {1,15,25,10,1} times {0!,1!,2!,3!,4!}.
From _Vladimir Shevelev_, Dec 22 2011: (Start)
Also, for power sums, we have
S_0(n) = C(n,1);
S_1(n) = C(n,1) +    C(n,2);
S_2(n) = C(n,1) +  3*C(n,2) +  2*C(n,3);
S_3(n) = C(n,1) +  7*C(n,2) + 12*C(n,3) +  6*C(n,4);
S_4(n) = C(n,1) + 15*C(n,2) + 50*C(n,3) + 60*C(n,4) + 24*C(n,5); etc.
(End)
For X = [1,2,3], the sets T are {{}}, {{},{1,2}}, {{},{1,3}}, {{},{1,2,3}}, {{},{1,2},{1,2,3}}, {{},{1,3},{1,2,3}} and so a(3,1)=1, a(3,2)=3, a(3,3)=2. - _Michael Somos_, Apr 20 2013
		

References

  • Ki Hang Kim, Boolean Matrix Theory and Applications, Marcel Dekker, New York and Basel (1982).

Crossrefs

Dropping the column of 1's gives A053440.
Without the k in the denominator (in the definition), we get A019538. See also the Stirling number triangle A008277.
Row sums give A000629(n-1) for n >= 1.
Cf. A027642, A002445. - Gary W. Adamson, Aug 09 2008
Appears in A161739 (RSEG2 triangle), A161742 and A161743. - Johannes W. Meijer, Jun 18 2009
Binomial transform is A038719. Cf. A131689.
Cf. A119879.
From Rajesh Kumar Mohapatra, Mar 29 2020: (Start)
A000007(n-1) (column k=1), A000225(n-1) (column k=2), A028243(n-1) (column k=3), A028244(n-1) (column k=4), A028245(n-1) (column k=5), for n > 0.
Diagonal gives A000142(n-1), for n >=1.
Next-to-last diagonal gives A001710,
Third, fourth, fifth, sixth, seventh external diagonal respectively give A005460, A005461, A005462, A005463, A005464. (End)

Programs

  • GAP
    Flat(List([1..10], n-> List([1..n], k-> Stirling2(n,k)* Factorial(k-1) ))); # G. C. Greubel, May 30 2019
    
  • Magma
    [[StirlingSecond(n,k)*Factorial(k-1): k in [1..n]]: n in [1..10]]; // G. C. Greubel, May 30 2019
    
  • Maple
    a := (n,k) -> add((-1)^(k-i)*binomial(k,i)*i^n, i=0..k)/k;
    seq(print(seq(a(n,k),k=1..n)),n=1..10);
    T := (n,k) -> add(eulerian1(n,j)*binomial(n-j,n-k), j=0..n):
    seq(print(seq(T(n,k),k=0..n)),n=0..9); # Peter Luschny, Jul 12 2013
  • Mathematica
    a[n_, k_] = Sum[(-1)^(k-i) Binomial[k,i]*i^n, {i,0,k}]/k; Flatten[Table[a[n, k], {n, 10}, {k, n}]] (* Jean-François Alcover, May 02 2011 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, n! * polcoeff( (x / log(1 + x + x^2 * O(x^n) ))^(n+1), n-k))}; /* Michael Somos, Oct 02 2002 */
    
  • PARI
    {T(n,k) = stirling(n,k,2)*(k-1)!}; \\ G. C. Greubel, May 31 2019
    
  • Python
    # Assuming offset (n, k) = (0, 0).
    def T(n, k):
        if k >  n: return 0
        if k == 0: return 1
        return k*T(n - 1, k - 1) + (k + 1)*T(n - 1, k)
    for n in range(9):
        print([T(n, k) for k in range(n + 1)])  # Peter Luschny, Apr 26 2022
  • Sage
    def A163626_row(n) :
        x = polygen(ZZ,'x')
        A = []
        for m in range(0, n, 1) :
            A.append((-x)^m)
            for j in range(m, 0, -1):
                A[j - 1] = j * (A[j - 1] - A[j])
        return list(A[0])
    for i in (1..7) : print(A163626_row(i))  # Peter Luschny, Jan 25 2012
    
  • Sage
    [[stirling_number2(n,k)*factorial(k-1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, May 30 2019
    

Formula

E.g.f.: -log(1-y*(exp(x)-1)). - Vladeta Jovovic, Sep 28 2003
a(n, k) = S2(n, k)*(k-1)! where S2(n, k) is a Stirling number of the second kind (cf. A008277). Also a(n,k) = T(n,k)/k, where T(n, k) = A019538.
Essentially same triangle as triangle [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...] where DELTA is Deléham's operator defined in A084938, but the notation is different.
Sum of terms in n-th row = A000629(n) - Gary W. Adamson, May 30 2005
The row generating polynomials P(n, t) are given by P(1, t)=t, P(n+1, t) = t(t+1)(d/dt)P(n, t) for n >= 1 (see the Riskin and Beckwith reference). - Emeric Deutsch, Aug 09 2005
From Gottfried Helms, Jul 12 2006: (Start)
Delta-matrix as can be read from H. Hasse's proof of a connection between the zeta-function and Bernoulli numbers (see link below).
Let P = lower triangular matrix with entries P[row,col] = binomial(row,col).
Let J = unit matrix with alternating signs J[r,r]=(-1)^r.
Let N(m) = column matrix with N(m)(r) = (r+1)^m, N(1)--> natural numbers.
Let V = Vandermonde matrix with V[r,c] = (r+1)^c.
V is then also N(0)||N(1)||N(2)||N(3)... (indices r,c always beginning at 0).
Then Delta = P*J * V and B' = N(-1)' * Delta, where B is the column matrix of Bernoulli numbers and ' means transpose, or for the single k-th Bernoulli number B_k with the appropriate column of Delta,
B_k = N(-1)' * Delta[ *,k ] = N(-1)' * P*J * N(k).
Using a single column instead of V and assuming infinite dimension, H. Hasse showed that in x = N(-1) * P*J * N(s), where s can be any complex number and s*zeta(1-s) = x.
His theorem reads: s*zeta(1-s) = Sum_{n>=0..inf} (n+1)^-1*delta(n,s), where delta(n,s) = Sum_{j=0..n} (-1)^j * binomial(n,j) * (j+1)^s.
(End)
a(n,k) = k*a(n-1,k) + (k-1)*a(n-1,k-1) with a(n,1) = 1 and a(n,n) = (n-1)!. - Johannes W. Meijer, Jun 18 2009
Rephrasing the Meijer recurrence above: Let M be the (n+1)X(n+1) bidiagonal matrix with M(r,r) = M(r,r+1) = r, r >= 1, in the two diagonals and the rest zeros. The row a(n+1,.) of the triangle is row 1 of M^n. - Gary W. Adamson, Jun 24 2011
From Tom Copeland, Oct 11 2011: (Start)
With e.g.f.. A(x,t) = G[(t+1)x,-1/(t+1)]-1 (from 2008 comment) = -1 + 1/[1-(1+t)(1-e^(-x))] = (1+t)x + (1+3t+2t^2)x^2/2! + ..., the comp. inverse in x is
B(x,t)= -log(t/(1+t)+1/((1+t)(1+x))) = (1/(1+t))x - ((1+2t)/(1+t)^2)x^2/2 + ((1+3t+3t^2)/(1+t)^3)x^3/3 + .... The numerators are the row polynomials of A074909, and the rational functions are (omitting the initial constants) signed columns of the re-indexed Pascal triangle A007318.
Let h(x,t)= 1/(dB/dx) = (1+x)(1+t(1+x)), then the row polynomial P(n,t) = (1/n!)(h(x,t)*d/dx)^n x, evaluated at x=0, A=exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t), with P(1,t)=1+t. (Series added Dec 29 2015.)(End)
Let denote the Eulerian numbers A173018(n,k), then T(n,k) = Sum_{j=0..n} *binomial(n-j,n-k). - Peter Luschny, Jul 12 2013
Matrix product A007318 * A131689. The n-th row polynomial R(n,x) = Sum_{k >= 1} k^(n-1)*(x/(1 + x))^k, valid for x in the open interval (-1/2, inf). Cf A038719. R(n,-1/2) = (-1)^(n-1)*(2^n - 1)*Bernoulli(n)/n. - Peter Bala, Jul 14 2014
a(n,k) = A141618(n,k) / C(n,k-1). - Tom Copeland, Oct 25 2014
For the row polynomials, A028246(n,x) = A019538(n-1,x) * (1+x). - Tom Copeland, Dec 28 2015
n-th row polynomial R(n,x) = (1+x) o (1+x) o ... o (1+x) (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See example E11 in the Bala link. - Peter Bala, Jan 12 2018
From Dorian Guyot, May 21 2019: (Start)
Sum_{i=0..k} binomial(k,i) * a(n,i) = (k+1)^n.
Sum_{k=0..n} a(n,k) = 2*A000670(n).
(End)
With all offsets 0, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of this entry, A028246, are given by x^n * A_n(1 + 1/x;0). Other specializations of A_n(x;y) give A046802, A090582, A119879, A130850, and A248727. - Tom Copeland, Jan 24 2020
The row generating polynomials R(n,x) = Sum_{i=1..n} a(n,i) * x^i satisfy the recurrence equation R(n+1,x) = R(n,x) + Sum_{k=0..n-1} binomial(n-1,k) * R(k+1,x) * R(n-k,x) for n >= 1 with initial value R(1,x) = x. - Werner Schulte, Jun 17 2021

