cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 50 results. Next

A003499 a(n) = 6*a(n-1) - a(n-2), with a(0) = 2, a(1) = 6.

Original entry on oeis.org

2, 6, 34, 198, 1154, 6726, 39202, 228486, 1331714, 7761798, 45239074, 263672646, 1536796802, 8957108166, 52205852194, 304278004998, 1773462177794, 10336495061766, 60245508192802, 351136554095046, 2046573816377474, 11928306344169798, 69523264248641314
Offset: 0

Views

Author

Keywords

Comments

Two times Chebyshev polynomials of the first kind evaluated at 3.
Also 2(a(2*n)-2) and a(2*n+1)-2 are perfect squares. - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
Chebyshev polynomials of the first kind evaluated at 3, then multiplied by 2. - Michael Somos, Apr 07 2003
Also gives solutions > 2 to the equation x^2 - 3 = floor(x*r*floor(x/r)) where r=sqrt(2). - Benoit Cloitre, Feb 14 2004
Output of Lu and Wu's formula for the number of perfect matchings of an m X n Klein bottle where m and n are both even specializes to this sequence for m=2. - Sarah-Marie Belcastro, Jul 04 2009
It appears that for prime P = 8*n +- 3, that a((P-1)/2) == -6 (mod P) and for all composites C = 8*n +- 3, there is at least one i < (C-1)/2 such that a(i) == -6 (mod P). Only a few of the primes P of the form 8*n +-3, e.g., 29, had such an i less than (P-1)/2. As for primes P = 8*n +- 1, it seems that the sum of the two adjacent terms, a((P-1)/2) and a((P+1)/2), is congruent to 8 (mod P). - Kenneth J Ramsey, Feb 14 2012 and Mar 05 2012
For n >= 1, a(n) is also the curvature of circles (rounded to the nearest integer) successively inscribed toward angle 90 degree of tangent lines, starting with a unit circle. The expansion factor is 5.828427... or 1/(3 - 2*sqrt(2)), which is also 3 + 2*sqrt(2) or A156035. See illustration in links. - Kival Ngaokrajang, Sep 04 2013
Except for the first term, positive values of x (or y) satisfying x^2 - 6*x*y + y^2 + 32 = 0. - Colin Barker, Feb 08 2014

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 198.
  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002; pp. 480-481.
  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications, 2001, Wiley, pp. 77-79.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A081555(n) = 1 + a(n).
Bisection of A002203.
First row of array A103999.
Row 1 * 2 of array A188645. A174501.

Programs

  • GAP
    a:=[2,6];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 16 2020
  • Magma
    I:=[2,6]; [n le 2 select I[n] else 6*Self(n-1) -Self(n-2): n in [1..25]]; // G. C. Greubel, Jan 16 2020
    
  • Magma
    R:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (2-6*x)/(1 - 6*x + x^2) )); // Marius A. Burtea, Jan 16 2020
    
  • Maple
    A003499:=-2*(-1+3*z)/(1-6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[0]=2; a[1]=6; a[n_]:= 6a[n-1] -a[n-2]; Table[a[n], {n,0,25}] (* Robert G. Wilson v, Jan 30 2004 *)
    Table[Tr[MatrixPower[{{6, -1}, {1, 0}}, n]], {n, 25}] (* Artur Jasinski, Apr 22 2008 *)
    LinearRecurrence[{6, -1}, {2, 6}, 25] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2012 *)
    CoefficientList[Series[(2-6x)/(1-6x+x^2), {x,0,25}], x] (* Vincenzo Librandi, Jun 07 2013 *)
    (* From Eric W. Weisstein, Apr 17 2018 *)
    Table[(3-2Sqrt[2])^n + (3+2Sqrt[2])^n, {n,0,25}]//Expand
    Table[(1+Sqrt[2])^(2n) + (1-Sqrt[2])^(2n), {n,0,25}]//FullSimplify
    Join[{2}, Table[Fibonacci[4n, 2]/Fibonacci[2n, 2], {n, 25}]]
    2*ChebyshevT[Range[0, 25], 3] (* End *)
  • PARI
    a(n)=2*real((3+quadgen(32))^n)
    
  • PARI
    a(n)=2*subst(poltchebi(abs(n)),x,3)
    
  • PARI
    a(n)=if(n<0,a(-n),polsym(1-6*x+x^2,n)[n+1])
    
  • Sage
    [lucas_number2(n,6,1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
    

Formula

G.f.: (2-6*x)/(1 - 6*x + x^2).
a(n) = (3+2*sqrt(2))^n + (3-2*sqrt(2))^n = 2*A001541(n).
For all sequence elements n, 2*n^2 - 8 is a perfect square. Limit_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 06 2002
a(2*n)+2 is a perfect square, 2(a(2*n+1)+2) is a perfect square. a(n), a(n-1) and A077445(n), n > 0, satisfy the Diophantine equation x^2 + y^2 - 3*z^2 = -8. - Mario Catalani (mario.catalani(AT)unito.it), Mar 24 2003
a(n+1) is the trace of n-th power of matrix {{6, -1}, {1, 0}}. - Artur Jasinski, Apr 22 2008
a(n) = Product_{r=1..n} (4*sin^2((4*r-1)*Pi/(4*n)) + 4). [Lu/Wu] - Sarah-Marie Belcastro, Jul 04 2009
a(n) = (1 + sqrt(2))^(2*n) + (1 + sqrt(2))^(-2*n). - Gerson Washiski Barbosa, Sep 19 2010
For n > 0, a(n) = A001653(n) + A001653(n+1). - Charlie Marion, Dec 27 2011
For n > 0, a(n) = b(4*n)/b(2*n) where b(n) is the Pell sequence, A000129. - Kenneth J Ramsey, Feb 14 2012
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 3 - 2*sqrt(2). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.16585 37786 96882 80543 ... = 2 + 1/(6 + 1/(34 + 1/(198 + ...))). Cf. A174501.
Also F(-alpha) = 0.83251219269380007634 ... has the continued fraction representation 1 - 1/(6 - 1/(34 - 1/(198 - ...))) and the simple continued fraction expansion 1/(1 + 1/((6-2) + 1/(1 + 1/((34-2) + 1/(1 + 1/((198-2) + 1/(1 + ...))))))). Cf. A174501 and A003500.
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((6^2-4) + 1/(1 + 1/((34^2-4) + 1/(1 + 1/((198^2-4) + 1/(1 + ...))))))).
(End)
G.f.: G(0), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
Inverse binomial transform of A228568 [Bhadouria]. - R. J. Mathar, Nov 10 2013
From Peter Bala, Oct 16 2019: (Start)
4*Sum_{n >= 1} 1/(a(n) - 8/a(n)) = 1.
8*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 4/a(n)) = 1.
Series acceleration formulas for sum of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/4 - 8*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 8)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 4*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 4)).
Sum_{n >= 1} 1/a(n) = ( (theta_3(3-2*sqrt(2)))^2 - 1 )/4 and
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - (theta_3(2*sqrt(2)-3))^2 )/4, where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A067902.
(End)
E.g.f.: 2*exp(3*x)*cosh(2*sqrt(2)*x). - Stefano Spezia, Oct 18 2019
a(2*n)+2 = a(n)^2. - Greg Dresden and Shraya Pal, Jun 29 2021

