cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 142 results. Next

A006578 Triangular numbers plus quarter squares: n*(n+1)/2 + floor(n^2/4) (i.e., A000217(n) + A002620(n)).

Original entry on oeis.org

0, 1, 4, 8, 14, 21, 30, 40, 52, 65, 80, 96, 114, 133, 154, 176, 200, 225, 252, 280, 310, 341, 374, 408, 444, 481, 520, 560, 602, 645, 690, 736, 784, 833, 884, 936, 990, 1045, 1102, 1160, 1220, 1281, 1344, 1408, 1474, 1541, 1610, 1680, 1752, 1825, 1900, 1976, 2054
Offset: 0

Views

Author

Keywords

Comments

Equals (1, 2, 3, 4, ...) convolved with (1, 2, 1, 2, ...). a(4) = 14 = (1, 2, 3, 4) dot (2, 1, 2, 1) = (2 + 2 + 6 + 4). - Gary W. Adamson, May 01 2009
We observe that is the transform of A032766 by the following transform T: T(u_0,u_1,u_2,u_3,...) = (u_0, u_0+u_1, u_0+u_1+u_2, u_0+u_1+u_2+u_3+u_4,...). In other words, v_p = Sum_{k=0..p} u_k and the g.f. phi_v of is given by phi_v = phi_u/(1-z). - Richard Choulet, Jan 28 2010
Equals row sums of a triangle with (1, 4, 7, 10, ...) in every column, shifted down twice for columns > 1. - Gary W. Adamson, Mar 03 2010
Number of pairs (x,y) with x in {0,...,n}, y odd in {0,...,2n}, and x < y. - Clark Kimberling, Jul 02 2012
Also A049451 and positives A000567 interleaved. - Omar E. Pol, Aug 03 2012
Similar to A001082. Members of this family are A093005, A210977, this sequence, A210978, A181995, A210981, A210982. - Omar E. Pol, Aug 09 2012

Examples

			G.f. = x + 4*x^2 + 8*x^3 + 14*x^4 + 21*x^5 + 30*x^6 + 40*x^7 + 52*x^8 + 65*x^9 + ...
		

References

  • Marc LeBrun, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A104567.
Cf. A051125.

Programs

  • Magma
    [(6*n^2+4*n-1+(-1)^n)/8: n in [0..50] ]; // Vincenzo Librandi, Aug 20 2011
  • Maple
    with (combinat): seq(count(Partition((3*n+1)), size=3), n=0..52); # Zerinvary Lajos, Mar 28 2008
    # 2nd program
    A006578 := proc(n)
        (6*n^2 + 4*n - 1 + (-1)^n)/8 ;
    end proc: # R. J. Mathar, Apr 28 2017
  • Mathematica
    Accumulate[LinearRecurrence[{1,1,-1}, {0,1,3}, 100]] (* Harvey P. Dale, Sep 29 2013 *)
    a[ n_] := Quotient[n + 1, 2] (Quotient[n, 2] 3 + 1); (* Michael Somos, Jun 09 2014 *)
    a[ n_] := Quotient[3 (n + 1)^2 + 1, 4] - (n + 1); (* Michael Somos, Jun 10 2015 *)
    LinearRecurrence[{2, 0, -2, 1},{0, 1, 4, 8},53] (* Ray Chandler, Aug 03 2015 *)
  • PARI
    {a(n) = (3*(n+1)^2 + 1)\4 - n - 1}; /* Michael Somos, Mar 10 2006 */
    

Formula

Expansion of x*(1+2*x) / ((1-x)^2*(1-x^2)). - Simon Plouffe in his 1992 dissertation
a(n) + A002620(n) = A002378(n) = n*(n+1).
Partial sums of A032766. - Paul Barry, May 30 2003
a(n) = a(n-1) + a(n-2) - a(n-3) + 3 = A002620(n) + A004526(n) = A001859(n) - A004526(n+1). - Henry Bottomley, Mar 08 2000
a(n) = (6*n^2 + 4*n - 1 + (-1)^n)/8. - Paul Barry, May 30 2003
a(n) = A001859(-1-n) for all n in Z. - Michael Somos, May 10 2006
a(n) = (A002378(n)/2 + A035608(n))/2. - Reinhard Zumkeller, Feb 07 2010
a(n) = (3*n^2 + 2*n - (n mod 2))/4. - Ctibor O. Zizka, Mar 11 2012
a(n) = Sum_{i=1..n} floor(3*i/2) = Sum_{i=0..n} (i + floor(i/2)). - Enrique Pérez Herrero, Apr 21 2012
a(n) = 3*n*(n+1)/2 - A001859(n). - Clark Kimberling, Jul 02 2012
a(n) = Sum_{i=1..n} (n - i + 1) * 2^( (i+1) mod 2 ). - Wesley Ivan Hurt, Mar 30 2014
a(n) = A002717(n) - A002717(n-1). - Michael Somos, Jun 09 2014
a(n) = Sum_{k=1..n} floor((n+k+1)/2). - Wesley Ivan Hurt, Mar 31 2017
a(n) = A002620(n+1)+2*A002620(n). - R. J. Mathar, Apr 28 2017
Sum_{n>=1} 1/a(n) = 3 - Pi/(4*sqrt(3)) - 3*log(3)/4. - Amiram Eldar, May 28 2022
E.g.f.: (x*(5 + 3*x)*cosh(x) - (1 - 5*x - 3*x^2)*sinh(x))/4. - Stefano Spezia, Aug 22 2023