Extensions

Definition corrected by Li Guo, Dec 16 2006
Typo in link corrected by Johannes W. Meijer, Oct 17 2009
Error in title corrected by Johannes W. Meijer, Sep 24 2010
Edited by M. F. Hasler, Oct 29 2014

A094638 Triangle read by rows: T(n,k) = |s(n,n+1-k)|, where s(n,k) are the signed Stirling numbers of the first kind A008276 (1 <= k <= n; in other words, the unsigned Stirling numbers of the first kind in reverse order).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 11, 6, 1, 10, 35, 50, 24, 1, 15, 85, 225, 274, 120, 1, 21, 175, 735, 1624, 1764, 720, 1, 28, 322, 1960, 6769, 13132, 13068, 5040, 1, 36, 546, 4536, 22449, 67284, 118124, 109584, 40320, 1, 45, 870, 9450, 63273, 269325, 723680, 1172700, 1026576, 362880
Offset: 1

Views

Author

André F. Labossière, May 17 2004

Keywords

Comments

Triangle of coefficients of the polynomial (x+1)(x+2)...(x+n), expanded in decreasing powers of x. - T. D. Noe, Feb 22 2008
Row n also gives the number of permutation of 1..n with complexity 0,1,...,n-1. See the comments in A008275. - N. J. A. Sloane, Feb 08 2019
T(n,k) is the number of deco polyominoes of height n and having k columns. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: T(2,1)=1 and T(2,2)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 1 and 2 columns. - Emeric Deutsch, Aug 14 2006
Sum_{k=1..n} k*T(n,k) = A121586. - Emeric Deutsch, Aug 14 2006
Let the triangle U(n,k), 0 <= k <= n, read by rows, be given by [1,0,1,0,1,0,1,0,1,0,1,...] DELTA [1,1,2,2,3,3,4,4,5,5,6,...] where DELTA is the operator defined in A084938; then T(n,k) = U(n-1,k-1). - Philippe Deléham, Jan 06 2007
From Tom Copeland, Dec 15 2007: (Start)
Consider c(t) = column vector(1, t, t^2, t^3, t^4, t^5, ...).
Starting at 1 and sampling every integer to the right, we obtain (1,2,3,4,5,...). And T * c(1) = (1, 1*2, 1*2*3, 1*2*3*4,...), giving n! for n > 0. Call this sequence the right factorial (n+)!.
Starting at 1 and sampling every integer to the left, we obtain (1,0,-1,-2,-3,-4,-5,...). And T * c(-1) = (1, 1*0, 1*0*-1, 1*0*-1*-2,...) = (1, 0, 0, 0, ...), the left factorial (n-)!.
Sampling every other integer to the right, we obtain (1,3,5,7,9,...). T * c(2) = (1, 1*3, 1*3*5, ...) = (1,3,15,105,945,...), giving A001147 for n > 0, the right double factorial, (n+)!!.
Sampling every other integer to the left, we obtain (1,-1,-3,-5,-7,...). T * c(-2) = (1, 1*-1, 1*-1*-3, 1*-1*-3*-5,...) = (1,-1,3,-15,105,-945,...) = signed A001147, the left double factorial, (n-)!!.
Sampling every 3 steps to the right, we obtain (1,4,7,10,...). T * c(3) = (1, 1*4, 1*4*7,...) = (1,4,28,280,...), giving A007559 for n > 0, the right triple factorial, (n+)!!!.
Sampling every 3 steps to the left, we obtain (1,-2,-5,-8,-11,...), giving T * c(-3) = (1, 1*-2, 1*-2*-5, 1*-2*-5*-8,...) = (1,-2,10,-80,880,...) = signed A008544, the left triple factorial, (n-)!!!.
The list partition transform A133314 of [1,T * c(t)] gives [1,T * c(-t)] with all odd terms negated; e.g., LPT[1,T*c(2)] = (1,-1,-1,-3,-15,-105,-945,...) = (1,-A001147). And e.g.f. for [1,T * c(t)] = (1-xt)^(-1/t).
The above results hold for t any real or complex number. (End)
Let R_n(x) be the real and I_n(x) the imaginary part of Product_{k=0..n} (x + I*k). Then, for n=1,2,..., we have R_n(x) = Sum_{k=0..floor((n+1)/2)}(-1)^k*Stirling1(n+1,n+1-2*k)*x^(n+1-2*k), I_n(x) = Sum_{k=0..floor(n/2)}(-1)^(k+1)*Stirling1(n+1,n-2*k)*x^(n-2*k). - Milan Janjic, May 11 2008
T(n,k) is also the number of permutations of n with "reflection length" k (i.e., obtained from 12..n by k not necessarily adjacent transpositions). For example, when n=3, 132, 213, 321 are obtained by one transposition, while 231 and 312 require two transpositions. - Kyle Petersen, Oct 15 2008
From Tom Copeland, Nov 02 2010: (Start)
[x^(y+1) D]^n = x^(n*y) [T(n,1)(xD)^n + T(n,2)y (xD)^(n-1) + ... + T(n,n)y^(n-1)(xD)], with D the derivative w.r.t. x.
E.g., [x^(y+1) D]^4 = x^(4*y) [(xD)^4 + 6 y(xD)^3 + 11 y^2(xD)^2 + 6 y^3(xD)].
(xD)^m can be further expanded in terms of the Stirling numbers of the second kind and operators of the form x^j D^j. (End)
With offset 0, 0 <= k <= n: T(n,k) is the sum of products of each size k subset of {1,2,...,n}. For example, T(3,2) = 11 because there are three subsets of size two: {1,2},{1,3},{2,3}. 1*2 + 1*3 + 2*3 = 11. - Geoffrey Critzer, Feb 04 2011
The Kn11, Fi1 and Fi2 triangle sums link this triangle with two sequences, see the crossrefs. For the definitions of these triangle sums see A180662. The mirror image of this triangle is A130534. - Johannes W. Meijer, Apr 20 2011
T(n+1,k+1) is the elementary symmetric function a_k(1,2,...,n), n >= 0, k >= 0, (a_0(0):=1). See the T. D. Noe and Geoffrey Critzer comments given above. For a proof see the Stanley reference, p. 19, Second Proof. - Wolfdieter Lang, Oct 24 2011
Let g(t) = 1/d(log(P(j+1,-t)))/dt (see Tom Copeland's 2007 formulas). The Mellin transform (t to s) of t*Dirac[g(t)] gives Sum_{n=1..j} n^(-s), which as j tends to infinity gives the Riemann zeta function for Re(s) > 1. Dirac(x) is the Dirac delta function. The complex contour integral along a circle of radius 1 centered at z=1 of z^s/g(z) gives the same result. - Tom Copeland, Dec 02 2011
Rows are coefficients of the polynomial expansions of the Pochhammer symbol, or rising factorial, Pch(n,x) = (x+n-1)!/(x-1)!. Expansion of Pch(n,xD) = Pch(n,Bell(.,:xD:)) in a polynomial with terms :xD:^k=x^k*D^k gives the Lah numbers A008297. Bell(n,x) are the unsigned Bell polynomials or Stirling polynomials of the second kind A008277. - Tom Copeland, Mar 01 2014
From Tom Copeland, Dec 09 2016: (Start)
The Betti numbers, or dimension, of the pure braid group cohomology. See pp. 12 and 13 of the Hyde and Lagarias link.
Row polynomials and their products appear in presentation of the Jack symmetric functions of R. Stanley. See Copeland link on the Witt differential generator.
(End)
From Tom Copeland, Dec 16 2019: (Start)
The e.g.f. given by Copeland in the formula section appears in a combinatorial Dyson-Schwinger equation of quantum field theory in Yeats in Thm. 2 on p. 62 related to a Hopf algebra of rooted trees. See also the Green function on p. 70.
Per comments above, this array contains the coefficients in the expansion in polynomials of the Euler, or state number, operator xD of the rising factorials Pch(n,xD) = (xD+n-1)!/(xD-1)! = x [:Dx:^n/n!]x^{-1} = L_n^{-1}(-:xD:), where :Dx:^n = D^n x^n and :xD:^n = x^n D^n. The polynomials L_n^{-1} are the Laguerre polynomials of order -1, i.e., normalized Lah polynomials.
The Witt differential operators L_n = x^(n+1) D and the row e.g.f.s appear in Hopf and dual Hopf algebra relations presented by Foissy. The Witt operators satisfy L_n L_k - L_k L_n = (k-n) L_(n+k), as for the dual Hopf algebra. (End)