A003010 A Lucas-Lehmer sequence: a(0) = 4; for n>0, a(n) = a(n-1)^2 - 2.

Original entry on oeis.org

4, 14, 194, 37634, 1416317954, 2005956546822746114, 4023861667741036022825635656102100994, 16191462721115671781777559070120513664958590125499158514329308740975788034
Offset: 0

Views

Author

Keywords

Comments

Albert Beiler states (page 228 of Recreations in the Theory of Numbers): D. H. Lehmer modified Lucas's test to the relatively simple form: If and only if 2^n-1 divides a(n-2) then 2^n-1 is a prime, otherwise it is composite. Since 2^3 - 1 is a factor of a(1) = 14, 2^3 - 1 = 7 is a prime. - Gary W. Adamson, Jun 07 2003
a(n) - a(n-1) divides a(n+1) - a(n). - Thomas Ordowski, Dec 24 2016

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 228.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 399.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A3.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 78.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 205.

Crossrefs

Cf. A001566 (starting with 3), A003423 (starting with 6), A003487 (starting with 5).

Programs

  • Magma
    [n le 1 select 4 else Self(n-1)^2-2: n in [1..10]]; // Vincenzo Librandi, Aug 24 2015
    
  • Maple
    a := n-> if n>0 then a(n-1)^2-2 else 4 fi: 'a(i)' $ i=0..9; # M. F. Hasler, Mar 09 2007
    a := n-> simplify(2*ChebyshevT(2^n, 2), 'ChebyshevT'): seq(a(n), n=0..7);
  • Mathematica
    seqLucasLehmer[0] = 4; seqLucasLehmer[n_] := seqLucasLehmer[n - 1]^2 - 2; Array[seqLucasLehmer, 8, 0] (* Robert G. Wilson v, Jun 28 2012 *)
  • PARI
    a(n)=if(n,a(n-1)^2-2,4)
    vector(10,i,a(i-1)) \\ M. F. Hasler, Mar 09 2007
    
  • Python
    from itertools import accumulate
    def f(anm1, _): return anm1**2 - 2
    print(list(accumulate([4]*8, f))) # Michael S. Branicky, Apr 14 2021

Formula

a(n) = ceiling((2 + sqrt(3))^(2^n)). - Benoit Cloitre, Nov 30 2002
More generally, if u(0) = z, integer > 2 and u(n) = a(n-1)^2 - 2 then u(n) = ceiling(c^(2^n)) where c = (1/2)*(z+sqrt(z^2-4)) is the largest root of x^2 - zx + 1 = 0. - Benoit Cloitre, Dec 03 2002
a(n) = (2+sqrt(3))^(2^n) + (2-sqrt(3))^(2^n). - John Sillcox (johnsillcox(AT)hotmail.com), Sep 20 2003
a(n) = ceiling(tan(5*Pi/12)^(2^n)). Note: 5*Pi/12 radians is 75 degrees. - Jason M. Follas (jasonfollas(AT)hotmail.com), Jan 16 2004
Sum_{n >= 0} 1/( Product_{k = 0..n} a(k) ) = 2 - sqrt(3). - Paul D. Hanna, Aug 11 2004
From Ulrich Sondermann, Sep 04 2006: (Start)
To generate the n-th number in the sequence: let x = 2^(n-1), a = 2, b = sqrt(3). Take every other term of the binomial expansion (a+b)^x times 2.
E.g., for the 4th term: x = 2^(4-1) = 8, the binomial expansion is: a^8 + 7a^7 b + 28a^6 b^2 + 56a^5 b^3 + 70a^4 b^4 + 56a^3 b^5 + 28a^2 b^6 + 7a b^7 + b^8, every other term times 2: 2(a^8 + 28a^6 b^2 + 70a^4 b^4 + 28a^2 b^6 + b^8) = 2(256 + (28)(64)(3) + (70)(16)(9) + (28)(4)(27) + 81) = 2(18817) = 37634. (End)
a(n) = 2*cosh( 2^(n-1)*log(sqrt(3)+2) ) For n > 0, a(n) = 2 + 3 * 4^n * (Product_{k=0..n-2} (a(k)/2))^2, where a(k)/2 = A002812(k) is a coprime sequence. - M. F. Hasler, Mar 09 2007
a(n) = A003500(2^n). - John Blythe Dobson, Oct 28 2007
a(n) = 2*T(2^n,2) where T(n,x) is the Chebyshev polynomial of the first kind. - Leonid Bedratyuk, Mar 17 2011
Engel expansion of 2 - sqrt(3). Thus 2 - sqrt(3) = 1/4 + 1/(4*14) + 1/(4*14*194) + ... as noted by Hanna above. See Liardet and Stambul. Cf. A001566, A003423 and A003487. - Peter Bala, Oct 31 2012
From Peter Bala, Nov 11 2012: (Start)
2*sqrt(3)/5 = Product_{n = 0..oo} (1 - 1/a(n)).
sqrt(3) = Product_{n = 0..oo} (1 + 2/a(n)).
a(n) - 1 = A145503(n+1).
a(n) = 2*A002812(n). (End)
a(n+1) - a(n) = a(n)^2 - a(n-1)^2. - Thomas Ordowski, Dec 24 2016
a(n) = 2*cos(2^n * arccos(2)). - Ryan Brooks, Oct 27 2020
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2 + 2*Product_{k = 0..n-1} (a(k) + 2) for n >= 1.
Let b(n) = a(n) - 4. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)

Extensions

One more term from Thomas A. Rockwell (LlewkcoRAT(AT)aol.com), Jan 18 2005

A061278 a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3) with a(1) = 1 and a(k) = 0 if k <= 0.