Extensions

Offset and description changed by N. J. A. Sloane, Nov 30 2006

A002717 a(n) = floor(n(n+2)(2n+1)/8).

Original entry on oeis.org

0, 1, 5, 13, 27, 48, 78, 118, 170, 235, 315, 411, 525, 658, 812, 988, 1188, 1413, 1665, 1945, 2255, 2596, 2970, 3378, 3822, 4303, 4823, 5383, 5985, 6630, 7320, 8056, 8840, 9673, 10557, 11493, 12483, 13528, 14630, 15790, 17010, 18291, 19635, 21043, 22517, 24058
Offset: 0

Views

Author

Keywords

Comments

Number of triangles in triangular matchstick arrangement of side n, for n >= 1. Row sums of A085691.
We observe that the sequence is the transform of A006578 by the following transform T: T(u_0,u_1,u_2,u_3,...)=(u_0,u_0+u_1, u_0+u_1+u_2, u_0+u_1+u_2+u_3+u_4,...). In another terms v_p=sum(u_k,k=0..p) and the G.f phi_v of v is given by: phi_v=phi_u/(1-z). - Richard Choulet, Jan 28 2010
Row sums of A220053, for n > 0. - Reinhard Zumkeller, Dec 03 2012
a(n) has the expansion (1*0)+(1*1)+(4*1)+(4*2)+(7*2)+(7*3)+..., where the expansion stops when a(n) has n+1 number of terms. The expansion starts at (1*0), and progresses by alternating addition of 1 to the second number and 3 to the first number. - Arlu Genesis A. Padilla, Jun 04 2014
Taking the absolute values of each n-th difference and excluding the first n terms of each mentioned sequence, A002717 has the first difference A006578 (see formula of Michael Somos dated Jun 09 2014), the second difference A032766 (see 'partial sum' crossref), the third difference A000034, the fourth difference A000012, and the fifth to n-th difference A000004. - Arlu Genesis A. Padilla, Jun 12 2014

Examples

			f(3)=13 because the following figure contains 13 triangles if horizontal bars are added:
....... /\
...... /\/\
..... /\/\/\
G.f. = x + 5*x^2 + 13*x^3 + 27*x^4 + 48*x^5 + 78*x^6 + 118*x^7 + 170*x^8 + ...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, p. 83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000292 number of triangles with same orientation as largest triangle, A002623 number of triangles pointing in opposite direction to largest triangle, A085691 number of triangles of side k in arrangement of side n.
Bisections: A135712 (odd part), A135713 (even part).

Programs

  • Magma
    [Floor(n*(n+2)*(2*n+1)/8): n in [0..50]]; // Wesley Ivan Hurt, Jun 04 2014
  • Maple
    A002717:=n->floor(n*(n+2)*(2*n+1)/8); seq(A002717(n), n=0..100);
  • Mathematica
    Table[Floor[n(n+2)(2n+1)/8],{n,0,50}] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{0,1,5,13,27},50] (* Harvey P. Dale, Jan 20 2013 *)
  • PARI
    {a(n) = n * (n+2) * (2*n+1) \ 8};
    