Examples

			Triangle starts:
  1;
  1,  1;
  1,  3,  2;
  1,  6, 11,  6;
  1, 10, 35, 50, 24;
...
		

References

  • M. Miyata and J. W. Son, On the complexity of permutations and the metric space of bijections, Tensor, 60 (1998), No. 1, 109-116 (MR1768839).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 18, equations 18:4:2 - 18:4:8 at page 151.
  • R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997.

Crossrefs

A008276 gives the (signed) Stirling numbers of the first kind.
Cf. A000108, A014137, A001246, A033536, A000984, A094639, A006134, A082894, A002897, A079727, A000217 (2nd column), A000914 (3rd column), A001303 (4th column), A000915 (5th column), A053567 (6th column), A000142 (row sums).
Triangle sums (see the comments): A124380 (Kn11), A001710 (Fi1, Fi2). - Johannes W. Meijer, Apr 20 2011

Programs

  • GAP
    Flat(List([1..10], n-> List([1..n], k-> Stirling1(n,n-k+1) ))); # G. C. Greubel, Dec 29 2019
  • Haskell
    a094638 n k = a094638_tabl !! (n-1) !! (k-1)
    a094638_row n = a094638_tabl !! (n-1)
    a094638_tabl = map reverse a130534_tabl
    -- Reinhard Zumkeller, Aug 01 2014
    
  • Magma
    [(-1)^(k+1)*StirlingFirst(n,n-k+1): k in [1..n], n in [1..10]]; // G. C. Greubel, Dec 29 2019
    
  • Maple
    T:=(n,k)->abs(Stirling1(n,n+1-k)): for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form. # Emeric Deutsch, Aug 14 2006
  • Mathematica
    Table[CoefficientList[Series[Product[1 + i x, {i,n}], {x,0,20}], x], {n,0,6}] (* Geoffrey Critzer, Feb 04 2011 *)
    Table[Abs@StirlingS1[n, n-k+1], {n, 10}, {k, n}]//Flatten (* Michael De Vlieger, Aug 29 2015 *)
  • Maxima
    create_list(abs(stirling1(n+1,n-k+1)),n,0,10,k,0,n); /* Emanuele Munarini, Jun 01 2012 */
    
  • PARI
    {T(n,k)=if(n<1 || k>n,0,(n-1)!*polcoeff(polcoeff(x*y/(1 - x*y+x*O(x^n))^(1 + 1/y),n,x),k,y))} /* Paul D. Hanna, Jul 21 2011 */
    
  • Sage
    [[stirling_number1(n, n-k+1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Dec 29 2019
    

Formula

With P(n,t) = Sum_{k=0..n-1} T(n,k+1) * t^k = 1*(1+t)*(1+2t)...(1+(n-1)*t) and P(0,t)=1, exp[P(.,t)*x] = (1-tx)^(-1/t). T(n,k+1) = (1/k!) (D_t)^k (D_x)^n [ (1-tx)^(-1/t) - 1 ] evaluated at t=x=0. (1-tx)^(-1/t) - 1 is the e.g.f. for a plane m-ary tree when t=m-1. See Bergeron et al. in "Varieties of Increasing Trees". - Tom Copeland, Dec 09 2007
First comment and formula above rephrased as o.g.f. for row n: Product_{i=0...n} (1+i*x). - Geoffrey Critzer, Feb 04 2011
n-th row polynomials with alternate signs are the characteristic polynomials of the (n-1)x(n-1) matrices with 1's in the superdiagonal, (1,2,3,...) in the main diagonal, and the rest zeros. For example, the characteristic polynomial of [1,1,0; 0,2,1; 0,0,3] is x^3 - 6*x^2 + 11*x - 6. - Gary W. Adamson, Jun 28 2011
E.g.f.: A(x,y) = x*y/(1 - x*y)^(1 + 1/y) = Sum_{n>=1, k=1..n} T(n,k)*x^n*y^k/(n-1)!. - Paul D. Hanna, Jul 21 2011
With F(x,t) = (1-t*x)^(-1/t) - 1 an e.g.f. for the row polynomials P(n,t) of A094638 with P(0,t)=0, G(x,t)= [1-(1+x)^(-t)]/t is the comp. inverse in x. Consequently, with H(x,t) = 1/(dG(x,t)/dx) = (1+x)^(t+1),
P(n,t) = [(H(x,t)*d/dx)^n] x evaluated at x=0; i.e.,
F(x,t) = exp[x*P(.,t)] = exp[x*H(u,t)*d/du] u, evaluated at u = 0.
Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 20 2011
T(n,k) = |A008276(n,k)|. - R. J. Mathar, May 19 2016
The row polynomials of this entry are the reversed row polynomials of A143491 multiplied by (1+x). E.g., (1+x)(1 + 5x + 6x^2) = (1 + 6x + 11x^2 + 6x^3). - Tom Copeland, Dec 11 2016
Regarding the row e.g.f.s in Copeland's 2007 formulas, e.g.f.s for A001710, A001715, and A001720 give the compositional inverses of the e.g.f. here for t = 2, 3, and 4 respectively. - Tom Copeland, Dec 28 2019

