A000079 Powers of 2: a(n) = 2^n.
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0
Examples
There are 2^3 = 8 subsets of a 3-element set {1,2,3}, namely { -, 1, 2, 3, 12, 13, 23, 123 }.
References
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 1016.
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 73, 84.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.5 Logarithms and §8.1 Terminology, pp. 150, 264.
- Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1), Princeton University Press, Princeton, NJ. 1998, pp. 69-70.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 273.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 124.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- V. E. Tarakanov, Combinatorial problems on binary matrices, Combin. Analysis, MSU, 5 (1980), 4-15. (Russian)
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- N. J. A. Sloane, Table of n, 2^n for n = 0..1000
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Juan S. Auli and Sergi Elizalde, Wilf equivalences between vincular patterns in inversion sequences, arXiv:2003.11533 [math.CO], 2020.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
- Arno Berger and Theodore P. Hill, What is Benford's Law?, Notices, Amer. Math. Soc., 64:2 (2017), 132-134.
- Tobias Boege and Thomas Kahle, Construction Methods for Gaussoids, arXiv:1902.11260 [math.CO], 2019.
- Anicius Manlius Severinus Boethius, De arithmetica, Book 1, section 9.
- Henry Bottomley, Illustration of initial terms
- Douglas Butler, Powers of Two up to 2^222
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Peter J. Cameron, Notes on Counting, Peter Cameron's Blog, 15/05/2017.
- CDLI, M 08613.
- Giulio Cerbai, Anders Claesson, and Luca Ferrari, Stack sorting with restricted stacks, arXiv:1907.08142 [cs.DS], 2019.
- V. Coll, M. Hyatt, C. Magnant, and H. Wang, Meander graphs and Frobenius seaweed Lie algebras II, Journal of Generalized Lie Theory and Applications 9 (1) (2015) 227.
- M. Coons and H. Winning, Powers of Two Modulo Powers of Three, J. Int. Seq. 18 (2015) # 15.6.1.
- Keneth Adrian P. Dagal and Jose Arnaldo B. Dris, A Criterion for Almost Perfect Numbers in Terms of the Abundancy Index, arXiv:1308.6767v1 [math.NT], Aug 14 2013.
- V. Dergachev and A. Kirillov, Index of Lie algebras of seaweed type, J. Lie Theory 10 (2) (2000) 331-343.
- Persi Diaconis, The distribution of leading digits and uniform distribution mod 1, Ann. Probability, 5, 1977, 72--81.
- Kenneth Edwards and Michael A. Allen, New combinatorial interpretations of the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers using two types of tile, J. Int. Seq. 24 (2021) Article 21.3.8.
- David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 18
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
- Hermann Gruber, Jonathan Lee and Jeffrey Shallit, Enumerating regular expressions and their languages, arXiv:1204.4982v1 [cs.FL], 2012.
- R. K. Guy, Letter to N. J. A. Sloane
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 6
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 68
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 72
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 267
- Marcus Jaiclin, et al. Pascal's Triangle, Mod 2,3,5
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, 184 (1893), 835-901.
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.
- R. Ondrejka, Exact values of 2^n, n=1(1)4000, Math. Comp., 23 (1969), 456.
- Permutation Pattern Avoidance Library (PermPAL), Av(012_021)
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- Robert Price, Comments on A000079 concerning Elementary Cellular Automata, Feb 26 2016.
- Shingo Saito, Tatsushi Tanaka, and Noriko Wakabayashi, Combinatorial Remarks on the Cyclic Sum Formula for Multiple Zeta Values, J. Int. Seq. 14 (2011) # 11.2.4, Table 1.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- J. Tanton, A Dozen Questions about the Powers of Two, Math Horizons, Vol. 8, pp. 5-10, September 2001.
- G. Villemin's Almanac of Numbers, Puissances de 2
- Sage Weil, 1058 powers of two
- Eric Weisstein's World of Mathematics, Abundance
- Eric Weisstein's World of Mathematics, Binomial Sums
- Eric Weisstein's World of Mathematics, Binomial Transform
- Eric Weisstein's World of Mathematics, Hailstone Number (Collatz Problem)
- Eric Weisstein's World of Mathematics, Composition
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- Eric Weisstein's World of Mathematics, Empty Graph
- Eric Weisstein's World of Mathematics, Erf
- Eric Weisstein's World of Mathematics, Fractional Part
- Eric Weisstein's World of Mathematics, Halved Cube Graph
- Eric Weisstein's World of Mathematics, Hypercube
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Least Deficient Number
- Eric Weisstein's World of Mathematics, Maximum Clique
- Eric Weisstein's World of Mathematics, PowerFractional Parts
- Eric Weisstein's World of Mathematics, Subset
- Eric Weisstein's World of Mathematics, Vertex Cover
- Wikipedia, Almost perfect number
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to binary expansion of n
- Index to Elementary Cellular Automata
- Index entries for sequences related to cellular automata
- Index entries for "core" sequences
- Index to divisibility sequences
- Index entries for related partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (2).