Formula

a(n) = (1/16)*[2n(2n+1)(n+2)+cos(Pi*n)-1]. - Justin C. Bozonier (justinb67(AT)excite.com), Dec 05 2000
a(m+1)-2a(m)+2a(m-2)-a(m-3) = 3. - Len Smiley, Oct 08 2001
a(n) = (2n(2n+1)(n+2)+(-1)^n-1)/16. - Wesley Petty (Wesley.Petty(AT)mail.tamucc.edu), Oct 25 2003
a(n) = A000292(n-1) + A002623(n-2). - Hugo Pfoertner, Mar 06 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*k*binomial(k+1,2).
G.f.: x(1+2x)/((1+x)(1-x)^4). - Simon Plouffe in his 1992 dissertation (with a different offset).
a(0)=0, a(1)=1, a(2)=5, a(3)=13, a(4)=27, a(n)=3*a(n-1)-2*a(n-2)-2*a(n-3)+ 3*a(n-4)- a(n-5). - Harvey P. Dale, Jan 20 2013
a(n) = a(n-1) + A016777(floor(0.5*n))*floor(0.5+0.5*n). - Arlu Genesis A. Padilla, Jun 04 2014
a(-n) = - A045947(n). a(n) = a(n-1) + A006578(n). - Michael Somos, Jun 09 2014
a(n) = Sum_{i=1..n} T(n-i+1)+T(n-2*i+1), where T(n)=n*(n+1)/2=A000217(n) if n>0 and 0 if n<=0. So we have a(n+2)-a(n)=(n+2)^2+(n+1)*(n+2)/2. - Maurice Mischler, Sep 08 2014
E.g.f.: (x*(2*x^2 + 11*x + 9)*cosh(x) + (2*x^3 + 11*x^2 + 9*x - 1)*sinh(x))/8. - Stefano Spezia, Jul 19 2022

A002531 a(2*n) = a(2*n-1) + a(2*n-2), a(2*n+1) = 2*a(2*n) + a(2*n-1); a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 5, 7, 19, 26, 71, 97, 265, 362, 989, 1351, 3691, 5042, 13775, 18817, 51409, 70226, 191861, 262087, 716035, 978122, 2672279, 3650401, 9973081, 13623482, 37220045, 50843527, 138907099, 189750626, 518408351, 708158977, 1934726305
Offset: 0

Views

Author

Keywords

Comments

Numerators of continued fraction convergents to sqrt(3), for n >= 1.
For the denominators see A002530.
Consider the mapping f(a/b) = (a + 3*b)/(a + b). Taking a = b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the convergents 1/1, 2/1, 5/3, 7/4, 19/11, ... converging to sqrt(3). Sequence contains the numerators. - Amarnath Murthy, Mar 22 2003
In the Murthy comment if we take a = 0, b = 1 then the denominator of the reduced fraction is a(n+1). A083336(n)/a(n+1) converges to sqrt(3). - Mario Catalani (mario.catalani(AT)unito.it), Apr 26 2003
If signs are disregarded, all terms of A002316 appear to be elements of this sequence. - Creighton Dement, Jun 11 2007
2^(-floor(n/2))*(1 + sqrt(3))^n = a(n) + A002530(n)*sqrt(3); integers in the real quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 10 2018
Let T(n) = A000034(n), U(n) = A002530(n), V(n) = a(n), x(n) = U(n)/V(n). Then T(n*m) * U(n+m) = U(n)*V(m) + U(m)*V(n), T(n*m) * V(n+m) = 3*U(n)*U(m) + V(m)*V(n), x(n+m) = (x(n) + x(m))/(1 + 3*x(n)*x(m)). - Michael Somos, Nov 29 2022

Examples

			1 + 1/(1 + 1/(2 + 1/(1 + 1/2))) = 19/11 so a(5) = 19.
Convergents are 1, 2, 5/3, 7/4, 19/11, 26/15, 71/41, 97/56, 265/153, 362/209, 989/571, 1351/780, 3691/2131, ... = A002531/A002530.
G.f. = 1 + x + 2*x^2 + 5*x^3 + 7*x^4 + 19*x^5 + 26*x^6 + 71*x^7 + ... - _Michael Somos_, Mar 22 2022
		

References

  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 181.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.

Crossrefs

Bisections are A001075 and A001834.
Cf. A002530 (denominators), A048788.
Cf. A002316.

Programs

  • GAP
    a:=[1,1,2,5];; for n in [5..40] do a[n]:=4*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Nov 16 2018
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1 +x-2*x^2+x^3)/(1-4*x^2+x^4))); // G. C. Greubel, Nov 16 2018
    