Extensions

Edited by Emeric Deutsch, Aug 14 2006

A013609 Triangle of coefficients in expansion of (1+2*x)^n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 6, 12, 8, 1, 8, 24, 32, 16, 1, 10, 40, 80, 80, 32, 1, 12, 60, 160, 240, 192, 64, 1, 14, 84, 280, 560, 672, 448, 128, 1, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 1, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (n,k) with steps (1,0) and two kinds of steps (1,1). The number of paths with steps (1,0) and s kinds of steps (1,1) corresponds to the expansion of (1+s*x)^n. - Joerg Arndt, Jul 01 2011
Also sum of rows in A046816. - Lior Manor, Apr 24 2004
Also square array of unsigned coefficients of Chebyshev polynomials of second kind. - Philippe Deléham, Aug 12 2005
The rows give the number of k-simplices in the n-cube. For example, 1, 6, 12, 8 shows that the 3-cube has 1 volume, 6 faces, 12 edges and 8 vertices. - Joshua Zucker, Jun 05 2006
Triangle whose (i, j)-th entry is binomial(i, j)*2^j.
With offset [1,1] the triangle with doubled numbers, 2*a(n,m), enumerates sequences of length m with nonzero integer entries n_i satisfying sum(|n_i|) <= n. Example n=4, m=2: [1,3], [3,1], [2,2] each in 2^2=4 signed versions: 2*a(4,2) = 2*6 = 12. The Sum over m (row sums of 2*a(n,m)) gives 2*3^(n-1), n >= 1. See the W. Lang comment and a K. A. Meissner reference under A024023. - Wolfdieter Lang, Jan 21 2008
n-th row of the triangle = leftmost column of nonzero terms of X^n, where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (2,2,2,...) in the subdiagonal. - Gary W. Adamson, Jul 19 2008
Numerators of a matrix square-root of Pascal's triangle A007318, where the denominators for the n-th row are set to 2^n. - Gerald McGarvey, Aug 20 2009
From Johannes W. Meijer, Sep 22 2010: (Start)
The triangle sums (see A180662 for their definitions) link the Pell-Jacobsthal triangle, whose mirror image is A038207, with twenty-four different sequences; see the crossrefs.
This triangle may very well be called the Pell-Jacobsthal triangle in view of the fact that A000129 (Kn21) are the Pell numbers and A001045 (Kn11) the Jacobsthal numbers.
(End)
T(n,k) equals the number of n-length words on {0,1,2} having n-k zeros. - Milan Janjic, Jul 24 2015
T(n-1,k-1) is the number of 2-compositions of n with zeros having k positive parts; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020
T(n,k) is the number of chains 0=x_0Geoffrey Critzer, Oct 01 2022
Excluding the initial 1, T(n,k) is the number of k-faces of a regular n-cross polytope. See A038207 for n-cube and A135278 for n-simplex. - Mohammed Yaseen, Jan 14 2023

Examples

			Triangle begins:
  1;
  1,  2;
  1,  4,   4;
  1,  6,  12,    8;
  1,  8,  24,   32,   16;
  1, 10,  40,   80,   80,    32;
  1, 12,  60,  160,  240,   192,    64;
  1, 14,  84,  280,  560,   672,   448,    128;
  1, 16, 112,  448, 1120,  1792,  1792,   1024,    256;
  1, 18, 144,  672, 2016,  4032,  5376,   4608,   2304,    512;
  1, 20, 180,  960, 3360,  8064, 13440,  15360,  11520,   5120,  1024;
  1, 22, 220, 1320, 5280, 14784, 29568,  42240,  42240,  28160, 11264,  2048;
  1, 24, 264, 1760, 7920, 25344, 59136, 101376, 126720, 112640, 67584, 24576, 4096;
From _Peter Bala_, Apr 20 2012: (Start)
The triangle can be written as the matrix product A038207*(signed version of A013609).
  |.1................||.1..................|
  |.2...1............||-1...2..............|
  |.4...4...1........||.1..-4...4..........|
  |.8..12...6...1....||-1...6...-12...8....|
  |16..32..24...8...1||.1..-8....24.-32..16|
  |..................||....................|
(End)
		

References

  • B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
  • G. Hotz, Zur Reduktion von Schaltkreispolynomen im Hinblick auf eine Verwendung in Rechenautomaten, El. Datenverarbeitung, Folge 5 (1960), pp. 21-27.

Crossrefs

Cf. A007318, A013610, etc.
Appears in A167580 and A167591. - Johannes W. Meijer, Nov 23 2009
From Johannes W. Meijer, Sep 22 2010: (Start)
Triangle sums (see the comments): A000244 (Row1); A000012 (Row2); A001045 (Kn11); A026644 (Kn12); 4*A011377 (Kn13); A000129 (Kn21); A094706 (Kn22); A099625 (Kn23); A001653 (Kn3); A007583 (Kn4); A046717 (Fi1); A007051 (Fi2); A077949 (Ca1); A008998 (Ca2); A180675 (Ca3); A092467 (Ca4); A052942 (Gi1); A008999 (Gi2); A180676 (Gi3); A180677 (Gi4); A140413 (Ze1); A180678 (Ze2); A097117 (Ze3); A055588 (Ze4).
(End)
T(2n,n) gives A059304.

Programs

  • Haskell
    a013609 n = a013609_list !! n
    a013609_list = concat $ iterate ([1,2] *) [1]
    instance Num a => Num [a] where
       fromInteger k = [fromInteger k]
       (p:ps) + (q:qs) = p + q : ps + qs
       ps + qs         = ps ++ qs
       (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
        *                = []
    -- Reinhard Zumkeller, Apr 02 2011
    
  • Haskell
    a013609 n k = a013609_tabl !! n !! k
    a013609_row n = a013609_tabl !! n
    a013609_tabl = iterate (\row -> zipWith (+) ([0] ++ row) $
                                    zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Jul 22 2013, Feb 27 2013
    
  • Magma
    [2^k*Binomial(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 17 2021
    
  • Maple
    bin2:=proc(n,k) option remember; if k<0 or k>n then 0 elif k=0 then 1 else 2*bin2(n-1,k-1)+bin2(n-1,k); fi; end; # N. J. A. Sloane, Jun 01 2009
  • Mathematica
    Flatten[Table[CoefficientList[(1 + 2*x)^n, x], {n, 0, 10}]][[1 ;; 59]] (* Jean-François Alcover, May 17 2011 *)
    BinomialROW[n_, k_, t_] := Sum[Binomial[n, k]*Binomial[k, j]*(-1)^(k - j)*t^j, {j, 0, k}]; Column[Table[BinomialROW[n, k, 3], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jan 28 2019 *)
  • Maxima
    a(n,k):=coeff(expand((1+2*x)^n),x^k);
    create_list(a(n,k),n,0,6,k,0,n); /* Emanuele Munarini, Nov 21 2012 */
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [1,1], [1,1]]; /* note double [1,1] */
    /* Joerg Arndt, Jul 01 2011 */
    
  • Sage
    flatten([[2^k*binomial(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 17 2021

Formula

G.f.: 1 / (1 - x*(1+2*y)).
T(n,k) = 2^k*binomial(n,k).
T(n,k) = 2*T(n-1,k-1) + T(n-1,k). - Jon Perry, Nov 22 2005
Row sums are 3^n = A000244(n). - Joerg Arndt, Jul 01 2011
T(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i). - Mircea Merca, Apr 28 2012
E.g.f.: exp(2*y*x + x). - Geoffrey Critzer, Nov 12 2012
Riordan array (x/(1 - x), 2*x/(1 - x)). Exp(2*x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(2*x)*(1 + 6*x + 12*x^2/2! + 8*x^3/3!) = 1 + 8*x + 40*x^2/2! + 160*x^3/3! + 560*x^4/4! + .... The same property holds more generally for Riordan arrays of the form (f(x), 2*x/(1 - x)). - Peter Bala, Dec 21 2014
T(n,k) = Sum_{j=0..k} (-1)^(k-j) * binomial(n,k) * binomial(k,j) * 3^j. - Kolosov Petro, Jan 28 2019
T(n,k) = 2*(n+1-k)*T(n,k-1)/k, T(n,0) = 1. - Alexander R. Povolotsky, Oct 08 2023
For n >= 1, GCD(T(n,1), ..., T(n,n)) = GCD(T(n,1),T(n,n)) = GCD(2*n,2^n) = A171977(n). - Pontus von Brömssen, Nov 01 2024

A108299 Triangle read by rows, 0 <= k <= n: T(n,k) = binomial(n-[(k+1)/2],[k/2])*(-1)^[(k+1)/2].