- Index entries for sequences related to Benford's law
Crossrefs
Cf. A000225, A038754, A133464, A140730, A037124, A001787, A001788, A001789, A003472, A054849, A002409, A054851, A140325, A140354, A000041, A152537, A001405, A007318, A000120, A000265, A000593, A001227, A077020, A077021.
This is the Hankel transform (see A001906 for the definition) of A000984, A002426, A026375, A026387, A026569, A026585, A026671 and A032351. - John W. Layman, Jul 31 2000
Euler transform of A001037, A209406 (multisets), inverse binomial transform of A000244, binomial transform of A000012.
Complement of A057716.
Cf. A018900, A014311, A014312, A014313, A023688, A023689, A023690, A023691 (sum of 2, ..., 9 distinct powers of 2).
Cf. A090129.
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Programs
-
Haskell
a000079 = (2 ^) a000079_list = iterate (* 2) 1 -- Reinhard Zumkeller, Jan 22 2014, Mar 05 2012, Dec 29 2011
-
Magma
[2^n: n in [0..40]]; // Vincenzo Librandi, Feb 17 2014
-
Magma
[n le 2 select n else 5*Self(n-1)-6*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 17 2014
-
Maple
A000079 := n->2^n; [ seq(2^n,n=0..50) ]; isA000079 := proc(n) local fs; fs := numtheory[factorset](n) ; if n = 1 then true ; elif nops(fs) <> 1 then false; elif op(1,fs) = 2 then true; else false ; end if; end proc: # R. J. Mathar, Jan 09 2017
-
Mathematica
Table[2^n, {n, 0, 50}] 2^Range[0, 50] (* Wesley Ivan Hurt, Jun 14 2014 *) LinearRecurrence[{2}, {2}, {0, 20}] (* Eric W. Weisstein, Sep 21 2017 *) CoefficientList[Series[1/(1 - 2 x), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *) NestList[2# &, 1, 40] (* Harvey P. Dale, Oct 07 2019 *)
-
Maxima
A000079(n):=2^n$ makelist(A000079(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
A000079(n)=2^n \\ Edited by M. F. Hasler, Aug 27 2014
-
PARI
unimodal(n)=local(x,d,um,umc); umc=0; for (c=0,n!-1, x=numtoperm(n,c); d=0; um=1; for (j=2,n,if (x[j]
x[j-1] && d==1,um=0); if (um==0,break)); if (um==1,print(x)); umc+=um); umc -
Python
def a(n): return 1<
Michael S. Branicky, Jul 28 2022 -
Python
def is_powerof2(n) -> bool: return n and (n & (n - 1)) == 0 # Peter Luschny, Apr 10 2025
-
Scala
(List.fill(20)(2: BigInt)).scanLeft(1: BigInt)( * ) // Alonso del Arte, Jan 16 2020
-
Scheme
(define (A000079 n) (expt 2 n)) ;; Antti Karttunen, Mar 21 2017
Formula
a(n) = 2^n.
a(0) = 1; a(n) = 2*a(n-1).
G.f.: 1/(1 - 2*x).
E.g.f.: exp(2*x).
a(n)= Sum_{k = 0..n} binomial(n, k).