Original entry on oeis.org

0, 1, 5, 20, 76, 285, 1065, 3976, 14840, 55385, 206701, 771420, 2878980, 10744501, 40099025, 149651600, 558507376, 2084377905, 7779004245, 29031639076, 108347552060, 404358569165, 1509086724601, 5631988329240, 21018866592360, 78443478040201, 292755045568445
Offset: 0

Views

Author

Henry Bottomley, Jun 04 2001

Keywords

Comments

Indices m of triangular numbers T(m) which are one-third of another triangular number: 3*T(m) = T(k); the k's are given by A001571. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 31 2002
On the previous comment: for m=0 this is actually one third of the same triangular number. - Zak Seidov, Apr 07 2011
Also numbers n such that the n-th centered 24-gonal number 12*n*(n+1)+1 is a perfect square A001834(n)^2, where A001834(n) is defined by the recursion: a(0) = 1, a(1) = 5, a(n) = 4*a(n-1) - a(n-2) + 1. - Alexander Adamchuk, Apr 21 2007
Also numbers n such that RootMeanSquare(5,...,6*n-1) is an integer. - Ctibor O. Zizka, Dec 17 2008 (Corrected by Robert K. Moniot, Jul 22 2020)
Also numbers n such that n*(n+1) = Sum_{i=1..x} n+i for some x. (This does not apply to the first term.). - Gil Broussard, Dec 23 2008
From John P. McSorley, May 26 2020: (Start)
Consecutive terms (a(n-1), a(n)) = (u,v) give all points on the hyperbola u^2 - u + v^2 - v - 4*u*v = 0 in quadrant I with both coordinates an integer.
Also related to the block sizes of small multi-set designs. (End)
If a(n) white balls and a(n+1) black balls are mixed in a bag, and a pair of balls is drawn without replacement, the probability that one ball of each color is drawn is exactly 1/3. These are the only integers for which the probability is 1/3. For example, if there are 20 white balls and 76 black balls, the probability of drawing one of each is (20/96)*(76/95) + (76/96)*(20/95) = 1/3. - Elliott Line, May 13 2022

Examples

			a(2)=5 and T(5)=15 which is 1/3 of 45=T(9).
		

Crossrefs

Cf. A001075, A001353, A001571, A001834, A001835, A079935, A101265. Also cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Programs

  • Magma
    I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2) + 1: n in [1..30]]; // Vincenzo Librandi, Dec 23 2012
  • Maple
    f:= gfun:-rectoproc({a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3),a(1)=1,a(0)=0,a(-1)=0},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Jun 05 2015
  • Mathematica
    CoefficientList[Series[x/(1 - 5*x + 5*x^2 - x^3), {x, 0, nn}], x] (* T. D. Noe, Jun 04 2012 *)
    LinearRecurrence[{5,-5,1},{0,1,5},30] (* Harvey P. Dale, Dec 23 2012 *)
  • PARI
    M = [1, 1, 0; 1, 3, 1; 0, 1, 1]; for(i=1, 30, print1(([1, 0, 0]*M^i)[3], ",")) \\ Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 25 2005
    

Formula

a(n) = 4*a(n-1) - a(n-2) + 1.
a(n) = A001075(n) - a(n-1) - 1.
a(n) = (A001835(n+1) - 1)/2 = (A001353(n+1) - A001353(n) - 1)/2.
a(n) = a(n-1) + A001353(n), i.e., partial sum of A001353.
From Bruce Corrigan (scentman(AT)myfamily.com), Oct 31 2002: (Start)
a(n+2) = 4*a(n+1) - a(n) + 1 for a(0)=0, a(1)=1.
G.f.: x/((1 - x)*(1 - 4*x + x^2)).
a(n) = (1/12)*((3 - sqrt(3))*(2 - sqrt(3))^n + (3 + sqrt(3))*(2 + sqrt(3))^n-6). (End)
a(n) = (1/12)*(A003500(n) + A003500(n+1)-6). - Mario Catalani (mario.catalani(AT)unito.it), Apr 11 2003
a(n+1) = Sum_{k=0..n} U(k, 2) = Sum_{k=0..n} S(k, 4), where U(n,x) and S(n,x) are Chebyshev polynomials. - Paul Barry, Nov 14 2003
G.f.: x/(1 - 5*x + 5*x^2 - x^3).
a(n) = A079935(n+1) + A001571(n) for n>0, a(0)=0. - Gerry Martens, Jun 05 2015
a(n)*a(n-2) = a(n-1)*(a(n-1) - 1) for n>1. - Bruno Berselli, Nov 29 2016
From John P. McSorley, May 25 2020: (Start)
a(n)^2 - a(n) + a(n-1)^2 - a(n-1) - 4*a(n)*a(n-1) = 0.
a(n) = A001834(n-1) + a(n-2). (End)
(T(a(n)-1) + T(a(n+1)-1))/T(a(n) + a(n+1) - 1) = 2/3 where T(i) is the i-th triangular number. - Robert K. Moniot, Oct 11 2020
E.g.f.: exp(x)*(exp(x)*(3*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) - 3)/6. - Stefano Spezia, Feb 05 2021
a(n) = A101265(n) - 1. - Jon E. Schoenfield, Jan 01 2022

Extensions

More terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 25 2005

A002531 a(2*n) = a(2*n-1) + a(2*n-2), a(2*n+1) = 2*a(2*n) + a(2*n-1); a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 5, 7, 19, 26, 71, 97, 265, 362, 989, 1351, 3691, 5042, 13775, 18817, 51409, 70226, 191861, 262087, 716035, 978122, 2672279, 3650401, 9973081, 13623482, 37220045, 50843527, 138907099, 189750626, 518408351, 708158977, 1934726305
Offset: 0