Original entry on oeis.org

1, 1, -1, 1, -1, -1, 1, -1, -2, 1, 1, -1, -3, 2, 1, 1, -1, -4, 3, 3, -1, 1, -1, -5, 4, 6, -3, -1, 1, -1, -6, 5, 10, -6, -4, 1, 1, -1, -7, 6, 15, -10, -10, 4, 1, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1, 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1, 1, -1, -11, 10, 45, -36, -84, 56, 70
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 01 2005

Keywords

Comments

Matrix inverse of A124645.
Let L(n,x) = Sum_{k=0..n} T(n,k)*x^(n-k) and Pi=3.14...:
L(n,x) = Product_{k=1..n} (x - 2*cos((2*k-1)*Pi/(2*n+1)));
Sum_{k=0..n} T(n,k) = L(n,1) = A010892(n+1);
Sum_{k=0..n} abs(T(n,k)) = A000045(n+2);
abs(T(n,k)) = A065941(n,k), T(n,k) = A065941(n,k)*A087960(k);
T(2*n,k) + T(2*n+1,k+1) = 0 for 0 <= k <= 2*n;
T(n,0) = A000012(n) = 1; T(n,1) = -1 for n > 0;
T(n,2) = -(n-1) for n > 1; T(n,3) = A000027(n)=n for n > 2;
T(n,4) = A000217(n-3) for n > 3; T(n,5) = -A000217(n-4) for n > 4;
T(n,6) = -A000292(n-5) for n > 5; T(n,7) = A000292(n-6) for n > 6;
T(n,n-3) = A058187(n-3)*(-1)^floor(n/2) for n > 2;
T(n,n-2) = A008805(n-2)*(-1)^floor((n+1)/2) for n > 1;
T(n,n-1) = A008619(n-1)*(-1)^floor(n/2) for n > 0;
T(n,n) = L(n,0) = (-1)^floor((n+1)/2);
L(n,1) = A010892(n+1); L(n,-1) = A061347(n+2);
L(n,2) = 1; L(n,-2) = A005408(n)*(-1)^n;
L(n,3) = A001519(n); L(n,-3) = A002878(n)*(-1)^n;
L(n,4) = A001835(n+1); L(n,-4) = A001834(n)*(-1)^n;
L(n,5) = A004253(n); L(n,-5) = A030221(n)*(-1)^n;
L(n,6) = A001653(n); L(n,-6) = A002315(n)*(-1)^n;
L(n,7) = A049685(n); L(n,-7) = A033890(n)*(-1)^n;
L(n,8) = A070997(n); L(n,-8) = A057080(n)*(-1)^n;
L(n,9) = A070998(n); L(n,-9) = A057081(n)*(-1)^n;
L(n,10) = A072256(n+1); L(n,-10) = A054320(n)*(-1)^n;
L(n,11) = A078922(n+1); L(n,-11) = A097783(n)*(-1)^n;
L(n,12) = A077417(n); L(n,-12) = A077416(n)*(-1)^n;
L(n,13) = A085260(n);
L(n,14) = A001570(n); L(n,-14) = A028230(n)*(-1)^n;
L(n,n) = A108366(n); L(n,-n) = A108367(n).
Row n of the matrix inverse (A124645) has g.f.: x^floor(n/2)*(1-x)^(n-floor(n/2)). - Paul D. Hanna, Jun 12 2005
From L. Edson Jeffery, Mar 12 2011: (Start)
Conjecture: Let N=2*n+1, with n > 2. Then T(n,k) (0 <= k <= n) gives the k-th coefficient in the characteristic function p_N(x)=0, of degree n in x, for the n X n tridiagonal unit-primitive matrix G_N (see [Jeffery]) of the form
G_N=A_{N,1}=
(0 1 0 ... 0)
(1 0 1 0 ... 0)
(0 1 0 1 0 ... 0)
...
(0 ... 0 1 0 1)
(0 ... 0 1 1),
with solutions phi_j = 2*cos((2*j-1)*Pi/N), j=1,2,...,n. For example, for n=3,
G_7=A_{7,1}=
(0 1 0)
(1 0 1)
(0 1 1).
We have {T(3,k)}=(1,-1,-2,1), while the characteristic function of G_7 is p(x) = x^3-x^2-2*x+1 = 0, with solutions phi_j = 2*cos((2*j-1)*Pi/7), j=1,2,3. (End)
The triangle sums, see A180662 for their definitions, link A108299 with several sequences, see the crossrefs. - Johannes W. Meijer, Aug 08 2011
The roots to the polynomials are chaotic using iterates of the operation (x^2 - 2), with cycle lengths L and initial seeds returning to the same term or (-1)* the seed. Periodic cycle lengths L are shown in A003558 such that for the polynomial represented by row r, the cycle length L is A003558(r-1). The matrices corresponding to the rows as characteristic polynomials are likewise chaotic [cf. Kappraff et al., 2005] with the same cycle lengths but substituting 2*I for the "2" in (x^2 - 2), where I = the Identity matrix. For example, the roots to x^3 - x^2 - 2x + 1 = 0 are 1.801937..., -1.246979..., and 0.445041... With 1.801937... as the initial seed and using (x^2 - 2), we obtain the 3-period trajectory of 8.801937... -> 1.246979... -> -0.445041... (returning to -1.801937...). We note that A003558(2) = 3. The corresponding matrix M is: [0,1,0; 1,0,1; 0,1,1,]. Using seed M with (x^2 - 2*I), we obtain the 3-period with the cycle completed at (-1)*M. - Gary W. Adamson, Feb 07 2012

Examples

			Triangle begins:
  1;
  1,  -1;
  1,  -1,  -1;
  1,  -1,  -2,   1;
  1,  -1,  -3,   2,   1;
  1,  -1,  -4,   3,   3,  -1;
  1,  -1,  -5,   4,   6,  -3,  -1;
  1,  -1,  -6,   5,  10,  -6,  -4,   1;
  1,  -1,  -7,   6,  15, -10, -10,   4,   1;
  1,  -1,  -8,   7,  21, -15, -20,  10,   5,  -1;
  1,  -1,  -9,   8,  28, -21, -35,  20,  15,  -5,  -1;
  1,  -1, -10,   9,  36, -28, -56,  35,  35, -15,  -6,   1;
  ...
		

References

  • Friedrich L. Bauer, 'De Moivre und Lagrange: Cosinus eines rationalen Vielfachen von Pi', Informatik Spektrum 28 (Springer, 2005).
  • Jay Kappraff, S. Jablan, G. Adamson, & R. Sazdonovich: "Golden Fields, Generalized Fibonacci Sequences, & Chaotic Matrices"; FORMA, Vol 19, No 4, (2005).

Crossrefs

Cf. A049310, A039961, A124645 (matrix inverse).
Triangle sums (see the comments): A193884 (Kn11), A154955 (Kn21), A087960 (Kn22), A000007 (Kn3), A010892 (Fi1), A134668 (Fi2), A078031 (Ca2), A193669 (Gi1), A001519 (Gi3), A193885 (Ze1), A050935 (Ze3). - Johannes W. Meijer, Aug 08 2011
Cf. A003558.

Programs

  • Haskell
    a108299 n k = a108299_tabl !! n !! k
    a108299_row n = a108299_tabl !! n
    a108299_tabl = [1] : iterate (\row ->
       zipWith (+) (zipWith (*) ([0] ++ row) a033999_list)
                   (zipWith (*) (row ++ [0]) a059841_list)) [1,-1]
    -- Reinhard Zumkeller, May 06 2012
  • Maple
    A108299 := proc(n,k): binomial(n-floor((k+1)/2), floor(k/2))*(-1)^floor((k+1)/2) end: seq(seq(A108299 (n,k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
  • Mathematica
    t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 16 2013 *)
  • PARI
    {T(n,k)=polcoeff(polcoeff((1-x*y)/(1-x+x^2*y^2+x^2*O(x^n)),n,x)+y*O(y^k),k,y)} (Hanna)
    

Formula

T(n,k) = binomial(n-floor((k+1)/2),floor(k/2))*(-1)^floor((k+1)/2).
T(n+1, k) = if sign(T(n, k-1))=sign(T(n, k)) then T(n, k-1)+T(n, k) else -T(n, k-1) for 0 < k < n, T(n, 0) = 1, T(n, n) = (-1)^floor((n+1)/2).
G.f.: A(x, y) = (1 - x*y)/(1 - x + x^2*y^2). - Paul D. Hanna, Jun 12 2005
The generating polynomial (in z) of row n >= 0 is (u^(2*n+1) + v^(2*n+1))/(u + v), where u and v are defined by u^2 + v^2 = 1 and u*v = z. - Emeric Deutsch, Jun 16 2011
From Johannes W. Meijer, Aug 08 2011: (Start)
abs(T(n,k)) = A065941(n,k) = abs(A187660(n,n-k));
T(n,n-k) = A130777(n,k); abs(T(n,n-k)) = A046854(n,k) = abs(A066170(n,k)). (End)

