cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 126 results. Next

A187556 Triangle read by rows of products of (signless) Stirling numbers of the first kind (A132393) and Stirling numbers of the second kind (A008277).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 9, 1, 0, 6, 77, 36, 1, 0, 24, 750, 875, 100, 1, 0, 120, 8494, 20250, 5525, 225, 1, 0, 720, 111132, 488824, 257250, 24500, 441, 1, 0, 5040, 1659636, 12685512, 11514069, 2058000, 85652, 784, 1, 0, 40320, 27943920, 357325100, 522796680, 156042999, 12002256, 252252, 1296, 1, 0, 362880, 524580336, 10941291000, 24681106400, 11453045625, 1444332771, 55566000, 652500, 2025, 1
Offset: 0

Views

Author

Emanuele Munarini, Mar 11 2011

Keywords

Examples

			Triangle begins:
1
0,1
0,1,1
0,2,9,1
0,6,77,36,1
0,24,750,875,100,1
0,120,8494,20250,5525,225,1
0,720,111132,488824,257250,24500,441,1
0,5040,1659636,12685512,11514069,2058000,85652,784,1
		

Crossrefs

Programs

  • Maple
    seq(seq(abs(combinat[stirling1](n,k))*combinat[stirling2](n,k),k=0..n),n=0..8);
  • Mathematica
    Flatten[Table[Table[Abs[StirlingS1[n, k]]*StirlingS2[n, k], {k, 0, n}],{n, 0, 8}] ,1]
  • Maxima
    create_list(abs(stirling1(n,k)*stirling2(n,k)),n,0,10,k,0,n);

Formula

Formula: a(n,k) = s(n,k)*S(n,k), where the s(n,k) are the (signless) Stirling numbers of the first kind and the S(n,k) are the Stirling numbers of the second kind.

A271699 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j,-n)*S1(k,j), S1 the Stirling cycle numbers A132393, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 3, 9, 0, 1, 4, 14, 58, 0, 1, 5, 20, 90, 475, 0, 1, 6, 27, 131, 729, 4666, 0, 1, 7, 35, 182, 1064, 7070, 53116, 0, 1, 8, 44, 244, 1494, 10284, 79470, 684762, 0, 1, 9, 54, 318, 2034, 14478, 114918, 1012368, 9833391
Offset: 0

Views

Author

Peter Luschny, Apr 14 2016

Keywords

Examples

			Triangle starts:
1,
0, 1,
0, 1, 2,
0, 1, 3, 9,
0, 1, 4, 14, 58,
0, 1, 5, 20, 90,  475,
0, 1, 6, 27, 131, 729,  4666,
0, 1, 7, 35, 182, 1064, 7070, 53116
		

Crossrefs

A000027 (col. 2), A000096 (col. 3), A247329 (diag. n,n).

Programs

  • Maple
    T := (n,k) -> add(abs(Stirling1(k,j))*binomial(-j,-n)*(-1)^(n-j), j=0..n):
    seq(seq(T(n,k), k=0..n), n=0..9);
  • Mathematica
    Flatten[Table[Sum[(-1)^(n-j)Binomial[-j,-n] Abs[StirlingS1[k,j]],{j,0,n}], {n,0,9},{k,0,n}]]

A373570 Triangle read by rows: Coefficients of the polynomials S1(n, x) * EP(n, x), where S1 denote the unsigned Stirling cycle polynomials A132393 and EP the Eulerian polynomials A173018.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 1, 0, 2, 11, 15, 7, 1, 0, 6, 77, 193, 194, 88, 17, 1, 0, 24, 674, 2919, 4844, 3895, 1646, 361, 36, 1, 0, 120, 7114, 52083, 131898, 162398, 110214, 43356, 9902, 1242, 72, 1, 0, 720, 88164, 1070824, 4036059, 7141903, 7007314, 4133290, 1519960, 350176, 49162, 3886, 141, 1
Offset: 0

Views

Author

Peter Luschny, Jun 16 2024

Keywords

Examples

			Triangle starts:
[0] [1]
[1] [0,  1]
[2] [0,  1,   2,    1]
[3] [0,  2,  11,   15,    7,    1]
[4] [0,  6,  77,  193,  194,   88,   17,   1]
[5] [0, 24, 674, 2919, 4844, 3895, 1646, 361, 36, 1]
		

Crossrefs

Cf. A173018, A132393, A000142, A373657, A001044 (row sums).

Programs

  • Maple
    PolyProd(((n, k) -> abs(Stirling1(n, k))), combinat:-eulerian1, 7); # Using PolyProd from A373657.

A000262 Number of "sets of lists": number of partitions of {1,...,n} into any number of lists, where a list means an ordered subset.

Original entry on oeis.org

1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, 58941091, 824073141, 12470162233, 202976401213, 3535017524403, 65573803186921, 1290434218669921, 26846616451246353, 588633468315403843, 13564373693588558173, 327697927886085654441, 8281153039765859726341
Offset: 0

Views

Author

Keywords

Comments

Determinant of n X n matrix M=[m(i,j)] where m(i,i)=i, m(i,j)=1 if i > j, m(i,j)=i-j if j > i. - Vladeta Jovovic, Jan 19 2003
With p(n) = the number of integer partitions of n, d(i) = the number of different parts of the i-th partition of n, m(i,j) = multiplicity of the j-th part of the i-th partition of n, Sum_{i=1..p(n)} = sum over i and Product_{j=1..d(i)} = product over j, one has: a(n) = Sum_{i=1..p(n)} n!/(Product_{j=1..d(i)} m(i,j)!). - Thomas Wieder, May 18 2005
Consider all n! permutations of the integer sequence [n] = 1,2,3,...,n. The i-th permutation, i=1,2,...,n!, consists of Z(i) permutation cycles. Such a cycle has the length lc(i,j), j=1,...,Z(i). For a given permutation we form the product of all its cycle lengths Product_{j=1..Z(i)} lc(i,j). Furthermore, we sum up all such products for all permutations of [n] which gives Sum_{i=1..n!} Product_{j=1..Z(i)} lc(i,j) = A000262(n). For n=4 we have Sum_{i=1..n!} Product_{j=1..Z(i)} lc(i,j) = 1*1*1*1 + 2*1*1 + 3*1 + 2*1*1 + 3*1 + 2*1 + 3*1 + 4 + 3*1 + 4 + 2*2 + 2*1*1 + 3*1 + 4 + 3*1 + 2*1*1 + 2*2 + 4 + 2*2 + 4 + 3*1 + 2*1*1 + 3*1 + 4 = 73 = A000262(4). - Thomas Wieder, Oct 06 2006
For a finite set S of size n, a chain gang G of S is a partially ordered set (S,<=) consisting only of chains. The number of chain gangs of S is a(n). For example, with S={a, b}and n=2, there are a(2)=3 chain gangs of S, namely, {(a,a),(b,b)}, {(a,a),(a,b),(b,b)} and {(a,a),(b,a),(b,b)}. - Dennis P. Walsh, Feb 22 2007
(-1)*A000262 with the first term set to 1 and A084358 form a reciprocal pair under the list partition transform and associated operations described in A133314. Cf. A133289. - Tom Copeland, Oct 21 2007
Consider the distribution of n unlabeled elements "1" onto n levels where empty levels are allowed. In addition, the empty levels are labeled. Their names are 0_1, 0_2, 0_3, etc. This sequence gives the total number of such distributions. If the empty levels are unlabeled ("0"), then the answer is A001700. Let the colon ":" separate two levels. Then, for example, for n=3 we have a(3)=13 arrangements: 111:0_1:0_2, 0_1:111:0_2, 0_1:0_2:111, 111:0_2:0_1, 0_2:111:0_1, 0_2:0_1:111, 11:1:0, 11:0:1, 0:11:1, 1:11:0, 1:0:11, 0:1:11, 1:1:1. - Thomas Wieder, May 25 2008
Row sums of exponential Riordan array [1,x/(1-x)]. - Paul Barry, Jul 24 2008
a(n) is the number of partitions of [n] (A000110) into lists of noncrossing sets. For example, a(3)=3 counts 12, 1-2, 2-1 and a(4) = 73 counts the 75 partitions of [n] into lists of sets (A000670) except for 13-24, 24-13 which fail to be noncrossing. - David Callan, Jul 25 2008
a(i-j)/(i-j)! gives the value of the non-null element (i, j) of the lower triangular matrix exp(S)/exp(1), where S is the lower triangular matrix - of whatever dimension - having all its (non-null) elements equal to one. - Giuliano Cabrele, Aug 11 2008, Sep 07 2008
a(n) is also the number of nilpotent partial one-one bijections (of an n-element set). Equivalently, it is the number of nilpotents in the symmetric inverse semigroup (monoid). - Abdullahi Umar, Sep 14 2008
A000262 is the exp transform of the factorial numbers A000142. - Thomas Wieder, Sep 10 2008
If n is a positive integer then the infinite continued fraction (1+n)/(1+(2+n)/(2+(3+n)/(3+...))) converges to the rational number A052852(n)/A000262(n). - David Angell (angell(AT)maths.unsw.edu.au), Dec 18 2008
Vladeta Jovovic's formula dated Sep 20 2006 can be restated as follows: a(n) is the n-th ascending factorial moment of the Poisson distribution with parameter (mean) 1. - Shai Covo (green355(AT)netvision.net.il), Jan 25 2010
The umbral exponential generating function for a(n) is (1-x)^{-B}. In other words, write (1-x)^{-B} as a power series in x whose coefficients are polynomials in B, and then replace B^k with the Bell number B_k. We obtain a(0) + a(1)x + a(2)x^2/2! + ... . - Richard Stanley, Jun 07 2010
a(n) is the number of Dyck n-paths (A000108) with its peaks labeled 1,2,...,k in some order, where k is the number of peaks. For example a(2)=3 counts U(1)DU(2)D, U(2)DU(1)D, UU(1)DD where the label at each peak is in parentheses. This is easy to prove using generating functions. - David Callan, Aug 23 2011
a(n) = number of permutations of the multiset {1,1,2,2,...,n,n} such that for 1 <= i <= n, all entries between the two i's exceed i and if any such entries are present, they include n. There are (2n-1)!! permutations satisfying the first condition, and for example: a(3)=13 counts all 5!!=15 of them except 331221 and 122133 which fail the second condition. - David Callan, Aug 27 2014
a(n) is the number of acyclic, injective functions from subsets of [n] to [n]. Let subset D of [n] have size k. The number of acyclic, injective functions from D to [n] is (n-1)!/(n-k-1)! and hence a(n) = Sum_{k=0..n-1} binomial(n,k)*(n-1)!/(n-k-1)!. - Dennis P. Walsh, Nov 05 2015
a(n) is the number of acyclic, injective, labeled directed graphs on n vertices with each vertex having outdegree at most one. - Dennis P. Walsh, Nov 05 2015
For n > 0, a(n) is the number of labeled-rooted skinny-tree forests on n nodes. A skinny tree is a tree in which each vertex has at most one child. Let k denote the number of trees. There are binomial(n,k) ways to choose the roots, binomial(n-1,k-1) ways to choose the number of descendants for each root, and (n-k)! ways to permute those descendants. Summing over k, we obtain a(n) = Sum_{k=1..n} C(n,k)*C(n-1,k-1)*(n-k)!. - Dennis P. Walsh, Nov 10 2015
This is the Sheffer transform of the Bell numbers A000110 with the Sheffer matrix S = |Stirling1| = (1, -log(1-x)) = A132393. See the e.g.f. formula, a Feb 21 2017 comment on A048993, and R. Stanley's Jun 07 2010 comment above. - Wolfdieter Lang, Feb 21 2017
All terms = {1, 3} mod 10. - Muniru A Asiru, Oct 01 2017
We conjecture that for k = 2,3,4,..., the difference a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k is periodic with period dividing k. - Peter Bala, Nov 14 2017
The above conjecture is true - see the Bala link. - Peter Bala, Jan 20 2018
The terms of this sequence can be derived from the numerators of the fractions, produced by the recursion: b(0) = 1, b(n) = 1 + ((n-1) * b(n-1)) / (n-1 + b(n-1)) for n > 0. The denominators give A002720. - Dimitris Valianatos, Aug 01 2018
a(n) is the number of rooted labeled forests on n nodes that avoid the patterns 213, 312, and 123. It is also the number of rooted labeled forests that avoid 312, 213, and 132, as well as the number of rooted labeled forests that avoid 132, 213, and 321. - Kassie Archer, Aug 30 2018
For n > 0, a(n) is the number of partitions of [2n-1] whose nontrivial blocks are of type {a,b}, with a <= n and b > n. In fact, for n > 0, a(n) = A056953(2n-1). - Francesca Aicardi, Nov 03 2022
For n > 0, a(n) is the number of ways to split n people into nonempty groups, have each group sit around a circular table, and select one person from each table (where two seating arrangements are considered identical if each person has the same left neighbors in both of them). - Enrique Navarrete, Oct 01 2023

