cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A035001 Sorted elements of table (A035002) of a(m,n) = sum(a(m-k,n), k=1..m-1)+sum(a(m,n-k), k=1..n-1).

Original entry on oeis.org

1, 2, 4, 5, 8, 12, 14, 16, 28, 32, 37, 64, 94, 106, 128, 144, 232, 256, 289, 320, 512, 560, 704, 760, 838, 1024, 1328, 1536, 1944, 2048, 2329, 3104, 3328, 4096, 4864, 6266, 6802, 7168, 8192, 11952, 15360, 16384, 16428, 19149, 28928, 32768, 37120, 42168
Offset: 0

Views

Author

Keywords

A000244 Powers of 3: a(n) = 3^n.

Original entry on oeis.org

1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 3), L(1, 3), P(1, 3), T(1, 3). Essentially same as Pisot sequences E(3, 9), L(3, 9), P(3, 9), T(3, 9). See A008776 for definitions of Pisot sequences.
Number of (s(0), s(1), ..., s(2n+2)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2n + 2, s(0) = 1, s(2n+2) = 3. - Herbert Kociemba, Jun 10 2004
a(1) = 1, a(n+1) is the least number such that there are a(n) even numbers between a(n) and a(n+1). Generalization for the sequence of powers of k: 1, k, k^2, k^3, k^4, ... There are a(n) multiples of k-1 between a(n) and a(n+1). - Amarnath Murthy, Nov 28 2004
a(n) = sum of (n+1)-th row in Triangle A105728. - Reinhard Zumkeller, Apr 18 2005
With p(n) being the number of integer partitions of n, p(i) being the number of parts of the i-th partition of n, d(i) being the number of different parts of the i-th partition of n, m(i, j) being the multiplicity of the j-th part of the i-th partition of n, Sum_{i = 1..p(n)} being the sum over i and Product_{j = 1..d(i)} being the product over j, one has: a(n) = Sum_{i = 1..p(n)} (p(i)!/(Product_{j = 1..d(i)} m(i, j)!))*2^(p(i) - 1). - Thomas Wieder, May 18 2005
For any k > 1 in the sequence, k is the first prime power appearing in the prime decomposition of repunit R_k, i.e., of A002275(k). - Lekraj Beedassy, Apr 24 2006
a(n-1) is the number of compositions of compositions. In general, (k+1)^(n-1) is the number of k-levels nested compositions (e.g., 4^(n-1) is the number of compositions of compositions of compositions, etc.). Each of the n - 1 spaces between elements can be a break for one of the k levels, or not a break at all. - Franklin T. Adams-Watters, Dec 06 2006
Let S be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xSy if x is a subset of y. Then a(n) = |S|. - Ross La Haye, Dec 22 2006
From Manfred Boergens, Mar 28 2023: (Start)
With regard to the comment by Ross La Haye:
Cf. A001047 if either nonempty subsets are considered or x is a proper subset of y.
Cf. a(n+1) in A028243 if nonempty subsets are considered and x is a proper subset of y. (End)
If X_1, X_2, ..., X_n is a partition of the set {1, 2, ..., 2*n} into blocks of size 2 then, for n >= 1, a(n) is equal to the number of functions f : {1, 2, ..., 2*n} -> {1, 2} such that for fixed y_1, y_2, ..., y_n in {1, 2} we have f(X_i) <> {y_i}, (i = 1, 2, ..., n). - Milan Janjic, May 24 2007
This is a general comment on all sequences of the form a(n) = [(2^k)-1]^n for all positive integers k. Example 1.1.16 of Stanley's "Enumerative Combinatorics" offers a slightly different version. a(n) in the number of functions f:[n] into P([k]) - {}. a(n) is also the number of functions f:[k] into P([n]) such that the generalized intersection of f(i) for all i in [k] is the empty set. Where [n] = {1, 2, ..., n}, P([n]) is the power set of [n] and {} is the empty set. - Geoffrey Critzer, Feb 28 2009
a(n) = A064614(A000079(n)) and A064614(m)A000079(n). - Reinhard Zumkeller, Feb 08 2010
3^(n+1) = (1, 2, 2, 2, ...) dot (1, 1, 3, 9, ..., 3^n); e.g., 3^3 = 27 = (1, 2, 2, 2) dot (1, 1, 3, 9) = (1 + 2 + 6 + 18). - Gary W. Adamson, May 17 2010