Extensions

Corrected and edited by Philippe Deléham, Oct 20 2008

A101950 Product of A049310 and A007318 as lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, -1, 1, 3, 1, -1, -2, 3, 4, 1, 0, -4, -2, 6, 5, 1, 1, -2, -9, 0, 10, 6, 1, 1, 3, -9, -15, 5, 15, 7, 1, 0, 6, 3, -24, -20, 14, 21, 8, 1, -1, 3, 18, -6, -49, -21, 28, 28, 9, 1, -1, -4, 18, 36, -35, -84, -14, 48, 36, 10, 1, 0, -8, -4, 60, 50, -98, -126, 6, 75, 45, 11, 1, 1, -4, -30, 20, 145, 36, -210
Offset: 0

Views

Author

Paul Barry, Dec 22 2004

Keywords

Comments

A Chebyshev and Pascal product.
Row sums are n+1, diagonal sums the constant sequence 1 resp. A023434(n+1). Riordan array (1/(1-x+x^2),x/(1-x+x^2)).
Apart from signs, identical with A104562.
Subtriangle of the triangle given by [0,1,-1,1,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 27 2010
The Fi1 and Fi2 sums lead to A004525 and the Gi1 sums lead to A077889, see A180662 for the definitions of these triangle sums. - Johannes W. Meijer, Aug 06 2011
Also the convolution triangle of the inverse of 6th cyclotomic polynomial A010892. - Peter Luschny, Oct 08 2022

Examples

			Triangle begins:
   1,
   1, 1,
   0, 2, 1,
  -1, 1, 3, 1,
  -1,-2, 3, 4, 1,
  ...
Triangle [0,1,-1,1,0,0,0,0,...] DELTA [1,0,0,0,0,0,...] begins : 1 ; 0,1 ; 0,1,1 ; 0,0,2,1 ; 0,-1,1,3,1 ; 0,-1,-2,3,4,1 ; ... - _Philippe Deléham_, Jan 27 2010
		

Crossrefs

Programs

  • Maple
    A101950 := proc(n,k) local j,k1: add((-1)^((n-j)/2)*binomial((n+j)/2,j)*(1+(-1)^(n+j))* binomial(j,k)/2, j=0..n) end: seq(seq(A101950(n,k),k=0..n), n=0..11); # Johannes W. Meijer, Aug 06 2011
    # Uses function PMatrix from A357368. Adds a row on top and a column to the left.
    PMatrix(10, n -> [0, 1, 1, 0, -1,-1][irem(n, 6) + 1]); # Peter Luschny, Oct 08 2022
  • Mathematica
    T[0, 0] = 1; T[n_, k_] /; k>n || k<0 = 0; T[n_, k_] := T[n, k] = T[n-1, k-1]+T[n-1, k]-T[n-2, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 07 2014, after Philippe Deléham *)

Formula

T(n, k) = Sum_{j=0..n} (-1)^((n-j)/2)*C((n+j)/2,j)*(1+(-1)^(n+j))*C(j,k)/2.
T(0,0) = 1, T(n,k) = 0,if k>n or if k<0, T(n,k) = T(n-1,k-1) + T(n-1,k) - T(n-2,k). - Philippe Deléham, Jan 26 2010
p(n,x) = (x+1)*p(n-1,x)-p(n-2,x) with p(0,x) = 1 and p(1,x) = x+1 [Dias].
G.f.: 1/(1-x-x^2-y*x). - Philippe Deléham, Feb 10 2012
T(n,0) = A010892(n), T(n+1,1) = A099254(n), T(n+2,2) = A128504(n). - Philippe Deléham, Mar 07 2014
T(n,k) = C(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], 4) for n>=1. - Peter Luschny, Apr 25 2016

Extensions

Typo in formula corrected and information added by Johannes W. Meijer, Aug 06 2011

A139600 Square array T(n,k) = n*(k-1)*k/2+k, of nonnegative numbers together with polygonal numbers, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 6, 4, 0, 1, 5, 9, 10, 5, 0, 1, 6, 12, 16, 15, 6, 0, 1, 7, 15, 22, 25, 21, 7, 0, 1, 8, 18, 28, 35, 36, 28, 8, 0, 1, 9, 21, 34, 45, 51, 49, 36, 9, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 10, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 11
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

A general formula for polygonal numbers is P(n,k) = (n-2)*(k-1)*k/2 + k, where P(n,k) is the k-th n-gonal number.
The triangle sums, see A180662 for their definitions, link this square array read by antidiagonals with twelve different sequences, see the crossrefs. Most triangle sums are linear sums of shifted combinations of a sequence, see e.g. A189374. - Johannes W. Meijer, Apr 29 2011

Examples

			The square array of nonnegatives together with polygonal numbers begins:
=========================================================
....................... A   A   .   .   A    A    A    A
....................... 0   0   .   .   0    0    1    1
....................... 0   0   .   .   1    1    3    3
....................... 0   0   .   .   6    7    9    9
....................... 0   0   .   .   9    3    6    6
....................... 0   1   .   .   5    2    0    0
....................... 4   2   .   .   7    9    6    7
=========================================================
Nonnegatives . A001477: 0,  1,  2,  3,  4,   5,   6,   7, ...
Triangulars .. A000217: 0,  1,  3,  6, 10,  15,  21,  28, ...
Squares ...... A000290: 0,  1,  4,  9, 16,  25,  36,  49, ...
Pentagonals .. A000326: 0,  1,  5, 12, 22,  35,  51,  70, ...
Hexagonals ... A000384: 0,  1,  6, 15, 28,  45,  66,  91, ...
Heptagonals .. A000566: 0,  1,  7, 18, 34,  55,  81, 112, ...
Octagonals ... A000567: 0,  1,  8, 21, 40,  65,  96, 133, ...
9-gonals ..... A001106: 0,  1,  9, 24, 46,  75, 111, 154, ...
10-gonals .... A001107: 0,  1, 10, 27, 52,  85, 126, 175, ...
11-gonals .... A051682: 0,  1, 11, 30, 58,  95, 141, 196, ...
12-gonals .... A051624: 0,  1, 12, 33, 64, 105, 156, 217, ...
...
=========================================================
The column with the numbers 2, 3, 4, 5, 6, ... is formed by the numbers > 1 of A000027. The column with the numbers 3, 6, 9, 12, 15, ... is formed by the positive members of A008585.
		

Crossrefs

A formal extension negative n is in A326728.
Triangle sums (see the comments): A055795 (Row1), A080956 (Row2; terms doubled), A096338 (Kn11, Kn12, Kn13, Fi1, Ze1), A002624 (Kn21, Kn22, Kn23, Fi2, Ze2), A000332 (Kn3, Ca3, Gi3), A134393 (Kn4), A189374 (Ca1, Ze3), A011779 (Ca2, Ze4), A101357 (Ca4), A189375 (Gi1), A189376 (Gi2), A006484 (Gi4). - Johannes W. Meijer, Apr 29 2011
Sequences of m-gonal numbers: A000217 (m=3), A000290 (m=4), A000326 (m=5), A000384 (m=6), A000566 (m=7), A000567 (m=8), A001106 (m=9), A001107 (m=10), A051682 (m=11), A051624 (m=12), A051865 (m=13), A051866 (m=14), A051867 (m=15), A051868 (m=16), A051869 (m=17), A051870 (m=18), A051871 (m=19), A051872 (m=20), A051873 (m=21), A051874 (m=22), A051875 (m=23), A051876 (m=24), A255184 (m=25), A255185 (m=26), A255186 (m=27), A161935 (m=28), A255187 (m=29), A254474 (m=30).