Examples

			Illustration of first terms as sets of ordered lists of the first n integers:
  a(1) = 1  : (1)
  a(2) = 3  : (12), (21), (1)(2).
  a(3) = 13 : (123) (6 ways), (12)(3) (2*3 ways) (1)(2)(3) (1 way)
  a(4) = 73 : (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (2*2*3 ways), (12)(3)(4) (2*6 ways), (1)(2)(3)(4) (1 way).
G.f. = 1 + x + 3*x^2 + 13*x^3 + 73*x^4 + 501*x^4 + 4051*x^5 + 37633*x^6 + 394353*x^7 + ...
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 194.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A271703 and for n >= 1 of A008297. Unsigned row sums of A111596.
A002868 is maximal element of the n-th row of A271703 and for n >= 1 of A008297.
Main diagonal of A257740 and of A319501.

Programs

  • GAP
    a:=[1,1];; for n in [3..10^2] do a[n]:=(2*n-3)*a[n-1]-(n-2)*(n-3)*a[n-2]; od; A000262:=a;  # Muniru A Asiru, Oct 01 2017
    
  • Haskell
    a000262 n = a000262_list !! n
    a000262_list = 1 : 1 : zipWith (-)
                   (tail $ zipWith (*) a005408_list a000262_list)
                          (zipWith (*) a002378_list a000262_list)
    -- Reinhard Zumkeller, Mar 06 2014
    
  • Magma
    I:=[1,3]; [1] cat [n le 2 select I[n]  else (2*n-1)*Self(n-1) - (n-1)*(n-2)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 14 2019
    
  • Magma
    [Factorial(n)*Evaluate(LaguerrePolynomial(n, -1), -1): n in [0..30]]; // G. C. Greubel, Feb 23 2021
    
  • Maple
    A000262 := proc(n) option remember: if n=0 then RETURN(1) fi: if n=1 then RETURN(1) fi: (2*n-1)*procname(n-1) - (n-1)*(n-2)*procname(n-2) end proc:
    for n from 0 to 20 do printf(`%d,`,a(n)) od:
    spec := [S, {S = Set(Prod(Z,Sequence(Z)))}, labeled]; [seq(combstruct[count](spec, size=n), n=0..40)];
    with(combinat):seq(sum(abs(stirling1(n, k))*bell(k), k=0..n), n=0..18); # Zerinvary Lajos, Nov 26 2006
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=13)},labelled]: seq(combstruct[count](B, size=n), n=0..19);# Zerinvary Lajos, Mar 21 2009
    a := n -> `if`(n=0, 1, n!*hypergeom([1 - n], [2], -1)): seq(simplify(a(n)), n=0..19); # Peter Luschny, Jun 05 2014
  • Mathematica
    Range[0, 19]! CoefficientList[ Series[E^(x/(1-x)), {x, 0, 19}], x] (* Robert G. Wilson v, Apr 04 2005 *)
    a[ n_]:= If[ n<0, 0, n! SeriesCoefficient[ Exp[x/(1-x)], {x, 0, n}]]; (* Michael Somos, Jul 19 2005 *)
    a[n_]:=If[n==0, 1, n! Sum[Binomial[n-1, j]/(j+1)!, {j, 0, n-1}]]; Table[a[n], {n, 0, 30}] (* Wilf *)
    a[0] = 1; a[n_]:= n!*Hypergeometric1F1[n+1, 2, 1]/E; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jun 18 2012, after Shai Covo *)
    Table[Sum[BellY[n, k, Range[n]!], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
    a[ n_]:= If[ n<0, 0, n! SeriesCoefficient[ Product[ QPochhammer[x^k]^(-MoebiusMu[k]/k), {k, n}], {x, 0, n}]]; (* Michael Somos, Jun 02 2019 *)
    Table[n!*LaguerreL[n, -1, -1], {n, 0, 30}] (* G. C. Greubel, Feb 23 2021 *)
    RecurrenceTable[{a[n] == (2*n - 1)*a[n-1] - (n-1)*(n-2)*a[n-2], a[0] == 1, a[1] == 1}, a, {n, 0, 30}] (* Vaclav Kotesovec, Jul 21 2022 *)
  • Maxima
    makelist(sum(abs(stirling1(n,k))*belln(k),k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */
    
  • Maxima
    makelist(hypergeometric([-n+1,-n],[],1),n,0,12); /* Emanuele Munarini, Sep 27 2016 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x / (1 - x) + x * O(x^n)), n))}; /* Michael Somos, Feb 10 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( prod( k=1, n, eta(x^k + x * O(x^n))^( -moebius(k) / k)), n))}; /* Michael Somos, Feb 10 2005 */
    
  • PARI
    {a(n) = s = 1; for(k = 1, n-1, s = 1 + k * s / (k + s)); return( numerator(s))}; /* Dimitris Valianatos, Aug 03 2018 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n))^(-eulerphi(k) / k)), n))}; /* Michael Somos, Jun 02 2019 */
    
  • PARI
    a(n) = if (n==0, 1, (n-1)!*pollaguerre(n-1,1,-1)); \\ Michel Marcus, Feb 23 2021; Jul 13 2024
    
  • Python
    from sympy import hyper, hyperexpand
    def A000262(n): return hyperexpand(hyper((-n+1, -n), [], 1)) # Chai Wah Wu, Jan 14 2022
  • Sage
    A000262 = lambda n: hypergeometric([-n+1, -n], [], 1)
    [simplify(A000262(n)) for n in (0..19)] # Peter Luschny, Apr 08 2015
    