  • Maple
    A002531 := proc(n) option remember; if n=0 then 0 elif n=1 then 1 elif n=2 then 1 elif type(n,odd) then A002531(n-1)+A002531(n-2) else 2*A002531(n-1)+A002531(n-2) fi; end; [ seq(A002531(n), n=0..50) ];
    with(numtheory): tp := cfrac (tan(Pi/3),100): seq(nthnumer(tp,i), i=-1..32 ); # Zerinvary Lajos, Feb 07 2007
    A002531:=(1+z-2*z**2+z**3)/(1-4*z**2+z**4); # Simon Plouffe; see his 1992 dissertation
  • Mathematica
    Insert[Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[3], n]]], {n, 1, 40}], 1, 1] (* Stefan Steinerberger, Apr 01 2006 *)
    Join[{1},Numerator[Convergents[Sqrt[3],40]]] (* Harvey P. Dale, Jan 23 2012 *)
    CoefficientList[Series[(1 + x - 2 x^2 + x^3)/(1 - 4 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 01 2014 *)
    LinearRecurrence[{0, 4, 0, -1}, {1, 1, 2, 5}, 35] (* Robert G. Wilson v, Feb 11 2018 *)
    a[ n_] := ChebyshevT[n, Sqrt[-1/2]]*Sqrt[2]^Mod[n,2]/I^n //Simplify; (* Michael Somos, Mar 22 2022 *)
    a[ n_] := If[n<0, (-1)^n*a[-n], SeriesCoefficient[ (1 + x - 2*x^2 + x^3) / (1 - 4*x^2 + x^4), {x, 0, n}]]; (* Michael Somos, Sep 23 2024 *)
  • PARI
    a(n)=contfracpnqn(vector(n,i,1+(i>1)*(i%2)))[1,1]
    
  • PARI
    apply( {A002531(n,w=quadgen(12))=real((2+w)^(n\/2)*if(bittest(n, 0), w-1, 1))}, [0..30]) \\ M. F. Hasler, Nov 04 2019
    
  • PARI
    {a(n) = if(n<0, (-1)^n*a(-n), polcoeff( (1 + x - 2*x^2 + x^3) / (1 - 4*x^2 + x^4) + x*O(x^n), n))}; /* Michael Somos, Sep 23 2024 */
    
  • Sage
    s=((1+x-2*x^2+x^3)/(1-4*x^2+x^4)).series(x,40); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 16 2018
    

Formula

G.f.: (1 + x - 2*x^2 + x^3)/(1 - 4*x^2 + x^4).
a(2*n) = a(2*n-1) + a(2*n-2), a(2*n+1) = 2*a(2*n) + a(2*n-1), n > 0.
a(2*n) = (1/2)*((2 + sqrt(3))^n+(2 - sqrt(3))^n); a(2*n) = A003500(n)/2; a(2*n+1) = round(1/(1 + sqrt(3))*(2 + sqrt(3))^n). - Benoit Cloitre, Dec 15 2002
a(n) = ((1 + sqrt(3))^n + (1 - sqrt(3))^n)/(2*2^floor(n/2)). - Bruno Berselli, Nov 10 2011
a(n) = A080040(n)/(2*2^floor(n/2)). - Ralf Stephan, Sep 08 2013
a(2*n) = (-1)^n*T(2*n,u) and a(2*n+1) = (-1)^n*1/u*T(2*n+1,u), where u = sqrt(-1/2) and T(n,x) denotes the Chebyshev polynomial of the first kind. - Peter Bala, May 01 2012
a(n) = (-sqrt(2)*i)^n*T(n, sqrt(2)*i/2)*2^(-floor(n/2)) = A026150(n)*2^(-floor(n/2)), n >= 0, with i = sqrt(-1) and the Chebyshev T polynomials (A053120). - Wolfdieter Lang, Feb 10 2018
From Franck Maminirina Ramaharo, Nov 14 2018: (Start)
a(n) = ((1 - sqrt(2))*(-1)^n + 1 + sqrt(2))*(((sqrt(2) - sqrt(6))/2)^n + ((sqrt(6) + sqrt(2))/2)^n)/4.
E.g.f.: cosh(sqrt(3/2)*x)*(sqrt(2)*sinh(x/sqrt(2)) + cosh(x/sqrt(2))). (End)
a(n) = (-1)^n*a(-n) for all n in Z. - Michael Somos, Mar 22 2022
a(n) = 4*a(n-2) - a(n-4). - Boštjan Gec, Sep 21 2023

Extensions

Name edited (as by discussion in A002530) by M. F. Hasler, Nov 04 2019

A062570 a(n) = phi(2*n).

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 6, 8, 6, 8, 10, 8, 12, 12, 8, 16, 16, 12, 18, 16, 12, 20, 22, 16, 20, 24, 18, 24, 28, 16, 30, 32, 20, 32, 24, 24, 36, 36, 24, 32, 40, 24, 42, 40, 24, 44, 46, 32, 42, 40, 32, 48, 52, 36, 40, 48, 36, 56, 58, 32, 60, 60, 36, 64, 48, 40, 66, 64, 44, 48, 70, 48, 72
Offset: 1

Views

Author

Jason Earls, Jul 03 2001

Keywords

Comments

a(n) is also the number of non-congruent solutions to x^2 - y^2 == 1 (mod n). - Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 21 2003
a(n) is the size of a square companion matrix of the minimal cyclotomic polynomial of (-1)^(1/n). - Eric Desbiaux, Dec 08 2015
a(n) is the degree of the (2n)-th cyclotomic field Q(zeta_(2n)). Note that Q(zeta_n) = Q(zeta_(2n)) for odd n. - Jianing Song, May 17 2021
The number of integers k from 1 to n such that gcd(n,k) is a power of 2. - Amiram Eldar, May 18 2025

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, p. 28.