Programs

  • Magma
    T:= func< n,k | k*(n*(k-1)+2)/2 >;
    A139600:= func< n,k | T(n-k, k) >;
    [A139600(n,k): k in  [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2024
    
  • Maple
    T:= (n, k)-> n*(k-1)*k/2+k:
    seq(seq(T(d-k, k), k=0..d), d=0..14);  # Alois P. Heinz, Oct 14 2018
  • Mathematica
    T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[T[n - k - 1, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)
  • Python
    def A139600Row(n):
        x, y = 1, 1
        yield 0
        while True:
            yield x
            x, y = x + y + n, y + n
    for n in range(8):
        R = A139600Row(n)
        print([next(R) for  in range(11)]) # _Peter Luschny, Aug 04 2019
    
  • SageMath
    def T(n,k): return k*(n*(k-1)+2)/2
    def A139600(n,k): return T(n-k, k)
    flatten([[A139600(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 12 2024

Formula

T(n,k) = n*(k-1)*k/2+k.
T(n,k) = A057145(n+2,k). - R. J. Mathar, Jul 28 2016
From Stefano Spezia, Apr 12 2024: (Start)
G.f.: y*(1 - x - y + 2*x*y)/((1 - x)^2*(1 - y)^3).
E.g.f.: exp(x+y)*y*(2 + x*y)/2. (End)

Extensions

Edited by Omar E. Pol, Jan 05 2009

A002662 a(n) = 2^n - 1 - n*(n+1)/2.

Original entry on oeis.org

0, 0, 0, 1, 5, 16, 42, 99, 219, 466, 968, 1981, 4017, 8100, 16278, 32647, 65399, 130918, 261972, 524097, 1048365, 2096920, 4194050, 8388331, 16776915, 33554106, 67108512, 134217349, 268435049, 536870476, 1073741358, 2147483151, 4294966767, 8589934030
Offset: 0

Views

Author

Keywords

Comments

Number of subsets with at least 3 elements of an n-element set.
For n>4, number of simple rank-(n-1) matroids over S_n.
Number of non-interval subsets of {1,2,3,...,n} (cf. A000124). - Jose Luis Arregui (arregui(AT)unizar.es), Jun 27 2006
The partial sums of the second diagonal of A008292 or third column of A123125. - Tom Copeland, Sep 09 2008
a(n) is the number of binary sequences of length n having at least three 0's. - Geoffrey Critzer, Feb 11 2009
Starting with "1" = eigensequence of a triangle with the tetrahedral numbers (1, 4, 10, 20, ...) as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010
a(n) is also the number of crossing set partitions of [n+1] with two blocks. - Peter Luschny, Apr 29 2011
The Kn24 sums, see A180662, of triangle A065941 equal the terms (doubled) of this sequence minus the three leading zeros. - Johannes W. Meijer, Aug 14 2011
From L. Edson Jeffery, Dec 28 2011: (Start)
Nonzero terms of this sequence can be found from the row sums of the fourth sub-triangle extracted from Pascal's triangle as indicated below by braces:
1;
1, 1;
1, 2, 1;
{1}, 3, 3, 1;
{1, 4}, 6, 4, 1;
{1, 5, 10}, 10, 5, 1;
{1, 6, 15, 20}, 15, 6, 1;
... (End)
Partial sums of A000295 (Eulerian Numbers, Column 2).
Second differences equal 2^(n-2) - 1, for n >= 4. - Richard R. Forberg, Jul 11 2013
Starting (0, 0, 1, 5, 16, ...) is the binomial transform of (0, 0, 1, 2, 2, 2, ...). - Gary W. Adamson, Jul 27 2015
a(n - 1) is the rank of the divisor class group of the moduli space of stable rational curves with n marked points, see Keel p. 550. - Harry Richman, Aug 10 2024

Examples

			a(4) = 5 is the number of crossing set partitions of {1,2,..,5}, card{13|245, 14|235, 24|135, 25|134, 35|124}. - _Peter Luschny_, Apr 29 2011
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A055248(n,3).
First differences are A000295.
Cf. also A000290, A001045.

Programs

Formula

G.f.: x^3/((1-2*x)*(1-x)^3).
a(n) = Sum_{k=0..n} binomial(n,k+3) = Sum_{k=3..n} binomial(n,k). - Paul Barry, Jul 30 2004
a(n+1) = 2*a(n) + binomial(n,2). - Paul Barry, Aug 23 2004
(1, 5, 16, 42, 99, ...) = binomial transform of (1, 4, 7, 8, 8, 8, ...). - Gary W. Adamson, Sep 30 2007
E.g.f.: exp(x)*(exp(x)-x^2/2-x-1). - Geoffrey Critzer, Feb 11 2009
a(n) = n - 2 + 3*a(n-1) - 2*a(n-2), for n >= 2. - Richard R. Forberg, Jul 11 2013
For n>1, a(n) = (1/4)*Sum_{k=1..n-2} 2^k*(n-k-1)*(n-k). For example, (1/4)*(2^1*(4*5) + 2^2*(3*4) + 2^3*(2*3) + 2^4*(1*2)) = 168/4 = 42. - J. M. Bergot, May 27 2014 [edited by Danny Rorabaugh, Apr 19 2015]
Convolution of A001045 and (A000290 shifted by one place). - Oboifeng Dira, Aug 16 2016
a(n) = Sum_{k=1..n-2} Sum_{i=1..n} (n-k-1) * C(k,i). - Wesley Ivan Hurt, Sep 19 2017
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n > 3. - Chai Wah Wu, Apr 03 2021
a(n) = a(n-1) + 1 + A000247(n-1). - Harry Richman, Aug 13 2024

A001614 Connell sequence: 1 odd, 2 even, 3 odd, ...

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, 19, 21, 23, 25, 26, 28, 30, 32, 34, 36, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 64, 65, 67, 69, 71, 73, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 122
Offset: 1

Views

Author

Keywords

Comments

Next (2n-1) odd numbers alternating with next 2n even numbers. Squares (A000290(n)) occur at the A000217(n)-th entry. - Lekraj Beedassy, Aug 06 2004. - Comment corrected by Daniel Forgues, Jul 18 2009
a(t_n) = a(n(n+1)/2) = n^2 relates squares to triangular numbers. - Daniel Forgues
The natural numbers not included are A118011(n) = 4n - a(n) as n=1,2,3,... - Paul D. Hanna, Apr 10 2006
As a triangle with row sums = A069778 (1, 6, 21, 52, 105, ...): /Q 1;/Q 2, 4;/Q 5, 7, 9;/Q 10, 12, 14, 16;/Q ... . - Gary W. Adamson, Sep 01 2008
The triangle sums, see A180662 for their definitions, link the Connell sequence A001614 as a triangle with six sequences, see the crossrefs. - Johannes W. Meijer, May 20 2011
a(n) = A122797(n) + n - 1. - Reinhard Zumkeller, Feb 12 2012

Examples

			From _Omar E. Pol_, Aug 13 2013: (Start)
Written as a triangle the sequence begins:
   1;
   2,  4;
   5,  7,  9;
  10, 12, 14, 16;
  17, 19, 21, 23, 25;
  26, 28, 30, 32, 34, 36;
  37, 39, 41, 43, 45, 47, 49;
  50, 52, 54, 56, 58, 60, 62, 64;
  65, 67, 69, 71, 73, 75, 77, 79, 81;
  82, 84, 86, 88, 90, 92, 94, 96, 98, 100;
  ...
Right border gives A000290, n >= 1.
(End)
		

References

  • C. Pickover, Computers and the Imagination, St. Martin's Press, NY, 1991, p. 276.
  • C. A. Pickover, The Mathematics of Oz, Chapter 39, Camb. Univ. Press UK 2002.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A117384, A118011 (complement), A118012.
Cf. A069778. - Gary W. Adamson, Sep 01 2008
From Johannes W. Meijer, May 20 2011: (Start)
Triangle columns: A002522, A117950 (n>=1), A117951 (n>=2), A117619 (n>=3), A154533 (n>=5), A000290 (n>=1), A008865 (n>=2), A028347 (n>=3), A028878 (n>=1), A028884 (n>=2), A054569 [T(2*n,n)].
Triangle sums (see the comments): A069778 (Row1), A190716 (Row2), A058187 (Related to Kn11, Kn12, Kn13, Kn21, Kn22, Kn23, Fi1, Fi2, Ze1 and Ze2), A000292 (Related to Kn3, Kn4, Ca3, Ca4, Gi3 and Gi4), A190717 (Related to Ca1, Ca2, Ze3, Ze4), A190718 (Related to Gi1 and Gi2). (End)