Formula

D-finite with recurrence: a(n) = (2*n-1)*a(n-1) - (n-1)*(n-2)*a(n-2).
E.g.f.: exp( x/(1-x) ).
a(n) = Sum_{k=0..n} |A008275(n,k)| * A000110(k). - Vladeta Jovovic, Feb 01 2003
a(n) = (n-1)!*LaguerreL(n-1,1,-1) for n >= 1. - Vladeta Jovovic, May 10 2003
Representation as n-th moment of a positive function on positive half-axis: a(n) = Integral_{x=0..oo} x^n*exp(-x-1)*BesselI(1, 2*x^(1/2))/x^(1/2) dx, n >= 1. - Karol A. Penson, Dec 04 2003
a(n) = Sum_{k=0..n} A001263(n, k)*k!. - Philippe Deléham, Dec 10 2003
a(n) = n! Sum_{j=0..n-1} binomial(n-1, j)/(j+1)!, for n > 0. - Herbert S. Wilf, Jun 14 2005
Asymptotic expansion for large n: a(n) -> (0.4289*n^(-1/4) + 0.3574*n^(-3/4) - 0.2531*n^(-5/4) + O(n^(-7/4)))*(n^n)*exp(-n + 2*sqrt(n)). - Karol A. Penson, Aug 28 2002
Minor part of this asymptotic expansion is wrong! Right is (in closed form): a(n) ~ n^(n-1/4)*exp(-1/2+2*sqrt(n)-n)/sqrt(2) * (1 - 5/(48*sqrt(n)) - 95/(4608*n)), numerically a(n) ~ (0.42888194248*n^(-1/4) - 0.0446752023417*n^(-3/4) - 0.00884196713*n^(-5/4) + O(n^(-7/4))) *(n^n)*exp(-n+2*sqrt(n)). - Vaclav Kotesovec, Jun 02 2013
a(n) = exp(-1)*Sum_{m>=0} [m]^n/m!, where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial. - Vladeta Jovovic, Sep 20 2006
Recurrence: D(n,k) = D(n-1,k-1) + (n-1+k) * D(n-1,k) n >= k >= 0; D(n,0)=0. From this, D(n,1) = n! and D(n,n)=1; a(n) = Sum_{i=0..n} D(n,i). - Stephen Dalton (StephenMDalton(AT)gmail.com), Jan 05 2007
Proof: Notice two distinct subsets of the lists for [n]: 1) n is in its own list, then there are D(n-1,k-1); 2) n is in a list with other numbers. Denoting the separation of lists by |, it is not hard to see n has (n-1+k) possible positions, so (n-1+k) * D(n-1,k). - Stephen Dalton (StephenMDalton(AT)gmail.com), Jan 05 2007
Define f_1(x), f_2(x), ... such that f_1(x) = exp(x), f_{n+1}(x) = (d/dx)(x^2*f_n(x)), for n >= 2. Then a(n-1) = exp(-1)*f_n(1). - Milan Janjic, May 30 2008
a(n) = (n-1)! * Sum_{k=1..n} (a(n-k)*k!)/((n-k)!*(k-1)!), where a(0)=1. - Thomas Wieder, Sep 10 2008
a(n) = exp(-1)*n!*M(n+1,2,1), n >= 1, where M (=1F1) is the confluent hypergeometric function of the first kind. - Shai Covo (green355(AT)netvision.net.il), Jan 20 2010
a(n) = n!* A067764(n) / A067653(n). - Gary Detlefs, May 15 2010
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x)^2*d/dx. Cf. A000110, A049118, A049119 and A049120. - Peter Bala, Nov 25 2011
From Sergei N. Gladkovskii, Nov 17 2011, Aug 02 2012, Dec 11 2012, Jan 27 2013, Jul 31 2013, Dec 25 2013: (Start)
Continued fractions:
E.g.f.: Q(0) where Q(k) = 1+x/((1-x)*(2k+1)-x*(1-x)*(2k+1)/(x+(1-x)*(2k+2)/Q(k+1))).
E.g.f.: 1 + x/(G(0)-x) where G(k) = (1-x)*k + 1 - x*(1-x)*(k+1)/G(k+1).
E.g.f.: exp(x/(1-x)) = 4/(2-(x/(1-x))*G(0))-1 where G(k) = 1 - x^2/(x^2 + 4*(1-x)^2*(2*k+1)*(2*k+3)/G(k+1) ).
E.g.f.: 1 + x*(E(0)-1)/(x+1) where E(k) = 1 + 1/(k+1)/(1-x)/(1-x/(x+1/E(k+1) )).
E.g.f.: E(0)/2, where E(k) = 1 + 1/(1 - x/(x + (k+1)*(1-x)/E(k+1) )).
E.g.f.: E(0)-1, where E(k) = 2 + x/( (2*k+1)*(1-x) - x/E(k+1) ).
(End)
E.g.f.: Product {n >= 1} ( (1 + x^n)/(1 - x^n) )^( phi(2*n)/(2*n) ), where phi(n) = A000010(n) is the Euler totient function. Cf. A088009. - Peter Bala, Jan 01 2014
a(n) = n!*hypergeom([1-n],[2],-1) for n >= 1. - Peter Luschny, Jun 05 2014
a(n) = (-1)^(n-1)*KummerU(1-n,2,-1). - Peter Luschny, Sep 17 2014
a(n) = hypergeom([-n+1, -n], [], 1) for n >= 0. - Peter Luschny, Apr 08 2015
E.g.f.: Product_{k>0} exp(x^k). - Franklin T. Adams-Watters, May 11 2016
0 = a(n)*(18*a(n+2) - 93*a(n+3) + 77*a(n+4) - 17*a(n+5) + a(n+6)) + a(n+1)*(9*a(n+2) - 80*a(n+3) + 51*a(n+4) - 6*a(n+5)) + a(n+2)*(3*a(n+2) - 34*a(n+3) + 15*a(n+4)) + a(n+3)*(-10*a(n+3)) if n >= 0. - Michael Somos, Feb 27 2017
G.f. G(x)=y satisfies a differential equation: (1-x)*y-2*(1-x)*x^2*y'+x^4*y''=1. - Bradley Klee, Aug 13 2018
a(n) = n! * LaguerreL(n, -1, -1) = c_{n}(n-1; -1) where c_{n}(x; a) are the Poisson - Charlier polynomials. - G. C. Greubel, Feb 23 2021
3 divides a(3*n-1); 9 divides a(9*n-1); 11 divides a(11*n-1). - Peter Bala, Mar 26 2022
For n > 0, a(n) = Sum_{k=0..n-1}*k!*C(n-1,k)*C(n,k). - Francesca Aicardi, Nov 03 2022
For n > 0, a(n) = (n-1)! * (Sum_{i=0..n-1} A002720(i) / i!). - Werner Schulte, Mar 29 2024
a(n+1) = numerator of (1 + n/(1 + n/(1 + (n-1)/(1 + (n-1)/(1 + ... + 1/(1 + 1/(1))))))). See A002720 for the denominators. - Peter Bala, Feb 11 2025

A048994 Triangle of Stirling numbers of first kind, s(n,k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 2, -3, 1, 0, -6, 11, -6, 1, 0, 24, -50, 35, -10, 1, 0, -120, 274, -225, 85, -15, 1, 0, 720, -1764, 1624, -735, 175, -21, 1, 0, -5040, 13068, -13132, 6769, -1960, 322, -28, 1, 0, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1, 0, -362880, 1026576, -1172700, 723680, -269325, 63273, -9450, 870, -45, 1
Offset: 0

Views

Author

Keywords

Comments

The unsigned numbers are also called Stirling cycle numbers: |s(n,k)| = number of permutations of n objects with exactly k cycles.
Mirror image of the triangle A054654. - Philippe Deléham, Dec 30 2006
Also the triangle gives coefficients T(n,k) of x^k in the expansion of C(x,n) = (a(k)*x^k)/n!. - Mokhtar Mohamed, Dec 04 2012
From Wolfdieter Lang, Nov 14 2018: (Start)
This is the Sheffer triangle of Jabotinsky type (1, log(1 + x)). See the e.g.f. of the triangle below.
This is the inverse Sheffer triangle of the Stirling2 Sheffer triangle A008275.
The a-sequence of this Sheffer triangle (see a W. Lang link in A006232)
is from the e.g.f. A(x) = x/(exp(x) -1) a(n) = Bernoulli(n) = A027641(n)/A027642(n), for n >= 0. The z-sequence vanishes.
The Boas-Buck sequence for the recurrences of columns has o.g.f. B(x) = Sum_{n>=0} b(n)*x^n = 1/((1 + x)*log(1 + x)) - 1/x. b(n) = (-1)^(n+1)*A002208(n+1)/A002209(n+1), b = {-1/2, 5/12, -3/8, 251/720, -95/288, 19087/60480,...}. For the Boas-Buck recurrence of Riordan and Sheffer triangles see the Aug 10 2017 remark in A046521, adapted to the Sheffer case, also for two references. See the recurrence and example below. (End)
Let G(n,m,k) be the number of simple labeled graphs on [n] with m edges and k components. Then T(n,k) = Sum (-1)^m*G(n,m,k). See the Read link below. Equivalently, T(n,k) = Sum mu(0,p) where the sum is over all set partitions p of [n] containing k blocks and mu is the Moebius function in the incidence algebra associated to the set partition lattice on [n]. - Geoffrey Critzer, May 11 2024

Examples

			Triangle begins:
  n\k 0     1       2       3      4      5      6    7    8   9 ...
  0   1
  1   0     1
  2   0    -1       1
  3   0     2      -3       1
  4   0    -6      11      -6      1
  5   0    24     -50      35    -10      1
  6   0  -120     274    -225     85    -15      1
  7   0   720   -1764    1624   -735    175    -21    1
  8   0 -5040   13068  -13132   6769  -1960    322  -28    1
  9   0 40320 -109584  118124 -67284  22449  -4536  546  -36   1
  ... - _Wolfdieter Lang_, Aug 22 2012
------------------------------------------------------------------
From _Wolfdieter Lang_, Nov 14 2018: (Start)
Recurrence: s(5,2)= s(4, 1) - 4*s(4, 2) = -6 - 4*11 = -50.
Recurrence from the a- and z-sequences: s(6, 3) = 2*(1*1*(-50) + 3*(-1/2)*35 + 6*(1/6)*(-10) + 10*0*1) = -225.
Boas-Buck recurrence for column k = 3, with b = {-1/2, 5/12, -3/8, ...}:
s(6, 3) = 6!*((-3/8)*1/3! + (5/12)*(-6)/4! + (-1/2)*35/5!) = -225. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974; Chapter V, also p. 310.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 93.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 245.
  • J. Riordan, An Introduction to Combinatorial Analysis, p. 48.

Crossrefs

See especially A008275 which is the main entry for this triangle. A132393 is an unsigned version, and A008276 is another version.
A000142(n) = Sum_{k=0..n} |s(n, k)| for n >= 0.
Row sums give A019590(n+1).