Views

Author

Keywords

Comments

Numerators of continued fraction convergents to sqrt(3), for n >= 1.
For the denominators see A002530.
Consider the mapping f(a/b) = (a + 3*b)/(a + b). Taking a = b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the convergents 1/1, 2/1, 5/3, 7/4, 19/11, ... converging to sqrt(3). Sequence contains the numerators. - Amarnath Murthy, Mar 22 2003
In the Murthy comment if we take a = 0, b = 1 then the denominator of the reduced fraction is a(n+1). A083336(n)/a(n+1) converges to sqrt(3). - Mario Catalani (mario.catalani(AT)unito.it), Apr 26 2003
If signs are disregarded, all terms of A002316 appear to be elements of this sequence. - Creighton Dement, Jun 11 2007
2^(-floor(n/2))*(1 + sqrt(3))^n = a(n) + A002530(n)*sqrt(3); integers in the real quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 10 2018
Let T(n) = A000034(n), U(n) = A002530(n), V(n) = a(n), x(n) = U(n)/V(n). Then T(n*m) * U(n+m) = U(n)*V(m) + U(m)*V(n), T(n*m) * V(n+m) = 3*U(n)*U(m) + V(m)*V(n), x(n+m) = (x(n) + x(m))/(1 + 3*x(n)*x(m)). - Michael Somos, Nov 29 2022

Examples

			1 + 1/(1 + 1/(2 + 1/(1 + 1/2))) = 19/11 so a(5) = 19.
Convergents are 1, 2, 5/3, 7/4, 19/11, 26/15, 71/41, 97/56, 265/153, 362/209, 989/571, 1351/780, 3691/2131, ... = A002531/A002530.
G.f. = 1 + x + 2*x^2 + 5*x^3 + 7*x^4 + 19*x^5 + 26*x^6 + 71*x^7 + ... - _Michael Somos_, Mar 22 2022
		

References

  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 181.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.

Crossrefs

Bisections are A001075 and A001834.
Cf. A002530 (denominators), A048788.
Cf. A002316.

Programs

  • GAP
    a:=[1,1,2,5];; for n in [5..40] do a[n]:=4*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Nov 16 2018
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1 +x-2*x^2+x^3)/(1-4*x^2+x^4))); // G. C. Greubel, Nov 16 2018
    
  • Maple
    A002531 := proc(n) option remember; if n=0 then 0 elif n=1 then 1 elif n=2 then 1 elif type(n,odd) then A002531(n-1)+A002531(n-2) else 2*A002531(n-1)+A002531(n-2) fi; end; [ seq(A002531(n), n=0..50) ];
    with(numtheory): tp := cfrac (tan(Pi/3),100): seq(nthnumer(tp,i), i=-1..32 ); # Zerinvary Lajos, Feb 07 2007
    A002531:=(1+z-2*z**2+z**3)/(1-4*z**2+z**4); # Simon Plouffe; see his 1992 dissertation
  • Mathematica
    Insert[Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[3], n]]], {n, 1, 40}], 1, 1] (* Stefan Steinerberger, Apr 01 2006 *)
    Join[{1},Numerator[Convergents[Sqrt[3],40]]] (* Harvey P. Dale, Jan 23 2012 *)
    CoefficientList[Series[(1 + x - 2 x^2 + x^3)/(1 - 4 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 01 2014 *)
    LinearRecurrence[{0, 4, 0, -1}, {1, 1, 2, 5}, 35] (* Robert G. Wilson v, Feb 11 2018 *)
    a[ n_] := ChebyshevT[n, Sqrt[-1/2]]*Sqrt[2]^Mod[n,2]/I^n //Simplify; (* Michael Somos, Mar 22 2022 *)
    a[ n_] := If[n<0, (-1)^n*a[-n], SeriesCoefficient[ (1 + x - 2*x^2 + x^3) / (1 - 4*x^2 + x^4), {x, 0, n}]]; (* Michael Somos, Sep 23 2024 *)
  • PARI
    a(n)=contfracpnqn(vector(n,i,1+(i>1)*(i%2)))[1,1]
    
  • PARI
    apply( {A002531(n,w=quadgen(12))=real((2+w)^(n\/2)*if(bittest(n, 0), w-1, 1))}, [0..30]) \\ M. F. Hasler, Nov 04 2019
    
  • PARI
    {a(n) = if(n<0, (-1)^n*a(-n), polcoeff( (1 + x - 2*x^2 + x^3) / (1 - 4*x^2 + x^4) + x*O(x^n), n))}; /* Michael Somos, Sep 23 2024 */
    
  • Sage
    s=((1+x-2*x^2+x^3)/(1-4*x^2+x^4)).series(x,40); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 16 2018
    

Formula

G.f.: (1 + x - 2*x^2 + x^3)/(1 - 4*x^2 + x^4).
a(2*n) = a(2*n-1) + a(2*n-2), a(2*n+1) = 2*a(2*n) + a(2*n-1), n > 0.
a(2*n) = (1/2)*((2 + sqrt(3))^n+(2 - sqrt(3))^n); a(2*n) = A003500(n)/2; a(2*n+1) = round(1/(1 + sqrt(3))*(2 + sqrt(3))^n). - Benoit Cloitre, Dec 15 2002
a(n) = ((1 + sqrt(3))^n + (1 - sqrt(3))^n)/(2*2^floor(n/2)). - Bruno Berselli, Nov 10 2011
a(n) = A080040(n)/(2*2^floor(n/2)). - Ralf Stephan, Sep 08 2013
a(2*n) = (-1)^n*T(2*n,u) and a(2*n+1) = (-1)^n*1/u*T(2*n+1,u), where u = sqrt(-1/2) and T(n,x) denotes the Chebyshev polynomial of the first kind. - Peter Bala, May 01 2012
a(n) = (-sqrt(2)*i)^n*T(n, sqrt(2)*i/2)*2^(-floor(n/2)) = A026150(n)*2^(-floor(n/2)), n >= 0, with i = sqrt(-1) and the Chebyshev T polynomials (A053120). - Wolfdieter Lang, Feb 10 2018
From Franck Maminirina Ramaharo, Nov 14 2018: (Start)
a(n) = ((1 - sqrt(2))*(-1)^n + 1 + sqrt(2))*(((sqrt(2) - sqrt(6))/2)^n + ((sqrt(6) + sqrt(2))/2)^n)/4.
E.g.f.: cosh(sqrt(3/2)*x)*(sqrt(2)*sinh(x/sqrt(2)) + cosh(x/sqrt(2))). (End)
a(n) = (-1)^n*a(-n) for all n in Z. - Michael Somos, Mar 22 2022
a(n) = 4*a(n-2) - a(n-4). - Boštjan Gec, Sep 21 2023