Crossrefs

Column 1 of A129559, column 2 of A372673.
Row 1 of A379010.
Row sums of A129558 and of A129564.

Programs

  • Maple
    [phi(2*n)$n=1..80]; # Muniru A Asiru, Mar 18 2019
  • Mathematica
    Table[EulerPhi[2 n], {n, 80}] (* Vincenzo Librandi, Aug 23 2013 *)
  • PARI
    a(n) = eulerphi(2*n)
    
  • Python
    from sympy import totient
    def A062570(n): return totient(n) if n&1 else totient(n)<<1 # Chai Wah Wu, Aug 04 2024
  • Sage
    [euler_phi(2*n) for n in range(1,74)] # Zerinvary Lajos, Jun 06 2009
    

Formula

a(n) = Sum_{d|n and d is odd} n/d*mu(d).
Multiplicative with a(2^e) = 2^e and a(p^e) = p^e-p^(e-1), p>2.
Dirichlet g.f.: zeta(s-1)/zeta(s)*2^s/(2^s-1). - Ralf Stephan, Jun 17 2007
a(n) = A000010(2*n).
a(n) = phi(n)*(1+((n+1) mod 2)). - Gary Detlefs, Jul 13 2011
a(n) = A173557(n)*b(n) where b(n) = 1, 2, 1, 4, 1, 2, 1, 8, 3, 2, 1, 4, 1, 2, ... is the multiplicative function defined by b(p^e) = p^(e-1) if p<>2 and b(2^e)=2^e. b(n) = n/A204455(n). - R. J. Mathar, Jul 02 2013
a(n) = -c_{2n}(n) where c_q(n) is Ramanujan's sum. - Michael Somos, Aug 23 2013
a(n) = A055034(2*n), for n >= 2. - Wolfdieter Lang, Nov 30 2013
O.g.f.: Sum_{n >= 1} mu(2*n-1)*x^(2*n-1)/(1 - x^(2*n-1))^2. - Peter Bala, Mar 17 2019
a(n) = A000010(4*n)/2, for n > = 1 (see Apostol, Theorem 2.5, (b), p. 28). - Wolfdieter Lang, Nov 17 2019
a(n) = n - Sum_{d|n, n/d odd, d < n} a(d). - Ilya Gutkovskiy, May 30 2020
Dirichlet convolution of A000010 and A209229. - Werner Schulte, Jan 17 2021
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} A209229(gcd(n,k)).
a(n) = Sum_{k=1..n} A209229(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 4/Pi^2 = 0.405284... (A185199). - Amiram Eldar, Oct 22 2022
a(n) = A000034(n) * A000010(n). - Amiram Eldar, May 18 2025

Extensions

Corrected by Vladeta Jovovic, Dec 04 2002

A105476 Number of compositions of n when each even part can be of two kinds.

Original entry on oeis.org

1, 1, 3, 6, 15, 33, 78, 177, 411, 942, 2175, 5001, 11526, 26529, 61107, 140694, 324015, 746097, 1718142, 3956433, 9110859, 20980158, 48312735, 111253209, 256191414, 589951041, 1358525283, 3128378406, 7203954255, 16589089473, 38200952238, 87968220657
Offset: 0

Views

Author

Emeric Deutsch, Apr 09 2005

Keywords

Comments

Row sums of A105475.
Starting (1, 3, 6, 15, ...) = sum of (n-1)-th row terms of triangle A140168. - Gary W. Adamson, May 10 2008
a(n) is also the number of compositions of n using 1's and 2's such that each run of like numbers can be grouped arbitrarily. For example, a(4) = 15 because 4 = (1)+(1)+(1)+(1) = (1+1)+(1)+(1) = (1)+(1+1)+(1) = (1)+(1)+(1+1) = (1+1)+(1+1) = (1+1+1)+(1) = (1)+(1+1+1) = (1+1+1+1) = (2)+(1)+(1) = (1)+(2)+(1) = (1)+(1)+(2) = (2)+(1+1) = (1+1)+(2) = (2)+(2) = (2+2). - Martin J. Erickson (erickson(AT)truman.edu), Dec 09 2008
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 69, 261, 321 and 324, lead to this sequence (without the first leading 1). For the corner squares these vectors lead to the companion sequence A006138. - Johannes W. Meijer, Aug 15 2010
Inverse INVERT transform of the left shifted sequence gives A000034.
Eigensequence of the triangle
1,
2, 1,
1, 2, 1,
2, 1, 2, 1,
1, 2, 1, 2, 1,
2, 1, 2, 1, 2, 1,
1, 2, 1, 2, 1, 2, 1,
2, 1, 2, 1, 2, 1, 2, 1 ... - Paul Barry, Feb 10 2011
Pisano period lengths: 1, 3, 1, 6, 24, 3, 24, 6, 1, 24, 120, 6, 156, 24, 24, 12, 16, 3, 90, 24, ... - R. J. Mathar, Aug 10 2012