Programs

  • Haskell
    a048994 n k = a048994_tabl !! n !! k
    a048994_row n = a048994_tabl !! n
    a048994_tabl = map fst $ iterate (\(row, i) ->
    (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 0)
    -- Reinhard Zumkeller, Mar 18 2013
  • Maple
    A048994:= proc(n,k) combinat[stirling1](n,k) end: # R. J. Mathar, Feb 23 2009
    seq(print(seq(coeff(expand(k!*binomial(x,k)),x,i),i=0..k)),k=0..9); # Peter Luschny, Jul 13 2009
    A048994_row := proc(n) local k; seq(coeff(expand(pochhammer(x-n+1,n)), x,k), k=0..n) end: # Peter Luschny, Dec 30 2010
  • Mathematica
    Table[StirlingS1[n, m], {n, 0, 9}, {m, 0, n}] (* Peter Luschny, Dec 30 2010 *)
  • Maxima
    create_list(stirling1(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    a(n,k) = if(k<0 || k>n,0, if(n==0,1,(n-1)*a(n-1,k)+a(n-1,k-1)))
    
  • PARI
    trg(nn)=for (n=0, nn-1, for (k=0, n, print1(stirling(n,k,1), ", ");); print();); \\ Michel Marcus, Jan 19 2015
    

Formula

s(n, k) = A008275(n,k) for n >= 1, k = 1..n; column k = 0 is {1, repeat(0)}.
s(n, k) = s(n-1, k-1) - (n-1)*s(n-1, k), n, k >= 1; s(n, 0) = s(0, k) = 0; s(0, 0) = 1.
The unsigned numbers a(n, k)=|s(n, k)| satisfy a(n, k)=a(n-1, k-1)+(n-1)*a(n-1, k), n, k >= 1; a(n, 0) = a(0, k) = 0; a(0, 0) = 1.
Triangle (signed) = [0, -1, -1, -2, -2, -3, -3, -4, -4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; Triangle(unsigned) = [0, 1, 1, 2, 2, 3, 3, 4, 4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938.
Sum_{k=0..n} (-m)^(n-k)*s(n, k) = A000142(n), A001147(n), A007559(n), A007696(n), ... for m = 1, 2, 3, 4, ... .- Philippe Deléham, Oct 29 2005
A008275*A007318 as infinite lower triangular matrices. - Gerald McGarvey, Aug 20 2009
T(n,k) = n!*[x^k]([t^n]exp(x*log(1+t))). - Peter Luschny, Dec 30 2010, updated Jun 07 2020
From Wolfdieter Lang, Nov 14 2018: (Start)
Recurrence from the Sheffer a-sequence (see a comment above): s(n, k) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j, j)*Bernoulli(j)*s(n-1, k-1+j), for n >= 1 and k >= 1, with s(n, 0) = 0 if n >= 1, and s(0,0) = 1.
Boas-Buck type recurrence for column k: s(n, k) = (n!*k/(n - k))*Sum_{j=k..n-1} b(n-1-j)*s(j, k)/j!, for n >= 1 and k = 0..n-1, with input s(n, n) = 1. For sequence b see the Boas-Buck comment above. (End)
T(n,k) = Sum_{j=k..n} (-1)^(n-j)*A271705(n,j)*A216294(j,k). - Mélika Tebni, Feb 23 2023

Extensions

Offset corrected by R. J. Mathar, Feb 23 2009
Formula corrected by Philippe Deléham, Sep 10 2009

A001813 Quadruple factorial numbers: a(n) = (2n)!/n!.

Original entry on oeis.org

1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600, 670442572800, 28158588057600, 1295295050649600, 64764752532480000, 3497296636753920000, 202843204931727360000, 12576278705767096320000, 830034394580628357120000, 58102407620643984998400000
Offset: 0

Views

Author

Keywords

Comments

Counts binary rooted trees (with out-degree <= 2), embedded in plane, with n labeled end nodes of degree 1. Unlabeled version gives Catalan numbers A000108.
Define a "downgrade" to be the permutation which places the items of a permutation in descending order. We are concerned with permutations that are identical to their downgrades. Only permutations of order 4n and 4n+1 can have this property; the number of permutations of length 4n having this property are equinumerous with those of length 4n+1. If a permutation p has this property then the reversal of this permutation also has it. a(n) = number of permutations of length 4n and 4n+1 that are identical to their downgrades. - Eugene McDonnell (eemcd(AT)mac.com), Oct 26 2003
Number of broadcast schemes in the complete graph on n+1 vertices, K_{n+1}. - Calin D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008
Hankel transform is A137565. - Paul Barry, Nov 25 2009
The e.g.f. of 1/a(n) = n!/(2*n)! is (exp(sqrt(x)) + exp(-sqrt(x)) )/2. - Wolfdieter Lang, Jan 09 2012
From Tom Copeland, Nov 15 2014: (Start)
Aerated with intervening zeros (1,0,2,0,12,0,120,...) = a(n) (cf. A123023 and A001147), the e.g.f. is e^(t^2), so this is the base for the Appell sequence with e.g.f. e^(t^2) e^(x*t) = exp(P(.,x),t) (reverse A059344, cf. A099174, A066325 also). P(n,x) = (a. + x)^n with (a.)^n = a_n and comprise the umbral compositional inverses for e^(-t^2)e^(x*t) = exp(UP(.,x),t), i.e., UP(n,P(.,t)) = x^n = P(n,UP(.,t)), e.g., (P(.,t))^n = P(n,t).
Equals A000407*2 with leading 1 added. (End)
a(n) is also the number of square roots of any permutation in S_{4*n} whose disjoint cycle decomposition consists of 2*n transpositions. - Luis Manuel Rivera Martínez, Mar 04 2015
Self-convolution gives A076729. - Vladimir Reshetnikov, Oct 11 2016
For n > 1, it follows from the formula dated Aug 07 2013 that a(n) is a Zumkeller number (A083207). - Ivan N. Ianakiev, Feb 28 2017
For n divisible by 4, a(n/4) is the number of ways to place n points on an n X n grid with pairwise distinct abscissae, pairwise distinct ordinates, and 90-degree rotational symmetry. For n == 1 (mod 4), the number of ways is a((n-1)/4) because the center point can be considered "fixed". For 180-degree rotational symmetry see A006882, for mirror symmetry see A000085, A135401, and A297708. - Manfred Scheucher, Dec 29 2017

Examples

			The following permutations of order 8 and their reversals have this property:
  1 7 3 5 2 4 0 6
  1 7 4 2 5 3 0 6
  2 3 7 6 1 0 4 5
  2 4 7 1 6 0 3 5
  3 2 6 7 0 1 5 4
  3 5 1 7 0 6 2 4
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.6, Eq. 32.
  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • Eugene McDonnell, "Magic Squares and Permutations" APL Quote-Quad 7.3 (Fall, 1976)
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..20],n->Factorial(2*n)/Factorial(n)); # Muniru A Asiru, Nov 01 2018
    
  • Magma
    [Factorial(2*n)/Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 09 2018
    
  • Maple
    A001813 := n->(2*n)!/n!;
    A001813 := n -> mul(k, k = select(k-> k mod 4 = 2,[$1 .. 4*n])):
    seq(A001813(n), n=0..16);  # Peter Luschny, Jun 23 2011
  • Mathematica
    Table[(2n)!/n!, {n,0,20}] (* Harvey P. Dale, May 02 2011 *)
  • Maxima
    makelist(binomial(n+n, n)*n!,n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=binomial(n+n,n)*n! \\ Charles R Greathouse IV, Jun 15 2011
    
  • PARI
    first(n) = x='x+O('x^n); Vec(serlaplace((1 - 4*x)^(-1/2))) \\ Iain Fox, Jan 01 2018 (corrected by Iain Fox, Jan 11 2018)
    
  • Python
    from math import factorial
    def A001813(n): return factorial(n<<1)//factorial(n) # Chai Wah Wu, Feb 14 2023
  • Sage
    [binomial(2*n,n)*factorial(n) for n in range(0, 17)] # Zerinvary Lajos, Dec 03 2009
    

Formula

E.g.f.: (1-4*x)^(-1/2).
a(n) = (2*n)!/n! = Product_{k=0..n-1} (4*k + 2) = A081125(2*n).
Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*exp(-x/4)/(sqrt(x)*2*sqrt(Pi)) dx, n >= 0. This representation is unique. - Karol A. Penson, Sep 18 2001
Define a'(1)=1, a'(n) = Sum_{k=1..n-1} a'(n-k)*a'(k)*C(n, k); then a(n)=a'(n+1). - Benoit Cloitre, Apr 27 2003
With interpolated zeros (1, 0, 2, 0, 12, ...) this has e.g.f. exp(x^2). - Paul Barry, May 09 2003
a(n) = A000680(n)/A000142(n)*A000079(n) = Product_{i=0..n-1} (4*i + 2) = 4^n*Pochhammer(1/2, n) = 4^n*GAMMA(n+1/2)/sqrt(Pi). - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
For asymptotics, see the Robinson paper.
a(k) = (2*k)!/k! = Sum_{i=1..k+1} |A008275(i,k+1)| * k^(i-1). - André F. Labossière, Jun 21 2007
a(n) = 12*A051618(a) n >= 2. - Zerinvary Lajos, Feb 15 2008
a(n) = A000984(n)*A000142(n). - Zerinvary Lajos, Mar 25 2008
a(n) = A016825(n-1)*a(n-1). - Roger L. Bagula, Sep 17 2008
a(n) = (-1)^n*A097388(n). - D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008
From Paul Barry, Jan 15 2009: (Start)
G.f.: 1/(1-2x/(1-4x/(1-6x/(1-8x/(1-10x/(1-... (continued fraction);
a(n) = (n+1)!*A000108(n). (End)
a(n) = Sum_{k=0..n} A132393(n,k)*2^(2n-k). - Philippe Deléham, Feb 10 2009
G.f.: 1/(1-2x-8x^2/(1-10x-48x^2/(1-18x-120x^2/(1-26x-224x^2/(1-34x-360x^2/(1-42x-528x^2/(1-... (continued fraction). - Paul Barry, Nov 25 2009
a(n) = A173333(2*n,n) for n>0; cf. A006963, A001761. - Reinhard Zumkeller, Feb 19 2010
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = upper left term of M^n, M = an infinite square production matrix as follows:
2, 2, 0, 0, 0, 0, ...
4, 4, 4, 0, 0, 0, ...
6, 6, 6, 6, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
...
(End)
a(n) = (-2)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0), where Q(k) = 1 + x*(4*k+2) - x*(4*k+4)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 18 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(8*k+4)/(x*(8*k+4) - 1 + 8*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x/(2*x + 1/(2*k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
D-finite with recurrence: a(n) = (4*n-6)*a(n-2) + (4*n-3)*a(n-1), n>=2. - Ivan N. Ianakiev, Aug 07 2013
Sum_{n>=0} 1/a(n) = (exp(1/4)*sqrt(Pi)*erf(1/2) + 2)/2 = 1 + A214869, where erf(x) is the error function. - Ilya Gutkovskiy, Nov 10 2016
Sum_{n>=0} (-1)^n/a(n) = 1 - sqrt(Pi)*erfi(1/2)/(2*exp(1/4)), where erfi(x) is the imaginary error function. - Amiram Eldar, Feb 20 2021
a(n) = 1/([x^n] hypergeom([1], [1/2], x/4)). - Peter Luschny, Sep 13 2024
a(n) = 2^n*n!*JacobiP(n, -1/2, -n, 3). - Peter Luschny, Jan 22 2025
G.f.: 2F0(1,1/2;;4x). - R. J. Mathar, Jun 07 2025

Extensions

More terms from James Sellers, May 01 2000

A002866 a(0) = 1; for n > 0, a(n) = 2^(n-1)*n!.