Extensions

Name edited (as by discussion in A002530) by M. F. Hasler, Nov 04 2019

A016064 Smallest side lengths of almost-equilateral Heronian triangles (sides are consecutive positive integers, area is a nonnegative integer).

Original entry on oeis.org

1, 3, 13, 51, 193, 723, 2701, 10083, 37633, 140451, 524173, 1956243, 7300801, 27246963, 101687053, 379501251, 1416317953, 5285770563, 19726764301, 73621286643, 274758382273, 1025412242451, 3826890587533, 14282150107683, 53301709843201, 198924689265123, 742397047217293
Offset: 0

Views

Author

Keywords

Comments

Least side in a triangle with integer sides (m, m+1, m+2) (m >= 1) and integer area. The degenerate triangle with sides (1,2,3) is included.
Also describes triangles whose sides are consecutive integers and in which the inscribed circle has an integer radius. - Harvey P. Dale, Dec 28 2000 [Then, the length of this inradius is A001353(n). - Bernard Schott, Mar 21 2023]
Equivalently, positive integers m such that (3/16)*m^4 + (3/4)*m^3 + (3/8)*m^2 - (3/4)*m - 9/16 is a square (A000290), a direct result of Heron's formula. - Rick L. Shepherd, Sep 04 2005
"The problem is to find the sides of a triangle that shall have the values n, n + 1, and n + 2 and such that the perpendicular upon the longest side from the opposite vertex shall be rational. Nakane solves it as follows..." (Smith and Mikami, 2004). - Jonathan Sondow, May 09 2013
For n >= 1 all terms are congruent to {1,3} mod 10. Among first 100 terms there are 6 prime numbers: 3, 13, 193, 37633, 7300801, 1416317953. - Zak Seidov, Jun 14 2018
n > 1 is in this sequence if and only if the triangle with sides 4, n, n+2 has integer area (compare with A072221 for sides 3, n, n+1). - Michael Somos, May 11 2019
a(0) = 1 corresponds to the degenerate triangle [1,2,3], with area = 0. - Wesley Ivan Hurt, May 20 2020
Since this is a list it should really have offset 1, but that would require a large number of changes. - N. J. A. Sloane, Feb 04 2021
Least distance from centroid of a triangle to vertices, distances being m, m+1, m+2 and triangle area being a nonnegative integer. - Alexandru Petrescu, Feb 28 2023
Then, in this case, with a(n) = m, the corresponding area of this triangle is 3 * A011945(n+1). - Bernard Schott, Mar 21 2023

Examples

			G.f. = 1 + 3*x + 13*x^2 + 51*x^3 + 193*x^4 + 723*x^5 + 2701*x^6 + ... - _Michael Somos_, May 11 2019
		

References

  • Nakane Genkei (Nakane the Elder), Shichijo Beki Yenshiki, 1691.

Crossrefs

Cf. A011945 (areas), A334277 (perimeters) A001353 (inradius).
Cf. A003500 (middle side lengths), this sequence (smallest side lengths), A335025 (largest side lengths).
Cf. A001353, A019973 (2 + sqrt(3)), A102341, A103974, A103975.
Cf. A072221.

Programs

  • Magma
    I:=[1,3,13]; [n le 3 select I[n] else 4*Self(n-1)-Self(n-2)+2: n in [1..30]]; // Vincenzo Librandi, Nov 13 2018
  • Mathematica
    LinearRecurrence[{5,-5,1},{1,3,13},26] (* Ray Chandler, Jan 27 2014 *)
    CoefficientList[Series[(1 - 2 x + 3 x^2) / (1 - 5 x + 5 x^2 - x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Nov 13 2018 *)
    a[ n_] := 2 ChebyshevT[n, 2] - 1; (* Michael Somos, May 11 2019 *)
  • PARI
    for(a=1,10^9, b=a+1; c=a+2; s=(a+b+c)/2; if(issquare(s*(s-a)*(s-b)*(s-c)), print1(a,","))) \\ Rick L. Shepherd, Feb 18 2007
    
  • PARI
    a(n)=if(n<1,1,-1+ceil((2+sqrt(3))^(n))) \\ Ralf Stephan
    
  • PARI
    is(n)=issquare(3*n^2+6*n-9) \\ Charles R Greathouse IV, May 16 2014
    
  • PARI
    {a(n) = 2 * polchebyshev(n, 1, 2) - 1}; /* Michael Somos, May 11 2019 */
    

Formula

a(n) = 3 + floor((2 + sqrt(3))*a(n-1)), n >= 3. - Rick L. Shepherd, Sep 04 2005
From Paul Barry, Feb 17 2004: (Start)
a(n) = 4*a(n-1) - a(n-2) + 2.
a(n) = (2 + sqrt(3))^n + (2 - sqrt(3))^n - 1.
a(n) = 2*A001075(n) - 1.
G.f.: (1 - 2*x + 3*x^3)/((1 - x)*(1 - 4*x + x^2)) = (1 - 2*x + 3*x^2)/(1 - 5*x + 5*x^2 - x^3). (End)
For n >= 1, a(n) = ceiling((2 + sqrt(3))^n) - 1.
a(n) = A003500(n) - 1. - T. D. Noe, Jun 17 2004
a(n) = [x^n] ( 1 + 2*x + sqrt(1 + 2*x + 3*x^2) )^n. - Peter Bala, Jun 23 2015
E.g.f.: exp((2 + sqrt(3))*x) + exp((2 - sqrt(3))*x) - exp(x). - Franck Maminirina Ramaharo, Nov 12 2018
a(n) = a(-n) for all integer n. - Michael Somos, May 11 2019

Extensions

More terms from Rick L. Shepherd, Feb 18 2007
Definition revised by N. J. A. Sloane, Feb 04 2021

A005320 a(n) = 4*a(n-1) - a(n-2), with a(0) = 0, a(1) = 3.