Programs

  • Haskell
    a001614 n = a001614_list !! (n-1)
    a001614_list = f 0 0 a057211_list where
       f c z (x:xs) = z' : f x z' xs where z' = z + 1 + 0 ^ abs (x - c)
    -- Reinhard Zumkeller, Dec 30 2011
    
  • Magma
    [2*n-Round(Sqrt(2*n)): n in [1..80]]; // Vincenzo Librandi, Apr 17 2015
    
  • Maple
    A001614:=proc(n): 2*n - floor((1+sqrt(8*n-7))/2) end: seq(A001614(n),n=1..67); # Johannes W. Meijer, May 20 2011
  • Mathematica
    lst={};i=0;For[j=1, j<=4!, a=i+1;b=j;k=0;For[i=a, i<=9!, k++;AppendTo[lst, i];If[k>=b, Break[]];i=i+2];j++ ];lst (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *)
    row[n_] := 2*Range[n+1]+n^2-1; Table[row[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Oct 25 2013 *)
  • PARI
    a(n)=2*n - round(sqrt(2*n)) \\ Charles R Greathouse IV, Apr 20 2015
    
  • Python
    from math import isqrt
    def A001614(n): return (m:=n<<1)-(k:=isqrt(m))-int((m<<2)>(k<<2)*(k+1)+1) # Chai Wah Wu, Jul 26 2022

Formula

a(n) = 2*n - floor( (1+ sqrt(8*n-7))/2 ).
a(n) = A005843(n) - A002024(n). - Lekraj Beedassy, Aug 06 2004
a(n) = A118012(A118011(n)). A117384( a(n) ) = n; A117384( 4*n - a(n) ) = n. - Paul D. Hanna, Apr 10 2006
a(1) = 1; then a(n) = a(n-1)+1 if a(n-1) is a square, a(n) = a(n-1)+2 otherwise. For example, a(21)=36 is a square therefore a(22)=36+1=37 which is not a square so a(23)=37+2=39 ... - Benoit Cloitre, Feb 07 2007
T(n,k) = (n-1)^2 + 2*k - 1. - Omar E. Pol, Aug 13 2013
a(n)^2 = a(n*(n+1)/2). - Ivan N. Ianakiev, Aug 15 2013
Let the sequence be written in the form of the triangle in the EXAMPLE section below and let a(n) and a(n+1) belong to the same row of the triangle. Then a(n)*a(n+1) + 1 = a(A000217(A118011(n))) = A000290(A118011(n)). - Ivan N. Ianakiev, Aug 16 2013
a(n) = 2*n-round(sqrt(2*n)). - Gerald Hillier, Apr 15 2015
From Robert Israel, Apr 20 2015 (Start):
G.f.: 2*x/(1-x)^2 - (x/(1-x))*Sum_{n>=0} x^(n*(n+1)/2) = 2*x/(1-x)^2 - (Theta2(0,x^(1/2)))*x^(7/8)/(2*(1-x)) where Theta2 is a Jacobi theta function.
a(n) = 2*n-1 - Sum_{i=0..n-2} A023531(i). (End)
a(n) = 3*n-A014132(n). - Chai Wah Wu, Oct 19 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 16 2001

A064831 Partial sums of A001654, or sum of the areas of the first n Fibonacci rectangles.

Original entry on oeis.org

0, 1, 3, 9, 24, 64, 168, 441, 1155, 3025, 7920, 20736, 54288, 142129, 372099, 974169, 2550408, 6677056, 17480760, 45765225, 119814915, 313679521, 821223648, 2149991424, 5628750624, 14736260449, 38580030723, 101003831721
Offset: 0

Views

Author

Howard Stern (hsstern(AT)mindspring.com), Oct 23 2001

Keywords

Comments

The n-th rectangle is F(n)*F(n+1), where F(n) = n-th Fibonacci number (F(1)=1, F(2)=1, F(3)=2, etc.), A000045.
If 2*T(a_n) = the oblong number formed by substituting a(n) in the product formula x(x+1), then 2*T(a_n) = F(n-1)*F(n) * F(n)*F(n+1). Thus a(n) equals the integer part of the square root of the right hand side of the given equation. - Kenneth J Ramsey, Dec 19 2006
Contribution from Johannes W. Meijer, Sep 22 2010: (Start)
The a(n) represent several triangle sums of the Golden Triangle A180662: Kn11 (terms doubled), Kn12(n+1) (terms doubled), Kn4, Ca1 (terms tripled), Ca4, Gi1 (terms quadrupled) and Gi4. See A180662 for the definitions of these sums.
(End)
Define a 2 X (n+1) matrix with elements T(r,0)=A000032(r) and T(r,1) = Fibonacci(r), r=0,1,..,n. The matrix times its transposed is a 2 X 2 matrix with one diagonal element A001654(n+1), the other A216243(n), and A027941(n+1) on both outer diagonals. The determinant of this 2 X 2 matrix is 4*a(n). Example: For n=3 the matrix is 2 X 4 with rows 2 1 3 4; 0 1 1 2 to give as a product the 2 X 2 matrix with rows 30 12; 12 6 and determinant 180-144 = 36 =4*a(3). - J. M. Bergot, Feb 13 2013
a(n+1) is equal to the number of ternary strings of length n without any substring of the form 0x1, where x is in {0,1,2}. - John M. Campbell, Apr 03 2016

Crossrefs

Odd terms of A097083.
Partial sums of A001654.

Programs

  • GAP
    a:=[0,1,3,9];; for n in [5..30] do a[n]:=3*a[n-1]-3*a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 09 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x/((1-x^2)*(1-3*x+x^2)) )); // G. C. Greubel, Jan 09 2019
    
  • Mathematica
    Table[ Sum[ Fibonacci[k]*Fibonacci[k + 1], {k, n} ], {n, 0, 30}]
    f[n_] := Floor[GoldenRatio^(2 n + 2)/5]; Array[f, 28, 0] (* Robert G. Wilson v, Oct 25 2001 *)
    a[0]= 0; a[1]= 1; a[2]= 3; a[3]= 9; a[n_]:= a[n]= 3a[n-1] - 3a[n-3] + a[n-4]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
  • PARI
    a(n)=if(n<0,0,fibonacci(n+1)^2-1+n%2)
    
  • PARI
    { for (n=0, 200, a=fibonacci(n+1)^2 - 1 + n%2; write("b064831.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 27 2009
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x/((1-x^2)*(1-3*x+x^2)))) \\ G. C. Greubel, Jan 09 2019
    
  • Sage
    (x/((1-x^2)*(1-3*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 09 2019
    

Formula

a(n) = F(n+1)^2 - 1 if n is even, or F(n+1)^2 if n is odd.
a(n) = A005313(n+1) - n.
G.f.: x/((1-x^2)*(1-3*x+x^2)). - N. J. A. Sloane Jul 15 2002
a(n) = Sum_{k=0..floor(n/2)} U(n-2k-1, 3/2). - Paul Barry, Nov 15 2003
Let M_n denote the n X n Hankel matrix M_n(i, j)=F(i+j-1) where F = A000045 is Fibonacci numbers, then the characteristic polynomial of M_n is x^n - F(2n)x^(n-1) + a(n-1)x^(n-2) . - Michael Somos, Nov 14 2002
a(n) = a(n-1) + A001654(n) with a(0)=0. (Partial sums of A001654). - Johannes W. Meijer, Sep 22 2010
a(n) = floor(phi^(2*n+2)/5), where phi =(1+sqrt(5))/2. - Gary Detlefs Mar 12 2011
a(n) = (A027941(n) + A001654(n))/2, n>=0. - Wolfdieter Lang, Jul 23 2012
a(n) = A005248(n+1)/5 -1/2 -(-1)^n/10. - R. J. Mathar, Feb 21 2013
Recurrence: a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 9, a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4). - Vladimir Reshetnikov, Oct 28 2015
a(n) = Sum_{i=0..n} (n+1-i)*Fibonacci(i)^2. - Bruno Berselli, Feb 20 2017

Extensions

More terms from Robert G. Wilson v, Oct 25 2001
Previous Showing 21-30 of 143 results. Next