Original entry on oeis.org

1, 1, 4, 24, 192, 1920, 23040, 322560, 5160960, 92897280, 1857945600, 40874803200, 980995276800, 25505877196800, 714164561510400, 21424936845312000, 685597979049984000, 23310331287699456000, 839171926357180416000, 31888533201572855808000, 1275541328062914232320000
Offset: 0

Views

Author

Keywords

Comments

Consider the set of n-1 odd numbers from 3 to 2n-1, i.e., {3, 5, ..., 2n-1}. There are 2^(n-1) subsets from {} to {3, 5, 7, ..., 2n-1}; a(n) = the sum of the products of terms of all the subsets. (Product for empty set = 1.) a(4) = 1 + 3 + 5 + 7 + 3*5 + 3*7 + 5*7 + 3*5*7 = 192. - Amarnath Murthy, Sep 06 2002
Also, a(n-1) is the number of ways to lace a shoe that has n pairs of eyelets such that there is a straight (horizontal) connection between all adjacent eyelet pairs. - Hugo Pfoertner, Jan 27 2003
This is also the denominator of the integral of ((1-x^2)^(n-1/2))/(Pi/4) where x ranges from 0 to 1. The numerator is (2*x)!/(x!*2^x). In both cases n starts at 1. E.g., the denominator when n=3 is 24 and the numerator is 15. - Al Hakanson (hawkuu(AT)excite.com), Oct 17 2003
Number of ways to use the elements of {1,...,n} once each to form a sequence of nonempty lists. - Bob Proctor, Apr 18 2005
Row sums of A131222. - Paul Barry, Jun 18 2007
Number of rotational symmetries of an n-cube. The number of all symmetries of an n-cube is A000165. See Egan for signed cycle notation, other notes, tables and animation. - Jonathan Vos Post, Nov 28 2007
1, 4, 24, 192, 1920, ... is the exponential (or binomial) convolution of 1, 1, 3, 15, 105, ... and 1, 3, 15, 105, 945 (A001147). - David Callan, Jul 25 2008
The n-th term of this sequence is the number of regions into which n-dimensional space is partitioned by the 2n hyperplanes of the form x_i=x_j and x_i=-x_j (for 1 <= i < j <= n). - Edward Scheinerman (ers(AT)jhu.edu), May 04 2008
a(n) is the number of ways to seat n churchgoers into pews and then linearly order the nonempty pews. - Geoffrey Critzer, Mar 16 2009
Equals the row sums of A156992. - Geoffrey Critzer, Mar 05 2010
From Gary W. Adamson, May 17 2010: (Start)
Next term in the series = (1, 3, 5, 7, ...) dot (1, 1, 4, 24, ...);
e.g., a(5) = 1920 = (1, 3, 5, 7, 9) dot (1, 1, 4, 24, 192) = (1 + 3 + 20 + 168 + 1728). (End)
a(n) is the number of ways to represent the permutations of {1,2,...,n} in cycle notation, taking into account that we can permute the order of all cycles and also have k ways to write a length-k cycle.
For positive n, a(n) equals the permanent of the n X n matrix with consecutive integers 1 to n along the main diagonal, consecutive integers 2 to n along the subdiagonal, and 1's everywhere else. - John M. Campbell, Jul 10 2011
From Dennis P. Walsh, Nov 26 2011: (Start)
Number of ways to arrange n books on consecutive bookshelves.
To derive a(n) = n!2^(n-1), we note that there are n! ways to arrange the books in a row. Then there are 2^(n-1) ways to place the arranged books on consecutive shelves since there are 2^(n-1) ordered partitions of n. Hence a(n) = n!2^(n-1).
Also, a(n) is the number of ways to stack n different alphabet blocks in contiguous stacks.
Furthermore, a(n) is the number of labeled, rooted forests that have (i) each root labeled larger than any nonroot, (ii) each root having exactly one child node, (iii) n non-root nodes, and (iv) each node in the forest with at most one child node.
Example: a(3)=24 since there are 24 arrangements of books b1, b2, and b3 on consecutive shelves, namely, |b1 b2 b3|, |b1 b3 b2|, |b2 b1 b3|, |b2 b3 b1|, |b3 b1 b2|, |b3 b2 b1|, |b1 b2||b3|, |b2 b1| |b3|, |b1 b3||b2|, |b3 b1||b2|, |b2 b3||b1|, |b3 b2||b1|, |b1||b2 b3|,|b1||b3 b2|, |b2||b1 b3|, |b2||b3 b1|, |b3||b1 b2|, |b3||b2 b1|, |b1||b2||b3|, |b1||b3||b2|, |b2||b1||b3|, |b2||b3||b1|, |b3||b1||b2|, and |b3||b2||b1|.
(End)
For n > 3, a(n) is the order of the Coxeter group (also called Weyl group) of type D_n. - Tom Edgar, Nov 05 2013

Examples

			For the shoe lacing: with the notation introduced in A078602 the a(3-1) = 4 "straight" lacings for 3 pairs of eyelets are: 125346, 125436, 134526, 143526. Their mirror images 134256, 143256, 152346, 152436 are not counted.
a(3) = 24 because the 24 rotations of a three-dimensional cube fall into four distinct classes:
(i) the identity, which leaves everything fixed;
(ii) 9 rotations which leave the centers of two faces fixed, comprising rotations of 90, 180 and 270 degrees for each of 3 pairs of faces;
(iii) 6 rotations which leave the centers of two edges fixed, comprising rotations of 180 degrees for each of 6 pairs of edges;
(iv) 8 rotations which leave two vertices fixed, comprising rotations of 120 and 240 degrees for each of 4 pairs of vertices. For an n-cube, rotations can be more complex. For example, in 4 dimensions a rotation can either act in a single plane, such as the x-y plane, while leaving any vectors orthogonal to that plane unchanged, or it can act in two orthogonal planes, performing rotations in both and leaving no vectors fixed. In higher dimensions, there will be room for more planes and more choices as to the number of planes in which a given rotation acts.
		

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6, p. 257.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.26)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections give A002671 and A274304.
Appears in A167584 (n >= 1); equals the row sums of A167594 (n >= 1). - Johannes W. Meijer, Nov 12 2009

Programs

  • FORTRAN
    See Pfoertner link.
    
  • Magma
    [1] cat [2^(n-1)*Factorial(n): n in [1..25]]; // G. C. Greubel, Jun 13 2019
    
  • Maple
    A002866 := n-> `if`(n=0,1,2^(n-1)*n!):
    with(combstruct); SeqSeqL := [S, {S=Sequence(U,card >= 1), U=Sequence(Z,card >=1)},labeled];
    seq(ceil(count(Subset(n))*count(Permutation(n))/2),n=0..17); # Zerinvary Lajos, Oct 16 2006
    G(x):=(1-x)/(1-2*x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..17); # Zerinvary Lajos, Apr 04 2009
  • Mathematica
    Join[{1},Table[2^(n-1) n!,{n,25}]] (* Harvey P. Dale, Sep 27 2013 *)
    a[n_] := (-1)^n Hypergeometric2F1Regularized[1, -n, 2 - n, 2];
    Table[a[n], {n, 0, 20}]  (* Peter Luschny, Apr 26 2024 *)
  • PARI
    a(n)=if(n,n!<<(n-1),1) \\ Charles R Greathouse IV, Jan 13 2012
    
  • PARI
    a(n) = if(n == 0, 1, 2^(n-1)*n!);
    vector(25, n, a(n-1)) \\ Altug Alkan, Oct 18 2015
    
  • Sage
    [1] + [2^(n-1)*factorial(n) for n in (1..25)] # G. C. Greubel, Jun 13 2019

Formula

E.g.f.: (1 - x)/(1 - 2*x). - Paul Barry, May 26 2003, corrected Jun 18 2007
a(n) = n! * A011782(n).
For n >= 1, a(n) = Sum_{i=0..m/2} (-1)^i * binomial(n, i) * (n-2*i)^n. - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
a(n) ~ 2^(1/2) * Pi^(1/2) * n^(3/2) * 2^n * e^(-n) * n^n*{1 + 13/12*n^(-1) + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
E.g.f. is B(A(x)), where B(x) = 1/(1 - x) and A(x) = x/(1 - x). - Geoffrey Critzer, Mar 16 2009
a(n) = Sum_{k=1..n} A156992(n,k). - Dennis P. Walsh, Nov 26 2011
a(n+1) = Sum_{k=0..n} A132393(n,k)*2^(n+k), n>0. - Philippe Deléham, Nov 28 2011
G.f.: 1 + x/(1 - 4*x/(1 - 2*x/(1 - 6*x/(1 - 4*x/(1 - 8*x/(1 - 6*x/(1 - 10*x/(1 - ... (continued fraction). - Philippe Deléham, Nov 29 2011
a(n) = 2*n*a(n-1) for n >= 2. - Dennis P. Walsh, Nov 29 2011
G.f.: (1 + 1/G(0))/2, where G(k) = 1 + 2*x*k - 2*x*(k + 1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 02 2012
G.f.: 1 + x/Q(0), m=4, where Q(k) = 1 - m*x*(2*k + 1) - m*x^2*(2*k + 1)*(2*k + 2)/(1 - m*x*(2*k + 2) - m*x^2*(2*k + 2)*(2*k + 3)/Q(k+1)) ; (continued fraction). - Sergei N. Gladkovskii, Sep 23 2013
G.f.: 1 + x/(G(0) - x), where G(k) = 1 + x*(k+1) - 4*x*(k + 1)/(1 - x*(k + 2)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
a(n) = Sum_{k=0..n} L(n,k)*k!; L(n,k) are the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = round(Sum_{k >= 1} log(k)^n/k^(3/2))/4, for n >= 1, which is related to the n-th derivative of zeta(x) evaluated at x = 3/2. - Richard R. Forberg, Jan 02 2015
a(n) = n!*hypergeom([-n+1], [], -1) for n>=1. - Peter Luschny, Apr 08 2015
From Amiram Eldar, Aug 04 2020: (Start)
Sum_{n >= 0} 1/a(n) = 2*sqrt(e) - 1.
Sum_{n >= 0} (-1)^n/a(n) = 2/sqrt(e) - 1. (End)