a(n) is the number of occurrences of n in A000523. a(n) = A001045(n) + A001045(n+1). a(n) = 1 + Sum_{k = 0..(n - 1)} a(k). The Hankel transform of this sequence gives A000007 = [1, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Feb 25 2004
n such that phi(n) = n/2, for n > 1, where phi is Euler's totient (A000010). - Lekraj Beedassy, Sep 07 2004
a(n + 1) = a(n) XOR 3*a(n) where XOR is the binary exclusive OR operator. - Philippe Deléham, Jun 19 2005
a(n) = StirlingS2(n + 1, 2) + 1. - Ross La Haye, Jan 09 2008
a(n+2) = 6a(n+1) - 8a(n), n = 1, 2, 3, ... with a(1) = 1, a(2) = 2. - Yosu Yurramendi, Aug 06 2008
a(n) = ka(n-1) + (4 - 2k)a(n-2) for any integer k and n > 1, with a(0) = 1, a(1) = 2. - Jaume Oliver Lafont, Dec 05 2008
a(n) = Sum_{l_1 = 0..n + 1} Sum_{l_2 = 0..n}...Sum_{l_i = 0..n - i}...Sum_{l_n = 0..1} delta(l_1, l_2, ..., l_i, ..., l_n) where delta(l_1, l_2, ..., l_i, ..., l_n) = 0 if any l_i <= l_(i+1) and l_(i+1) != 0 and delta(l_1, l_2, ..., l_i, ..., l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(0) = 1, a(1) = 2; a(n) = a(n-1)^2/a(n-2), n >= 2. - Jaume Oliver Lafont, Sep 22 2009
If p[i] = i - 1 and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 1, a(n-1) = det A. - Milan Janjic, May 02 2010
If p[i] = Fibonacci(i-2) and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 2, a(n-2) = det A. - Milan Janjic, May 08 2010
The sum of reciprocals, 1/1 + 1/2 + 1/4 + 1/8 + ... + 1/(2^n) + ... = 2. - Mohammad K. Azarian, Dec 29 2010
a(n) = A118654(n, 2).
a(n) = A140740(n+1, 1).
a(n) = A131577(n) + A011782(n) = A024495(n) + A131708(n) + A024493(n) = A000749(n) + A038503(n) + A038504(n) + A038505(n) = A139761(n) + A139748(n) + A139714(n) + A133476(n) + A139398(n). - Paul Curtz, Jul 25 2011
a(n) = row sums of A007318. - Susanne Wienand, Oct 21 2011
a(n) = Hypergeometric([-n], [], -1). - Peter Luschny, Nov 01 2011
G.f.: A(x) = B(x)/x, B(x) satisfies B(B(x)) = x/(1 - x)^2. - Vladimir Kruchinin, Nov 10 2011
a(n) = Sum_{k = 0..n} A201730(n, k)*(-1)^k. - Philippe Deléham, Dec 06 2011
2^n = Sum_{k = 1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
A209229(a(n)) = 1. - Reinhard Zumkeller, Mar 07 2012
A001227(a(n)) = 1. - Reinhard Zumkeller, May 01 2012
Sum_{n >= 1} mobius(n)/a(n) = 0.1020113348178103647430363939318... - R. J. Mathar, Aug 12 2012
E.g.f.: 1 + 2*x/(U(0) - x) where U(k) = 6*k + 1 + x^2/(6*k+3 + x^2/(6*k + 5 + x^2/U(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Dec 04 2012
a(n) = det(|s(i+2,j)|, 1 <= i,j <= n), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 04 2013
a(n) = det(|ps(i+1,j)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013
G.f.: W(0), where W(k) = 1 + 2*x*(k+1)/(1 - 2*x*(k+1)/( 2*x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
a(n-1) = Sum_{t_1 + 2*t_2 + ... + n*t_n = n} multinomial(t_1 + t_2 + ... + t_n; t_1, t_2, ..., t_n). - Mircea Merca, Dec 06 2013
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A(n)=(1,1,1,...) and S(n)=(0,1,0,0,...) (where * is convolution operation). Then a(n-1) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 01 2015
From Ilya Gutkovskiy, Jul 18 2016: (Start)
Exponential convolution of A000012 with themselves.
a(n) = Sum_{k=0..n} A011782(k).
Sum_{n>=0} a(n)/n! = exp(2) = A072334.
Sum_{n>=0} (-1)^n*a(n)/n! = exp(-2) = A092553. (End)
G.f.: (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = A090129(x) = (1 + 2x + 2x^2 + 4x^3 + 8x^4 + ...). - Gary W. Adamson, Sep 13 2016
a(n) = A000045(n + 1) + A000045(n) + Sum_{k = 0..n - 2} A000045(k + 1)*2^(n - 2 - k). - Melvin Peralta, Dec 22 2017
a(n)= n + 1 + Sum_{k=3..n+1} (2*k-5)*J(n+2-k), where Jacobsthal number J(n) = A001045(n). - Michael A. Allen, Jan 12 2022
Integral_{x=0..Pi} cos(x)^n*cos(n*x) dx = Pi/a(n) (see Nahin, pp. 69-70). - Stefano Spezia, May 17 2023
Extensions
Clarified a comment T. D. Noe, Aug 30 2009
Edited by Daniel Forgues, May 12 2010
Incorrect comment deleted by Matthew Vandermast, May 17 2014
Comment corrected to match offset by Geoffrey Critzer, Nov 28 2014
Comments