Original entry on oeis.org

0, 3, 12, 45, 168, 627, 2340, 8733, 32592, 121635, 453948, 1694157, 6322680, 23596563, 88063572, 328657725, 1226567328, 4577611587, 17083879020, 63757904493, 237947738952, 888033051315, 3314184466308, 12368704813917, 46160634789360, 172273834343523, 642934702584732, 2399464975995405, 8954925201396888, 33420235829592147
Offset: 0

Views

Author

Keywords

Comments

For n > 1, a(n-1) is the determinant of the n X n band matrix which has {2,4,4,...,4,4,2} on the diagonal and a 1 on the entire super- and subdiagonal. This matrix appears when constructing a natural cubic spline interpolating n equally spaced data points. - g.degroot(AT)phys.uu.nl, Feb 14 2007
Integer values of x that make 9+3*x^2 a perfect square. - Lorenz H. Menke, Jr., Mar 26 2008
The intermediate convergents to 3^(1/2), beginning with 3/2, 12/7, 45/26, 168/97, comprise a strictly increasing sequence whose numerators are the terms of this sequence and denominators are A001075. - Clark Kimberling, Aug 27 2008
a(n) also give the altitude to the middle side of a Super-Heronian Triangle. - Johannes Boot, Oct 14 2010
a(n) gives values of y satisfying 3*x^2 - 4*y^2 = 12; corresponding x values are given by A003500. - Sture Sjöstedt, Dec 19 2017

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [3*Evaluate(ChebyshevSecond(n), 2): n in [0..40]]; // G. C. Greubel, Oct 10 2022
    
  • Maple
    A005320:=3*z/(1-4*z+z**2); # Simon Plouffe in his 1992 dissertation
    a:= n-> (Matrix([[3,0]]). Matrix([[4,1],[ -1,0]])^n)[1,2]: seq(a(n), n=0..50); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    LinearRecurrence[{4,-1},{0,3},40] (* Harvey P. Dale, Mar 04 2012 *)
  • PARI
    Vec(3/(x^2-4*x+1)+O(x^99)) \\ Charles R Greathouse IV, Mar 05 2012
    
  • SageMath
    [3*chebyshev_U(n-1,2) for n in range(41)] # G. C. Greubel, Oct 10 2022

Formula

a(n) = (sqrt(3)/2)*( (2+sqrt(3))^n - (2-sqrt(3))^n ). - Antonio Alberto Olivares, Jan 17 2004
G.f.: 3*x/(1-4*x+x^2). - Harvey P. Dale, Mar 04 2012
a(n) = 3*A001353(n). - R. J. Mathar, Mar 14 2016

Extensions

Typo in definition corrected by Johannes Boot, Feb 05 2009

A011945 Areas of almost-equilateral Heronian triangles (integral side lengths m-1, m, m+1 and integral area).

Original entry on oeis.org

0, 6, 84, 1170, 16296, 226974, 3161340, 44031786, 613283664, 8541939510, 118973869476, 1657092233154, 23080317394680, 321467351292366, 4477462600698444, 62363009058485850, 868604664218103456, 12098102289994962534, 168504827395711372020, 2346969481249964245746
Offset: 1

Views

Author

E. K. Lloyd

Keywords

Comments

Corresponding m's are in A016064. Corresponding values of lesser side give A016064.

Crossrefs

Equals 6 * A007655(n+1).
Cf. this sequence (areas), A334277 (perimeters).
Cf. A003500 (middle side lengths), A016064 (smallest side lengths), A335025 (largest side lengths).

Programs

  • Mathematica
    CoefficientList[Series[6 x/(1 - 14 x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 15 2013 *)
    LinearRecurrence[{14,-1},{0,6},20] (* Harvey P. Dale, Jan 24 2015 *)

Formula

s(n) = floor((a+1)/4)*sqrt(3*(a+3)*(a-1)), where a = A016064(n). - Zak Seidov, Feb 23 2005
a(n) = 14*a(n-1) - a(n-2); a(1) = 0, a(2) = 6.
G.f.: 6*x^2/(1 - 14*x + x^2). - Philippe Deléham, Nov 17 2008
a(n) = (s/4)*((7 + 4*s)^n - (7 - 4*s)^n), where s = sqrt(3). - Zak Seidov, Apr 02 2014
E.g.f.: 6 - exp(7*x)*(12*cosh(4*sqrt(3)*x) - 7*sqrt(3)*sinh(4*sqrt(3)*x))/2. - Stefano Spezia, Dec 12 2022

Extensions

Entry revised by N. J. A. Sloane, Feb 03 2007

A180140 Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1+x+x^2)/(1-3*x-5*x^2).

Original entry on oeis.org

1, 4, 18, 74, 312, 1306, 5478, 22964, 96282, 403666, 1692408, 7095554, 29748702, 124723876, 522915138, 2192364794, 9191670072, 38536834186, 161568852918, 677390729684, 2840016453642, 11907003009346, 49921091296248
Offset: 0