A036039 Irregular triangle of multinomial coefficients of integer partitions read by rows (in Abramowitz and Stegun ordering) giving the coefficients of the cycle index polynomials for the symmetric groups S_n.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 8, 3, 6, 1, 24, 30, 20, 20, 15, 10, 1, 120, 144, 90, 40, 90, 120, 15, 40, 45, 15, 1, 720, 840, 504, 420, 504, 630, 280, 210, 210, 420, 105, 70, 105, 21, 1, 5040, 5760, 3360, 2688, 1260, 3360, 4032, 3360, 1260, 1120, 1344, 2520, 1120, 1680, 105, 420, 1120, 420, 112, 210, 28, 1
Offset: 1

Views

Author

Keywords

Comments

The sequence of row lengths is A000041(n), n >= 1 (partition numbers).
Number of permutations whose cycle structure is the given partition. Row sums are factorials (A000142). - Franklin T. Adams-Watters, Jan 12 2006
A relation between partition polynomials formed from these "refined" Stirling numbers of the first kind and umbral operator trees and Lagrange inversion is presented in the link "Lagrange a la Lah".
These cycle index polynomials for the symmetric group S_n are also related to a raising operator / infinitesimal generator for fractional integro-derivatives, involving the digamma function and the Riemann zeta function values at positive integers, and to the characteristic polynomial for the adjacency matrix of complete n-graphs A055137 (cf. MathOverflow link). - Tom Copeland, Nov 03 2012
In the Lang link, replace all x(n) by t to obtain A132393. Furthermore replace x(1) by t and all other x(n) by 1 to obtain A008290. See A274760. - Tom Copeland, Nov 06 2012, Oct 29 2015 - corrected by Johannes W. Meijer, Jul 28 2016
The umbral compositional inverses of these polynomials are formed by negating the indeterminates x(n) for n>1, i.e., P(n,P(.,x(1),-x(2),-x(3),...),x(2),x(3),...) = x(1)^n (cf. A130561 for an example of umbral compositional inversion). The polynomials are an Appell sequence in x(1), i.e., dP(n,x(1))/dx(1) = n P(n-1, x(1)) and (P(.,x)+y)^n=P(n,x+y) umbrally, with P(0,x(1))=1. - Tom Copeland, Nov 14 2014
Regarded as the coefficients of the partition polynomials listed by Lang, a signed version of these polynomials IF(n,b1,b2,...,bn) (n! times polynomial on page 184 of Airault and Bouali) provides an inversion of the Faber polynomials F(n,b1,b2,...,bn) (page 52 of Bouali, A263916, and A115131). For example, F(3, IF(1,b1), IF(2,b1,b2)/2!, IF(3,b1,b2,b3)/3!) = b3 and IF(3, F(1,b1), F(2,b1,b2), F(3,b1,b2,b3))/3! = b3 with F(1,b1) = -b1. (Compare with A263634.) - Tom Copeland, Oct 28 2015; Sep 09 2016
The e.g.f. for the row partition polynomials is Sum_{n>=0} P_n(b_1,...,b_n) x^n/n! = exp[Sum_{n>=1} b_n x^n/n], or, exp[P.(b_1,...,b_n)x] = exp[-], expressed umbrally with <"power series"> denoting umbral evaluation (b.)^n = b_n within the power series. This e.g.f. is central to the paper by Maxim and Schuermannn on characteristic classes (cf. Friedrich and McKay also). - Tom Copeland, Nov 11 2015
The elementary Schur polynomials are given by S(n,x(1),x(2),...,x(n)) = P(n,x(1), 2*x(2),...,n*x(n)) / n!. See p. 12 of Carrell. - Tom Copeland, Feb 06 2016
These partition polynomials are also related to the Casimir invariants associated to quantum density states on p. 3 of Boya and Dixit and pp. 5 and 6 of Byrd and Khaneja. - Tom Copeland, Jul 24 2017
With the indeterminates (x_1,x_2,x_3,...) = (t,-c_2*t,-c_3*t,...) with c_n >0, umbrally P(n,a.) = P(n,t)|{t^n = a_n} = 0 and P(j,a.)P(k,a.) = P(j,t)P(k,t)|{t^n =a_n} = d_{j,k} >= 0 is the coefficient of x^j/j!*y^k/k! in the Taylor series expansion of the formal group law FGL(x,y) = f[f^{-1}(x)+f^{-1}(y)], where a_n are the inversion partition polynomials for calculating f(x) from the coefficients of the series expansion of f^{-1}(x) given in A133932. - Tom Copeland, Feb 09 2018
For relation to the Witt symmetric functions, as well as the basic power, elementary, and complete symmetric functions, see the Borger link p. 295. For relations to diverse zeta functions, determinants, and paths on graphs, see the MathOverflow question Cycling Through the Zeta Garden. - Tom Copeland, Mar 25 2018
Chmutov et al. identify the partition polynomials of this entry with the one-part Schur polynomials and assert that any linear combination with constant coefficients of these polynomials is a tau function for the KP hierarchy. - Tom Copeland, Apr 05 2018
With the indeterminates in the partition polynomials assigned as generalized harmonic numbers, i.e., as partial sums of the Dirichlet series for the Riemann zeta function, zeta(n), for integer n > 1, sums of simple normalizations of these polynomials give either unity or simple sums of consecutive zeta(n) (cf. Hoffman). Other identities involving these polynomials can be found in the Choi reference in Hoffman's paper. - Tom Copeland, Oct 05 2019
On p. 39 of Ma Luo's thesis is the e.g.f. of rational functions r_n obtained through the (umbral) formula 1/(1-r.T) = exp[log(1+P.T)], a differently signed e.g.f. of this entry, where (P.)^n = P_n are Eisenstein elliptic functions. P. 38 gives the example of 4! * r_4 as the signed 4th row partition polynomial of this entry. This series is equated through a simple proportionality factor to the Zagier Jacobi form on p. 25. Recurrence relations for the P_n are given on p. 24 involving the normalized k-weight Eisenstein series G_k introduced on p. 23 and related to the Bernoulli numbers. - Tom Copeland, Oct 16 2019
The Chern characteristic classes or forms of complex vector bundles and the characteristic polynomials of curvature forms for a smooth manifold can be expressed in terms of this entry's partition polynomials with the associated traces, or power sum polynomials, as the indeterminates. The Chern character is the e.g.f. of these traces and so its coefficients are given by the Faber polynomials with this entry's partition polynomials as the indeterminates. See the Mathoverflow question "A canonical reference for Chern characteristic classes". - Tom Copeland, Nov 04 2019
For an application to the physics of charged fermions in an external field, see Figueroa et al. - Tom Copeland, Dec 05 2019
Konopelchenko, in Proposition 5.2, p. 19, defines an operator P_k that is a differently signed operator version of the partition polynomials of this entry divided by a factorial. These operators give rise to bilinear Hirota equations for the KP hierarchy. These partition polynomials are also presented in Hopf algebras of symmetric functions by Cartier. - Tom Copeland, Dec 18 2019
For relationship of these partition polynomials to calculations of Pontryagin classes and the Riemann xi function, see A231846. - Tom Copeland, May 27 2020
Luest and Skliros summarize on p. 298 many of the properties of the cycle index polynomials given here; and Bianchi and Firrotta, a few on p. 6. - Tom Copeland, Oct 15 2020
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced in A036040. (End)

Examples

			The partition array T(n, k) begins (see the W. Lang link for rows 1..10):
  n\k   1    2    3    4    5    6    7    8    9   10   11  12   13  14 15 ...
  1:    1
  2:    1    1
  3:    2    3    1
  4:    6    8    3    6    1
  5:   24   30   20   20   15   10    1
  6:  120  144   90   40   90  120   15   40   45   15    1
  7:  720  840  504  420  504  630  280  210  210  420  105  70  105  21  1
... reformatted by _Wolfdieter Lang_, May 25 2019
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "M_2".

Crossrefs

Cf. other versions based on different partition orderings: A102189 (rows reversed), A181897, A319192.
Cf. A133932.
Cf. A231846.
Cf. A127671.

Programs

  • Maple
    nmax:=7: with(combinat): for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while sA036039(n, m) := n!/ (mul((t)^q(t)*q(t)!, t=1..n)); od: od: seq(seq(A036039(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jul 14 2016
    # 2nd program:
    A036039 := proc(n,k)
        local a,prts,e,ai ;
        a := n! ;
        # ASPrts is implemented in A119441
        prts := ASPrts(n)[k] ;
        ai := 1;
        for e from 1 to nops(prts) do
            if e>1 then
                if op(e,prts) = op(e-1,prts) then
                    ai := ai+1 ;
                else
                    ai := 1;
                end if;
            end if;
            a := a/(op(e,prts)*ai) ;
        end do:
        a ;
    end proc:
    seq(seq(A036039(n,k),k=1..combinat[numbpart](n)),n=1..15) ; # R. J. Mathar, Dec 18 2016
  • Mathematica
    aspartitions[n_]:=Reverse/@Sort[Sort/@IntegerPartitions[n]];(* Abramowitz & Stegun ordering *);
    ascycleclasses[n_Integer]:=n!/(Times@@ #)&/@((#!
    Range[n]^#)&/@Function[par,Count[par,# ]&/@Range[n]]/@aspartitions[n])
    (* The function "ascycleclasses" is then identical with A&S multinomial M2. *)
    Table[ascycleclasses[n], {n, 1, 8}] // Flatten
    (* Wouter Meeussen, Jun 26 2009, Jun 27 2009 *)
  • Sage
    def PartAS(n):
        P = []
        for k in (1..n):
            Q = [p.to_list() for p in Partitions(n, length=k)]
            for q in Q: q.reverse()
            P = P + sorted(Q)
        return P
    def A036039_row(n):
        fn, C = factorial(n), []
        for q in PartAS(n):
            q.reverse()
            p = Partition(q)
            fp = 1; pf = 1
            for a, c in p.to_exp_dict().items():
                fp *= factorial(c)
                pf *= factorial(a)**c
            co = fn//(fp*pf)
            C.append(co*prod([factorial(i-1) for i in p]))
        return C
    for n in (1..10):
        print(A036039_row(n)) # Peter Luschny, Dec 18 2016