Examples

			a(3)=6 because we have (3),(1,2),(1,2'),(2,1),(2',1) and (1,1,1).
		

Crossrefs

Programs

  • GAP
    a:=[1,3];; for n in [3..40] do a[n]:=a[n-1]+3*a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Jan 15 2020
  • Magma
    I:=[1,1,3]; [n le 3 select I[n] else Self(n-1)+3*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013
    
  • Magma
    R:=PowerSeriesRing(Integers(), 33); Coefficients(R!( 1/(1-(x/(1-x))-x^2/(1-x^2)))); // Marius A. Burtea, Jan 15 2020
    
  • Maple
    G:=(1-z^2)/(1-z-3*z^2): Gser:=series(G,z=0,35): 1,seq(coeff(Gser,z^n),n=1..33);
  • Mathematica
    CoefficientList[Series[(1-x^2)/(1-x-3x^2), {x,0,35}], x] (* or *) Join[{1}, LinearRecurrence[{1, 3}, {1, 3}, 50]] (* Vladimir Joseph Stephan Orlovsky, Jul 17 2011; typo fixed by Vincenzo Librandi, Jul 21 2013 *)
    Table[Round[Sqrt[3]^(n-3)*(2*Sqrt[3]*Fibonacci[n+1, 1/Sqrt[3]] +Fibonacci[n, 1/Sqrt[3]])], {n, 0, 40}] (* G. C. Greubel, Jan 15 2020 *)
  • PARI
    Vec((1-x^2)/(1-x-3*x^2)+O(x^40)) \\ Charles R Greathouse IV, Jun 13 2013
    
  • Sage
    def A105476_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x^2)/(1-x-3*x^2) ).list()
    A105476_list(40) # G. C. Greubel, Jan 15 2020
    

Formula

G.f.: (1-x^2) / (1-x-3*x^2).
a(n) = a(n-1) + 3*a(n-2) for n>=3.
a(n) = 3*A006138(n-2), n>=2.
a(n) = ((2+sqrt(13))*(1+sqrt(13))^n - (2-sqrt(13))*(1-sqrt(13))^n)/(3*2^n*sqrt(13)) for n>0. - Bruno Berselli, May 24 2011
G.f.: 1/(1 - Sum_{k>=1} x^k*(1+x^k) ). - Joerg Arndt, Mar 09 2014
G.f.: 1/(1 - (x/(1-x)) - x^2/(1-x^2)) = 1/(1 - (x+2*x^2+x^3+2*x^4+x^5+2*x^6+...) ); in general 1/(1 - Sum_{j>=1} m(j)*x^j ) is the g.f. for compositions with m(k) sorts of part k. - Joerg Arndt, Feb 16 2015
a(n) = 3^((n-1)/2)*( 2*sqrt(3)*Fibonacci(n, 1/sqrt(3)) + Fibonacci(n, 1/sqrt(3)) ). - G. C. Greubel, Jan 15 2020
E.g.f.: 1/3 + (2/39)*exp(x/2)*(13*cosh((sqrt(13)*x)/2) + 2*sqrt(13)*sinh((sqrt(13)*x)/2)). - Stefano Spezia, Jan 15 2020

A133080 Interpolation operator: Triangle with an even number of zeros in each line followed by 1 or 2 ones.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 08 2007

Keywords

Comments

A133080 * [1,2,3,...] = A114753: (1, 3, 3, 7, 5, 11, 7, 15, ...).
Inverse of A133080: subdiagonal changes to (-1, 0, -1, 0, -1, ...); main diagonal unchanged.
A133080^(-1) * [1,2,3,...] = A093178: (1, 1, 3, 1, 5, 1, 7, 1, 9, ...).
In A133081, diagonal terms are switched with subdiagonal terms.

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  0, 0, 1;
  0, 0, 1, 1;
  0, 0, 0, 0, 1;
  0, 0, 0, 0, 1, 1;
  0, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Cf. A000034 (row sums), A114753, A093178, A133081.