Views

Author

Johannes W. Meijer, Aug 13 2010, Jun 15 2013

Keywords

Comments

a(n) gives the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6, 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a rook on the four side and four corner (m = 1, 3, 7, 9) squares but on the center square (m = 5) it goes berserk and turns into a berserker. For this sequence, the berserker can move to three of the side squares and three of the corners from the center.
The berserker is one of the Lewis chessmen which were discovered in 1831 on the Isle of Lewis. They are carved from walrus ivory in Scandinavian style of the 12th century. The pawns look like decorated tombstones. The pieces have all human representations with facial expressions varying from gloom to anger. Some of the rooks show men biting their shield in the manner of berserkers. According to Hooper and Whyld none looks happy.
Let A be the adjacency matrix of the graph G, where V(G) = {v1, v2, v3, v4, v5, v6, v7, v8, v9}. Then the (m, k) entry of A^n is the number of different vm-vk walks of length n in G, see the Chartrand reference. In the adjacency matrix A, see the Maple program, the A[1], A[3], A[7] and A[9] vectors represent the rook moves on the corner squares, the A[2], A[4], A[6] and A[8] vectors represent the rook moves on the side squares and the A[5] vector represents the moves of the berserker. On a 3 X 3 chessboard there are 2^9 = 512 ways a berserker could move from the center square (off the center the berserker behaves like a rook) so there are 512 different berserkers.
For the side squares the 512 berserker vectors lead to 42 different sequences, see the overview of berserker sequences. There are 16 berserker vectors that lead to the sequence given above. Their decimal [binary] values are: 111 [001 101 111] , 207 [011 001 111], 231 [011 100 111], 237 [011 101 101], 303 [100 101 111], 363 [101 101 011], 366 [101 101 110], 399 [110 001 111], 423 [110 100 111], 429 [110 101 101], 459 [111 001 011], 462 [111 001 110], 483 [111 100 011], 486 [111 100 110], 489 [111 101 001] and 492 [111 101 100]. These berserker vectors lead for the corner squares to sequence 4*A179606 (with leading term 1 added) and for the central square to sequence 6*A179606 (with leading term 1 added).
This sequence belongs to a family of sequences with GF(x)=(1+x-k*x^2)/(1-3*x+(k-4)*x^2), see A180142.

References

  • Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984.
  • David Hooper and Kenneth Whyld, The Oxford Companion to Chess, pp. 131, 225, 1992.

Crossrefs

Cf. A180141 (corner squares) and A180147 (central square).
Cf. Berserker sequences side squares: 4*A007482 (with leading 1 added), A180144, A003500 (n>=1 and a(0)=1), A180142, A000302, A180140 (this sequence), 2*A001077 (n>=1 and a(0)=1), A180146, 4*A154964 (n>=1 and a(0)=1), 4*A123347 (with leading 1 added).

Programs

  • Maple
    nmax:=22; m:=2; A[1]:=[0, 1, 1, 1, 0, 0, 1, 0, 0]: A[2]:=[1, 0, 1, 0, 1, 0, 0, 1, 0]: A[3]:= [1, 1, 0, 0, 0, 1, 0, 0, 1]: A[4]:= [1, 0, 0, 0, 1, 1, 1, 0, 0]: A[5]:=[0, 0, 1, 1, 0, 1, 1, 1, 1]: A[6]:=[0, 0, 1, 1, 1, 0, 0, 0, 1]: A[7]:=[1, 0, 0, 1, 0, 0, 0, 1, 1]: A[8]:=[0, 1, 0, 0, 1, 0, 1, 0, 1]: A[9]:=[0, 0, 1, 0, 0, 1, 1, 1, 0]: A:= Matrix([A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1+x+x^2)/(1-3*x-5*x^2), {x, 0, 22}],x] (* or *) LinearRecurrence[{3,5,0},{1,4,18},23] (* Indranil Ghosh, Mar 05 2017 *)
  • PARI
    print(Vec((1 + x + x^2)/(1- 3*x - 5*x^2) + O(x^23))); \\ Indranil Ghosh, Mar 05 2017

Formula

G.f.: (1+x+x^2)/(1-3*x-5*x^2).
a(n) = 3*a(n-1) + 5*a(n-2) for n>=3 with a(0)=1, a(1)=4 and a(2)=18.
a(n) = ((22+54*A)*A^(-n-1) + (22+54*B)*B^(-n-1))/145 with A=(-3+sqrt(29))/10 and B=(-3-sqrt(29))/10 for n>=1 with a(0)=1.
5*a(n) = 2*( A015523(n) + 3*A015523(n+1)), n>0 - R. J. Mathar, May 11 2013

A084917 Positive numbers of the form 3*y^2 - x^2.

Original entry on oeis.org

2, 3, 8, 11, 12, 18, 23, 26, 27, 32, 39, 44, 47, 48, 50, 59, 66, 71, 72, 74, 75, 83, 92, 98, 99, 104, 107, 108, 111, 122, 128, 131, 138, 143, 146, 147, 156, 162, 167, 176, 179, 183, 188, 191, 192, 194, 200, 207, 218, 219, 227, 234, 236, 239, 242, 243, 251, 263, 264, 275, 282, 284
Offset: 1