Formula

T(n,k) = n!/Product_{j=1..n} j^a(n,k,j)*a(n,k,j)!, with the k-th partition of n >= 1 in Abromowitz-Stegun order written as Product_{j=1..n} j^a(n,k,j) with nonnegative integers a(n,k,j) satisfying Sum_{j=1..n} j*a(n,k,j) = n, and the number of parts is Sum_{j=1..n} a(n,k,j) =: m(n,k). - Wolfdieter Lang, May 25 2019
Raising and lowering operators are given for the partition polynomials formed from this sequence in the link in "Lagrange a la Lah Part I" on p. 23. - Tom Copeland, Sep 18 2011
From Szabo p. 34, with b_n = q^n / (1-q^n)^2, the partition polynomials give an expansion of the MacMahon function M(q) = Product_{n>=1} 1/(1-q^n)^n = Sum_{n>=0} PL(n) q^n, the generating function for PL(n) = n! P_n(b_1,...,b_n), the number of plane partitions with sum n. - Tom Copeland, Nov 11 2015
From Tom Copeland, Nov 18 2015: (Start)
The partition polynomials of A036040 are obtained by substituting x[n]/(n-1)! for x[n] in the partition polynomials of this entry.
CIP_n(t-F(1,b1),-F(2,b1,b2),...,-F(n,b1,...,bn)) = P_n(b1,...,bn;t), where CIP_n are the partition polynomials of this entry; F(n,...), those of A263916; and P_n, those defined in my formula in A094587, e.g., P_2(b1,b2;t) = 2 b2 + 2 b1 t + t^2.
CIP_n(-F(1,b1),-F(2,b1,b2),...,-F(n,b1,...,bn)) = n! bn. (End)
From the relation to the elementary Schur polynomials given in A130561 and above, the partition polynomials of this array satisfy (d/d(x_m)) P(n,x_1,...,x_n) = (1/m) * (n!/(n-m)!) * P(n-m,x_1,...,x_(n-m)) with P(k,...) = 0 for k<0. - Tom Copeland, Sep 07 2016
Regarded as Appell polynomials in the indeterminate x(1)=u, the partition polynomials of this entry P_n(u) obey d/du P_n(u) = n * P_{n-1}(u), so the abscissas for the zeros of P_n(u) are the same as those of the extrema of P{n+1}(u). In addition, the coefficient of u^{n-1} in P_{n}(u) is zero since these polynomials are related to the characteristic polynomials of matrices with null main diagonals, and, therefore, the trace is zero, further implying the abscissa for any zero is the negative of the sum of the abscissas of the remaining zeros. This assumes all zeros are distinct and real. - Tom Copeland, Nov 10 2019

Extensions

More terms from David W. Wilson
Title expanded by Tom Copeland, Oct 15 2020

A130534 Triangle T(n,k), 0 <= k <= n, read by rows, giving coefficients of the polynomial (x+1)(x+2)...(x+n), expanded in increasing powers of x. T(n,k) is also the unsigned Stirling number |s(n+1, k+1)|, denoting the number of permutations on n+1 elements that contain exactly k+1 cycles.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 11, 6, 1, 24, 50, 35, 10, 1, 120, 274, 225, 85, 15, 1, 720, 1764, 1624, 735, 175, 21, 1, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 09 2007

Keywords

Comments

This triangle is an unsigned version of the triangle of Stirling numbers of the first kind, A008275, which is the main entry for these numbers. - N. J. A. Sloane, Jan 25 2011
Or, triangle T(n,k), 0 <= k <= n, read by rows given by [1,1,2,2,3,3,4,4,5,5,6,6,...] DELTA [1,0,1,0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.
Reversal of A094638.
Equals A132393*A007318, as infinite lower triangular matrices. - Philippe Deléham, Nov 13 2007
From Johannes W. Meijer, Oct 07 2009: (Start)
The higher order exponential integrals E(x,m,n) are defined in A163931. The asymptotic expansion of the exponential integrals E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + n*(n+1)/x^2 - n*(n+1)*(n+2)/x^3 + ...), see Abramowitz and Stegun. This formula follows from the general formula for the asymptotic expansion, see A163932. We rewrite E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + (n^2+n)/x^2 - (2*n+3*n^2+n^3)/x^3 + (6*n+11*n^2+6*n^3+n^4)/x^3 - ...) and observe that the T(n,m) are the polynomials coefficients in the denominators. Looking at the a(n,m) formula of A028421, A163932 and A163934, and shifting the offset given above to 1, we can write T(n-1,m-1) = a(n,m) = (-1)^(n+m)*Stirling1(n,m), see the Maple program.
The asymptotic expansion leads for values of n from one to eleven to known sequences, see the cross-references. With these sequences one can form the triangles A008279 (right-hand columns) and A094587 (left-hand columns).
See A163936 for information about the o.g.f.s. of the right-hand columns of this triangle.
(End)
The number of elements greater than i to the left of i in a permutation gives the i-th element of the inversion vector. (Skiena-Pemmaraju 2003, p. 69.) T(n,k) is the number of n-permutations that have exactly k 0's in their inversion vector. See evidence in Mathematica code below. - Geoffrey Critzer, May 07 2010
T(n,k) counts the rooted trees with k+1 trunks in forests of "naturally grown" rooted trees with n+2 nodes. This corresponds to sums of coefficients of iterated derivatives representing vectors, Lie derivatives, or infinitesimal generators for flow fields and formal group laws. Cf. links in A139605. - Tom Copeland, Mar 23 2014
A refinement is A036039. - Tom Copeland, Mar 30 2014
From Tom Copeland, Apr 05 2014: (Start)
With initial n=1 and row polynomials of T as p(n,x)=x(x+1)...(x+n-1), the powers of x correspond to the number of trunks of the rooted trees of the "naturally-grown" forest referred to above. With each trunk allowed m colors, p(n,m) gives the number of such non-plane colored trees for the forest with each tree having n+1 vertices.
p(2,m) = m + m^2 = A002378(m) = 2*A000217(m) = 2*(first subdiag of |A238363|).
p(3,m) = 2m + 3m^2 + m^3 = A007531(m+2) = 3*A007290(m+2) = 3*(second subdiag A238363).
p(4,m) = 6m + 11m^2 + 6m^3 + m^4 = A052762(m+3) = 4*A033487(m) = 4*(third subdiag).
From the Joni et al. link, p(n,m) also represents the disposition of n distinguishable flags on m distinguishable flagpoles.
The chromatic polynomial for the complete graph K_n is the falling factorial, which encodes the colorings of the n vertices of K_n and gives a shifted version of p(n,m).
E.g.f. for the row polynomials: (1-y)^(-x).
(End)
A relation to derivatives of the determinant |V(n)| of the n X n Vandermonde matrix V(n) in the indeterminates c(1) thru c(n):
|V(n)| = Product_{1<=jTom Copeland, Apr 10 2014
From Peter Bala, Jul 21 2014: (Start)
Let M denote the lower unit triangular array A094587 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well defined). See the Example section. (End)
For the relation of this rising factorial to the moments of Viennot's Laguerre stories, see the Hetyei link, p. 4. - Tom Copeland, Oct 01 2015
Can also be seen as the Bell transform of n! without column 0 (and shifted enumeration). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle  T(n,k) begins:
n\k         0        1        2       3       4      5      6     7    8  9 10
n=0:        1
n=1:        1        1
n=2:        2        3        1
n=3:        6       11        6       1
n=4:       24       50       35      10       1
n=5:      120      274      225      85      15      1
n=6:      720     1764     1624     735     175     21      1
n=7:     5040    13068    13132    6769    1960    322     28     1
n=8:    40320   109584   118124   67284   22449   4536    546    36    1
n=9:   362880  1026576  1172700  723680  269325  63273   9450   870   45  1
n=10: 3628800 10628640 12753576 8409500 3416930 902055 157773 18150 1320 55  1
[Reformatted and extended by _Wolfdieter Lang_, Feb 05 2013]
T(3,2) = 6 because there are 6 permutations of {1,2,3,4} that have exactly 2 0's in their inversion vector: {1, 2, 4, 3}, {1, 3, 2, 4}, {1, 3, 4, 2}, {2, 1, 3, 4},{2, 3, 1, 4}, {2, 3, 4, 1}. The respective inversion vectors are {0, 0, 1}, {0, 1, 0}, {0, 2, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}. - _Geoffrey Critzer_, May 07 2010
T(3,1)=11 since there are exactly 11 permutations of {1,2,3,4} with exactly 2 cycles, namely, (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), (4)(143), (12)(34), (13)(24), and (14)(23). - _Dennis P. Walsh_, Jan 25 2011
From _Peter Bala_, Jul 21 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
  / 1          \/1        \/1        \      / 1           \
  | 1  1       ||0 1      ||0 1      |      | 1  1        |
  | 2  2  1    ||0 1 1    ||0 0 1    |... = | 2  3  1     |
  | 6  6  3 1  ||0 2 2 1  ||0 0 1 1  |      | 6 11  6  1  |
  |24 24 12 4 1||0 6 6 3 1||0 0 2 2 1|      |24 50 35 10 1|
  |...         ||...      ||...      |      |...          |
(End)
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 93-94.
  • Sriram Pemmaraju and Steven Skiena, Computational Discrete Mathematics, Cambridge University Press, 2003, pp. 69-71. [Geoffrey Critzer, May 07 2010]

Crossrefs

See A008275, which is the main entry for these numbers; A094638 (reversed rows).
From Johannes W. Meijer, Oct 07 2009: (Start)
Row sums equal A000142.
The asymptotic expansions lead to A000142 (n=1), A000142(n=2; minus a(0)), A001710 (n=3), A001715 (n=4), A001720 (n=5), A001725 (n=6), A001730 (n=7), A049388 (n=8), A049389 (n=9), A049398 (n=10), A051431 (n=11), A008279 and A094587.
Cf. A163931 (E(x,m,n)), A028421 (m=2), A163932 (m=3), A163934 (m=4), A163936.
(End)
Cf. A136662.