Programs

  • Maple
    A133080 := proc(n,k)
        if n = k then
            1;
        elif  k=n-1 and type(n,even) then
            1;
        else
            0 ;
        end if;
    end proc: # R. J. Mathar, Jun 20 2015
  • Mathematica
    T[n_, k_] := If[k == n, 1, If[k == n - 1, (1 + (-1)^n)/2 , 0]];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* G. C. Greubel, Oct 21 2017 *)
  • PARI
    T(n, k) = if (k==n, 1, if (k == (n-1), 1 - (n % 2), 0)); \\ Michel Marcus, Feb 13 2014
    
  • PARI
    firstrows(n) = {my(res = vector(binomial(n + 1, 2)), t=0); for(i=1, n, t+=i; res[t] = 1; if(i%2==0, res[t-1]=1)) ;res} \\ David A. Corneth, Oct 21 2017

Formula

Infinite lower triangular matrix, (1,1,1,...) in the main diagonal and (1,0,1,0,1,...) in the subdiagonal.
Odd rows, (n-1) zeros followed by "1". Even rows, (n-2) zeros followed by "1, 1".
T(n,n)=1. T(n,k)=0 if 1 <= k < n-1. T(n,n-1)=1 if n even. T(n,n-1)=0 if n odd. - R. J. Mathar, Feb 14 2015

A134451 Ternary digital root of n.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 27 2007

Keywords

Comments

Continued fraction expansion of sqrt(3) - 1. - N. J. A. Sloane, Dec 17 2007. Cf. A040001, A048878/A002530.
Minimum number of terms required to express n as a sum of odd numbers.
Shadow transform of even numbers A005843. - Michel Marcus, Jun 06 2013
From Jianing Song, Nov 01 2022: (Start)
For n > 0, a(n) is the minimal gap of distinct numbers coprime to n. Proof: denote the minimal gap by b(n). For odd n we have A058026(n) > 0, hence b(n) = 1. For even n, since 1 and -1 are both coprime to n we have b(n) <= 2, and that b(n) >= 2 is obvious.
The maximal gap is given by A048669. (End)

Examples

			n=42: A007089(42) = '1120', A053735(42) = 1+1+2+0 = 4,
A007089(4)='11', A053735(4)=1+1=2: therefore a(42) = 2.
0.732050807568877293527446341... = 0 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, May 31 2009
		

Crossrefs

Cf. A000010, A055034, A134452, A160390 (decimal expansion).
Apart from a(0) the same as A040001.
Related base-3 sequences: A053735, A134451, A230641, A230642, A230643, A230853, A230854, A230855, A230856, A230639, A230640, A010063 (trajectory of 1).

Programs

Formula

a(n) = n if n <= 2, otherwise a(A053735(n)).
a(A005408(n)) = 1; a(A005843(n)) = 2 for n>0;
a(n) = 0 if n=0, otherwise A000034(n-1).
a(n) = ((n+1) mod 2) + 2*sign(n) - 1. - Wesley Ivan Hurt, Dec 06 2013
Multiplicative with a(2^e) = 2, a(p^e) = 1 for odd prime p. - Andrew Howroyd, Aug 06 2018
a(0) = A055034(1) / A000010(1), a(n) = A000010(n+1) / A055034(n+1), n>1. - Torlach Rush, Oct 29 2019
Dirichlet g.f.: zeta(s)*(1+1/2^s). - Amiram Eldar, Jan 01 2023

A204900 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k) is the k-th odd prime.

Original entry on oeis.org

2, 2, 4, 3, 5, 4, 6, 4, 8, 5, 9, 6, 9, 6, 11, 7, 11, 8, 12, 8, 14, 9, 15, 9, 15, 9, 16, 10, 17, 11, 18, 11, 19, 11, 20, 12, 21, 12, 22, 13, 23, 14, 23, 14, 24, 15, 24, 15, 25, 15, 27, 16, 28, 16, 29, 16, 30, 17, 31, 18, 30, 18, 31, 18, 32, 19, 32, 19, 34, 20, 34, 21, 34
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n + 1]; z1 = 400; z2 = 50;
    Table[s[n], {n, 1, 30}]      (* A065091 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]      (* A204898 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]      (* A204899 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]      (* A204900 *)
    Table[j[n], {n, 1, z2}]      (* A204901 *)
    Table[s[k[n]], {n, 1, z2}]   (* A204902 *)
    Table[s[j[n]], {n, 1, z2}]   (* A204903 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204904 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A000034 conjectured *)

A109043 a(n) = lcm(n,2).