Views

Author

Roger Cuculière, Jul 14 2003

Keywords

Comments

Positive integers k such that x^2 - 4xy + y^2 + k = 0 has integer solutions. (See the CROSSREFS section for sequences relating to solutions for particular k.)
Comments on method used, from Colin Barker, Jun 06 2014: (Start)
In general, we want to find the values of f, from 1 to 400 say, for which x^2 + bxy + y^2 + f = 0 has integer solutions for a given b.
In order to solve x^2 + bxy + y^2 + f = 0 we can solve the Pellian equation x^2 - Dy^2 = N, where D = b*b - 4 and N = 4*(b*b - 4)*f.
But since sqrt(D) < N, the classical method of solving x^2 - Dy^2 = N does not work. So I implemented the method described in the 1998 sci.math reference, which says:
"There are several methods for solving the Pellian equation when |N| > sqrt(d). One is to use a brute-force search. If N < 0 then search on y = sqrt(abs(n/d)) to sqrt((abs(n)(x1 + 1))/(2d)) and if N > 0 search on y = 0 to sqrt((n(x1 - 1))/(2d)) where (x1, y1) is the minimum positive solution (x, y) to x^2 - dy^2 = 1. If N < 0, for each positive (x, y) found by the search, also take (-x, y). If N > 0, also take (x, -y). In either case, all positive solutions are generated from these using (x1, y1) in the standard way."
Incidentally all my Pell code is written in B-Prolog, and is somewhat voluminous. (End)
Also, positive integers of the form -x^2 + 2xy + 2y^2 of discriminant 12. - N. J. A. Sloane, May 31 2014 [Corrected by Klaus Purath, May 07 2023]
The equivalent sequence for x^2 - 3xy + y^2 + k = 0 is A031363.
The equivalent sequence for x^2 - 5xy + y^2 + k = 0 is A237351.
A positive k does not appear in this sequence if and only if there is no integer solution of x^2 - 3*y^2 = -k with (i) 0 < y^2 <= k/2 and (ii) 0 <= x^2 <= k/2. See the Nagell reference Theorems 108 a and 109, pp. 206-7, with D = 3, N = k and (x_1,y_1) = (2,1). - Wolfdieter Lang, Jan 09 2015
From Klaus Purath, May 07 2023: (Start)
There are no squares in this sequence. Products of an odd number of terms as well as products of an odd number of terms and any terms of A014209 belong to the sequence.
Products of an even number of terms are terms of A014209. The union of this sequence and A014209 is closed under multiplication.
A positive number belongs to this sequence if and only if it contains an odd number of prime factors congruent to {2, 3, 11} modulo 12. If it contains prime factors congruent to {5, 7} modulo 12, these occur only with even exponents. (End)
From Klaus Purath, Jul 09 2023: (Start)
Any term of the sequence raised to an odd power also belongs to the sequence. Proof: t^(2n+1) = t*t^2n = (3*x^2 - y^2)*t^2n = 3*(x*t^n)^2 - (y*t^n)^2. It seems that t^(2n+1) occurs only if t also is in the sequence.
Joerg Arndt has proved that there are no squares in this sequence: Assume s^2 = 3*y^2 - x^2, then s^2 + x^2 = 3 * y^2, but the sum of two squares cannot be 3 * y^2, qed. (End)
That products of any 3 terms belong to the sequence can be proved by the following identity: (na^2 - b^2) (nc^2 - d^2) (ne^2 - f^2) = n[a(nce + df) + b(cf + de)]^2 - [na(cf + de) + b(nce + df)]^2. This can be verified by expanding both sides of the equation. - Klaus Purath, Jul 14 2023

Examples

			11 is in the sequence because 3 * 3^2 - 4^2 = 27 - 16 = 11.
12 is in the sequence because 3 * 4^2 - 6^2 = 48 - 36 = 12.
13 is not in the sequence because there is no solution in integers to 3y^2 - x^2 = 13.
From _Wolfdieter Lang_, Jan 09 2015: (Start)
Referring to the Jan 09 2015 comment above.
k = 1 is out because there is no integer solution of (i) 0 < y^2 <= 1/2.
For k = 4, 5, 6, and 7 one has y = 1, x = 0, 1 (and the negative of this). But x^2 - 3 is not -k for these k and x values. Therefore, these k values are missing.
For k = 8 .. 16 one has y = 1, 2 and x = 0, 1, 2. Only y = 2 has a chance and only for k = 8, 11 and 12 the x value 2, 1 and 0, respectively, solves x^2 - 12 = -k. Therefore 9, 10, 13, 14, 15, 16 are missing.
... (End)
		

References

  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.

Crossrefs

With respect to solutions of the equation in the early comment, see comments etc. in: A001835 (k = 2), A001075 (k = 3), A237250 (k = 11), A003500 (k = 12), A082841 (k = 18), A077238 (k = 39).
A141123 gives the primes.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    r[n_] := Reduce[n == 3*y^2 - x^2 && x > 0 && y > 0, {x, y}, Integers]; Reap[For[n = 1, n <= 1000, n++, rn = r[n]; If[rn =!= False, Print["n = ", n, ", ", rn /. C[1] -> 1 // Simplify]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jan 21 2016 *)
    Select[Range[300],Length[FindInstance[3y^2-x^2==#,{x,y},Integers]]>0&] (* Harvey P. Dale, Apr 23 2023 *)

Extensions

Terms 26 and beyond from Colin Barker, Feb 06 2014

A082841 a(n) = 4*a(n-1) - a(n-2) for n>1, a(0)=3, a(1)=9.

Original entry on oeis.org

3, 9, 33, 123, 459, 1713, 6393, 23859, 89043, 332313, 1240209, 4628523, 17273883, 64467009, 240594153, 897909603, 3351044259, 12506267433, 46674025473, 174189834459, 650085312363, 2426151414993, 9054520347609, 33791929975443
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 14 2003

Keywords

Comments

y-values in the solutions to 3*x^2+6 = y^2. - Sture Sjöstedt, Nov 25 2011
Positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 18 = 0. - Colin Barker, Feb 04 2014
Positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 288 = 0. - Colin Barker, Feb 16 2014

Crossrefs

First differences of A005320.
Cf. A001834.

Programs

  • GAP
    a:=[3,9];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Feb 25 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (3-6*x+3*x^2)/((1-x)*(1-4*x+x^2)) )); // G. C. Greubel, Feb 25 2019
    
  • Maple
    a:=proc(n) option remember; if n=0 then 3 elif n=1 then 9 else 4*a(n-1)-a(n-2); fi; end: seq(a(n), n=0..40); # Wesley Ivan Hurt, Jan 21 2017
  • Mathematica
    CoefficientList[Series[(3-6x+3x^2)/((1-x)(1-4x+x^2)), {x, 0, 25}], x]
    LinearRecurrence[{4,-1},{3,9},30] (* Harvey P. Dale, Aug 28 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((3-6*x+3*x^2)/((1-x)*(1-4*x+x^2))) \\ G. C. Greubel, Feb 25 2019
    
  • Sage
    ((3-6*x+3*x^2)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
    

Formula

G.f.: (3 -6*x +3*x^2)/((1-x)*(1-4*x+x^2)).
a(n) = sqrt(3/2)*(a^(n+1/2) + b^(n+1/2)), with a=2+sqrt(3) and b=2-sqrt(3).
a(n) = sqrt(3*(11 +12*A082840(n) +4*A082840(n)^2)).
a(n) = sqrt((3/2)*(A003500(2n+1) +2)).
a(n) - a(n-1) = 6*A001353(n).
a(n) == 3 (mod 6).
a(n) = 3 * A001835(n+1).
a(n) = 3*x(n) + 3*y(n) for x(n)= A001075(n) and y(n) = A001353(n) the solutions to x^2 - 3*y^2 = 1. - Greg Dresden and his Math 222 Linear Algebra class, Oct 05 2022
Previous Showing 11-20 of 50 results. Next