Programs

  • Haskell
    a130534 n k = a130534_tabl !! n !! k
    a130534_row n = a130534_tabl !! n
    a130534_tabl = map (map abs) a008275_tabl
    -- Reinhard Zumkeller, Mar 18 2013
  • Maple
    with(combinat): A130534 := proc(n,m): (-1)^(n+m)*stirling1(n+1,m+1) end proc: seq(seq(A130534(n,m), m=0..n), n=0..10); # Johannes W. Meijer, Oct 07 2009, revised Sep 11 2012
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0 (and shifts the enumeration).
    BellMatrix(n -> n!, 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    Table[Table[ Length[Select[Map[ToInversionVector, Permutations[m]], Count[ #, 0] == n &]], {n, 0, m - 1}], {m, 0, 8}] // Grid (* Geoffrey Critzer, May 07 2010 *)
    rows = 10;
    t = Range[0, rows]!;
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)

Formula

T(0,0) = 1, T(n,k) = 0 if k > n or if n < 0, T(n,k) = T(n-1,k-1) + n*T(n-1,k). T(n,0) = n! = A000142(n). T(2*n,n) = A129505(n+1). Sum_{k=0..n} T(n,k) = (n+1)! = A000142(n+1). Sum_{k=0..n} T(n,k)^2 = A047796(n+1). T(n,k) = |Stirling1(n+1,k+1)|, see A008275. (x+1)(x+2)...(x+n) = Sum_{k=0..n} T(n,k)*x^k. [Corrected by Arie Bos, Jul 11 2008]
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000142(n), A000142(n+1), A001710(n+2), A001715(n+3), A001720(n+4), A001725(n+5), A001730(n+6), A049388(n), A049389(n), A049398(n), A051431(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. - Philippe Deléham, Nov 13 2007
For k=1..n, let A={a_1,a_2,...,a_k} denote a size-k subset of {1,2,...,n}. Then T(n,n-k) = Sum(Product_{i=1..k} a_i) where the sum is over all subsets A. For example, T(4,1)=50 since 1*2*3 + 1*2*4 + 1*3*4 + 2*3*4 = 50. - Dennis P. Walsh, Jan 25 2011
The preceding formula means T(n,k) = sigma_{n-k}(1,2,3,..,n) with the (n-k)-th elementary symmetric function sigma with the indeterminates chosen as 1,2,...,n. See the Oct 24 2011 comment in A094638 with sigma called there a. - Wolfdieter Lang, Feb 06 2013
From Gary W. Adamson, Jul 08 2011: (Start)
n-th row of the triangle = top row of M^n, where M is the production matrix:
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 6, 4, 1;
... (End)
Exponential Riordan array [1/(1 - x), log(1/(1 - x))]. Recurrence: T(n+1,k+1) = Sum_{i=0..n-k} (n + 1)!/(n + 1 - i)!*T(n-i,k). - Peter Bala, Jul 21 2014

A374848 Obverse convolution A000045**A000045; see Comments.

Original entry on oeis.org

0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2024

Keywords

Comments

The obverse convolution of sequences
s = (s(0), s(1), ...) and t = (t(0), t(1), ...)
is introduced here as the sequence s**t given by
s**t(n) = (s(0)+t(n)) * (s(1)+t(n-1)) * ... * (s(n)+t(0)).
Swapping * and + in the representation s(0)*t(n) + s(1)*t(n-1) + ... + s(n)*t(0)
of ordinary convolution yields s**t.
If x is an indeterminate or real (or complex) variable, then for every sequence t of real (or complex) numbers, s**t is a sequence of polynomials p(n) in x, and the zeros of p(n) are the numbers -t(0), -t(1), ..., -t(n).
Following are abbreviations in the guide below for triples (s, t, s**t):
F = (0,1,1,2,3,5,...) = A000045, Fibonacci numbers
L = (2,1,3,4,7,11,...) = A000032, Lucas numbers
P = (2,3,5,7,11,...) = A000040, primes
T = (1,3,6,10,15,...) = A000217, triangular numbers
C = (1,2,6,20,70, ...) = A000984, central binomial coefficients
LW = (1,3,4,6,8,9,...) = A000201, lower Wythoff sequence
UW = (2,5,7,10,13,...) = A001950, upper Wythoff sequence
[ ] = floor
In the guide below, sequences s**t are identified with index numbers Axxxxxx; in some cases, s**t and Axxxxxx differ in one or two initial terms.
Table 1. s = A000012 = (1,1,1,1...) = (1);
t = A000012; 1 s**t = A000079; 2^(n+1)
t = A000027; n s**t = A000142; (n+1)!
t = A000040, P s**t = A054640
t = A000040, P (1/3) s**t = A374852
t = A000079, 2^n s**t = A028361
t = A000079, 2^n (1/3) s**t = A028362
t = A000045, F s**t = A082480
t = A000032, L s**t = A374890
t = A000201, LW s**t = A374860
t = A001950, UW s**t = A374864
t = A005408, 2*n+1 s**t = A000165, 2^n*n!
t = A016777, 3*n+1 s**t = A008544
t = A016789, 3*n+2 s**t = A032031
t = A000142, n! s**t = A217757
t = A000051, 2^n+1 s**t = A139486
t = A000225, 2^n-1 s**t = A006125
t = A032766, [3*n/2] s**t = A111394
t = A034472, 3^n+1 s**t = A153280
t = A024023, 3^n-1 s**t = A047656
t = A000217, T s**t = A128814
t = A000984, C s**t = A374891
t = A279019, n^2-n s**t = A130032
t = A004526, 1+[n/2] s**t = A010551
t = A002264, 1+[n/3] s**t = A264557
t = A002265, 1+[n/4] s**t = A264635
Sequences (c)**L, for c=2..4: A374656 to A374661
Sequences (c)**F, for c=2..6: A374662, A374662, A374982 to A374855
The obverse convolutions listed in Table 1 are, trivially, divisibility sequences. Likewise, if s = (-1,-1,-1,...) instead of s = (1,1,1,...), then s**t is a divisibility sequence for every choice of t; e.g. if s = (-1,-1,-1,...) and t = A279019, then s**t = A130031.
Table 2. s = A000027 = (0,1,2,3,4,5,...) = (n);
t = A000027, n s**t = A007778, n^(n+1)
t = A000290, n^2 s**t = A374881
t = A000040, P s**t = A374853
t = A000045, F s**t = A374857
t = A000032, L s**t = A374858
t = A000079, 2^n s**t = A374859
t = A000201, LW s**t = A374861
t = A005408, 2*n+1 s**t = A000407, (2*n+1)! / n!
t = A016777, 3*n+1 s**t = A113551
t = A016789, 3*n+2 s**t = A374866
t = A000142, n! s**t = A374871
t = A032766, [3*n/2] s**t = A374879
t = A000217, T s**t = A374892
t = A000984, C s**t = A374893
t = A038608, n*(-1)^n s**t = A374894
Table 3. s = A000290 = (0,1,4,9,16,...) = (n^2);
t = A000290, n^2 s**t = A323540
t = A002522, n^2+1 s**t = A374884
t = A000217, T s**t = A374885
t = A000578, n^3 s**t = A374886
t = A000079, 2^n s**t = A374887
t = A000225, 2^n-1 s**t = A374888
t = A005408, 2*n+1 s**t = A374889
t = A000045, F s**t = A374890
Table 4. s = t;
s = t = A000012, 1 s**s = A000079; 2^(n+1)
s = t = A000027, n s**s = A007778, n^(n+1)
s = t = A000290, n^2 s**s = A323540
s = t = A000045, F s**s = this sequence
s = t = A000032, L s**s = A374850
s = t = A000079, 2^n s**s = A369673
s = t = A000244, 3^n s**s = A369674
s = t = A000040, P s**s = A374851
s = t = A000201, LW s**s = A374862
s = t = A005408, 2*n+1 s**s = A062971
s = t = A016777, 3*n+1 s**s = A374877
s = t = A016789, 3*n+2 s**s = A374878
s = t = A032766, [3*n/2] s**s = A374880
s = t = A000217, T s**s = A375050
s = t = A005563, n^2-1 s**s = A375051
s = t = A279019, n^2-n s**s = A375056
s = t = A002398, n^2+n s**s = A375058
s = t = A002061, n^2+n+1 s**s = A375059
If n = 2*k+1, then s**s(n) is a square; specifically,
s**s(n) = ((s(0)+s(n))*(s(1)+s(n-1))*...*(s(k)+s(k+1)))^2.
If n = 2*k, then s**s(n) has the form 2*s(k)*m^2, where m is an integer.
Table 5. Others
s = A000201, LW t = A001950, UW s**t = A374863
s = A000045, F t = A000032, L s**t = A374865
s = A005843, 2*n t = A005408, 2*n+1 s**t = A085528, (2*n+1)^(n+1)
s = A016777, 3*n+1 t = A016789, 3*n+2 s**t = A091482
s = A005408, 2*n+1 t = A000045, F s**t = A374867
s = A005408, 2*n+1 t = A000032, L s**t = A374868
s = A005408, 2*n+1 t = A000079, 2^n s**t = A374869
s = A000027, n t = A000142, n! s**t = A374871
s = A005408, 2*n+1 t = A000142, n! s**t = A374872
s = A000079, 2^n t = A000142, n! s**t = A374874
s = A000142, n! t = A000045, F s**t = A374875
s = A000142, n! t = A000032, L s**t = A374876
s = A005408, 2*n+1 t = A016777, 3*n+1 s**t = A352601
s = A005408, 2*n+1 t = A016789, 3*n+2 s**t = A064352
Table 6. Arrays of coefficients of s(x)**t(x), where s(x) and t(x) are polynomials
s(x) t(x) s(x)**t(x)
n x A132393
n^2 x A269944
x+1 x+1 A038220
x+2 x+2 A038244
x x+3 A038220
nx x+1 A094638
1 x^2+x+1 A336996
n^2 x x+1 A375041
n^2 x 2x+1 A375042
n^2 x x+2 A375043
2^n x x+1 A375044
2^n 2x+1 A375045
2^n x+2 A375046
x+1 F(n) A375047
x+1 x+F(n) A375048
x+F(n) x+F(n) A375049

Examples

			a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
    Table[u[n], {n, 0, 20}]
  • PARI
    a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024

Formula

a(n) ~ c * phi^(3*n^2/4 + n) / 5^((n+1)/2), where c = QPochhammer(-1, 1/phi^2)^2/2 if n is even and c = phi^(1/4) * QPochhammer(-phi, 1/phi^2)^2 / (phi + 1)^2 if n is odd, and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 01 2024
Previous Showing 11-20 of 126 results. Next