Original entry on oeis.org

0, 2, 2, 6, 4, 10, 6, 14, 8, 18, 10, 22, 12, 26, 14, 30, 16, 34, 18, 38, 20, 42, 22, 46, 24, 50, 26, 54, 28, 58, 30, 62, 32, 66, 34, 70, 36, 74, 38, 78, 40, 82, 42, 86, 44, 90, 46, 94, 48, 98, 50, 102, 52, 106, 54, 110, 56, 114, 58, 118, 60, 122, 62, 126, 64, 130, 66, 134
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Comments

Exponent of the dihedral group D(2n) = . - Arkadiusz Wesolowski, Sep 10 2013
Second column of table A210530. - Boris Putievskiy, Jan 29 2013
For n > 1, the basic period of A000166(k) (mod n) (Miska, 2016). - Amiram Eldar, Mar 03 2021

Crossrefs

Cf. A000166, A109042, A152749 (partial sums).
Cf. A066043 (essentially the same), A000034 (=a(n)/n), A026741 (=a(n)/2).

Programs

Formula

For n > 0: a(n) = A186421(n) + A186421(n+2).
a(n) = n*2 / gcd(n, 2).
a(n) = -(n*((-1)^n-3))/2. - Stephen Crowley, Feb 11 2007
From R. J. Mathar, Aug 20 2008: (Start)
a(n) = A066043(n), n > 1.
a(n) = 2*A026741(n).
G.f.: 2*x(1+x+x^2)/((1-x)^2*(1+x)^2). (End)
a(n) = n*A000034(n). - Paul Curtz, Mar 25 2011
E.g.f.: x*(2*cosh(x) + sinh(x)). - Stefano Spezia, May 09 2021
Sum_{k=1..n} a(k) ~ (3/4) * n^2. - Amiram Eldar, Nov 26 2022

A008307 Table T(n,k) giving number of permutations of [1..n] with order dividing k, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 10, 3, 2, 1, 1, 26, 9, 4, 1, 1, 1, 76, 21, 16, 1, 2, 1, 1, 232, 81, 56, 1, 6, 1, 1, 1, 764, 351, 256, 25, 18, 1, 2, 1, 1, 2620, 1233, 1072, 145, 66, 1, 4, 1, 1, 1, 9496, 5769, 6224, 505, 396, 1, 16, 3, 2, 1, 1, 35696, 31041, 33616, 1345, 2052, 1, 56, 9, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Solutions to x^k = 1 in Symm_n (the symmetric group of degree n).

Examples

			Array begins:
  1,   1,    1,    1,    1,     1,    1,     1, ...
  1,   2,    1,    2,    1,     2,    1,     2, ...
  1,   4,    3,    4,    1,     6,    1,     4, ...
  1,  10,    9,   16,    1,    18,    1,    16, ...
  1,  26,   21,   56,   25,    66,    1,    56, ...
  1,  76,   81,  256,  145,   396,    1,   256, ...
  1, 232,  351, 1072,  505,  2052,  721,  1072, ...
  1, 764, 1233, 6224, 1345, 12636, 5761, 11264, ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257.
  • J. D. Dixon, B. Mortimer, Permutation Groups, Springer (1996), Exercise 1.2.13.

Crossrefs

Programs

  • Maple
    A:= proc(n,k) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*A(n-j,k), j=numtheory[divisors](k))))
        end:
    seq(seq(A(1+d-k, k), k=1..d), d=1..12); # Alois P. Heinz, Feb 14 2013
    # alternative
    A008307 := proc(n,m)
        local x,d ;
        add(x^d/d, d=numtheory[divisors](m)) ;
        exp(%) ;
        coeftayl(%,x=0,n) ;
        %*n! ;
    end proc:
    seq(seq(A008307(1+d-k,k),k=1..d),d=1..12) ; # R. J. Mathar, Apr 30 2017
  • Mathematica
    t[n_ /; n >= 0, k_ /; k >= 0] := t[n, k] = Sum[(n!/(n - d + 1)!)*t[n - d, k], {d, Divisors[k]}]; t[, ] = 1; Flatten[ Table[ t[n - k, k], {n, 0, 12}, {k, 1, n}]] (* Jean-François Alcover, Dec 12 2011, after given formula *)

Formula

T(n+1,k) = Sum_{d|k} (n)_(d-1)*T(n-d+1,k), where (n)_i = n!/(n - i)! = n*(n - 1)*(n - 2)*...*(n - i + 1) is the falling factorial.
E.g.f. for n-th row: Sum_{n>=0} T(n,k)*t^n/n! = exp(Sum_{d|k} t^d/d).

Extensions

More terms from Vladeta Jovovic, Apr 13 2001
Previous Showing 21-30 of 142 results. Next