a(n) is the number of generalized compositions of n when there are 3*2^i different types of i, (i = 1, 2, ...). - Milan Janjic, Sep 24 2010
For n >= 1, a(n-1) is the number of generalized compositions of n when there are 2^(i-1) different types of i, (i = 1, 2, ...). - Milan Janjic, Sep 24 2010
The sequence in question ("Powers of 3") also describes the number of moves of the k-th disk solving the [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle (cf. A183111 - A183125).
a(n) is the number of Stern polynomials of degree n. See A057526. - T. D. Noe, Mar 01 2011
Positions of records in the number of odd prime factors, A087436. - Juri-Stepan Gerasimov, Mar 17 2011
Sum of coefficients of the expansion of (1+x+x^2)^n. - Adi Dani, Jun 21 2011
a(n) is the number of compositions of n elements among {0, 1, 2}; e.g., a(2) = 9 since there are the 9 compositions 0 + 0, 0 + 1, 1 + 0, 0 + 2, 1 + 1, 2 + 0, 1 + 2, 2 + 1, and 2 + 2. [From Adi Dani, Jun 21 2011; modified by editors.]
Except the first two terms, these are odd numbers n such that no x with 2 <= x <= n - 2 satisfy x^(n-1) == 1 (mod n). - Arkadiusz Wesolowski, Jul 03 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 3-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Explanation from David Applegate, Feb 20 2017: (Start)
Since the preceding comment appears in a large number of sequences, it might be worth adding a proof.
The number of compositions of n into exactly k parts is binomial(n-1,k-1).
For a p-colored composition of n such that no adjacent parts have the same color, there are exactly p choices for the color of the first part, and p-1 choices for the color of each additional part (any color other than the color of the previous one). So, for a partition into k parts, there are p (p-1)^(k-1) valid colorings.
Thus the number of p-colored compositions of n into exactly k parts such that no adjacent parts have the same color is binomial(n-1,k-1) p (p-1)^(k-1).
The total number of p-colored compositions of n such that no adjacent parts have the same color is then
Sum_{k=1..n} binomial(n-1,k-1) * p * (p-1)^(k-1) = p^n.
To see this, note that the binomial expansion of ((p - 1) + 1)^(n - 1) = Sum_{k = 0..n - 1} binomial(n - 1, k) (p - 1)^k 1^(n - 1 - k) = Sum_{k = 1..n} binomial(n - 1, k - 1) (p - 1)^(k - 1).
(End)
Also, first and least element of the matrix [1, sqrt(2); sqrt(2), 2]^(n+1). - M. F. Hasler, Nov 25 2011
One-half of the row sums of the triangular version of A035002. - J. M. Bergot, Jun 10 2013
Form an array with m(0,n) = m(n,0) = 2^n; m(i,j) equals the sum of the terms to the left of m(i,j) and the sum of the terms above m(i,j), which is m(i,j) = Sum_{k=0..j-1} m(i,k) + Sum_{k=0..i-1} m(k,j). The sum of the terms in antidiagonal(n+1) = 4*a(n). - J. M. Bergot, Jul 10 2013
a(n) = A007051(n+1) - A007051(n), and A007051 are the antidiagonal sums of an array defined by m(0,k) = 1 and m(n,k) = Sum_{c = 0..k - 1} m(n, c) + Sum_{r = 0..n - 1} m(r, k), which is the sum of the terms to left of m(n, k) plus those above m(n, k). m(1, k) = A000079(k); m(2, k) = A045623(k + 1); m(k + 1, k) = A084771(k). - J. M. Bergot, Jul 16 2013
Define an array to have m(0,k) = 2^k and m(n,k) = Sum_{c = 0..k - 1} m(n, c) + Sum_{r = 0..n - 1} m(r, k), which is the sum of the terms to the left of m(n, k) plus those above m(n, k). Row n = 0 of the array comprises A000079, column k = 0 comprises A011782, row n = 1 comprises A001792. Antidiagonal sums of the array are a(n): 1 = 3^0, 1 + 2 = 3^1, 2 + 3 + 4 = 3^2, 4 + 7 + 8 + 8 = 3^3. - J. M. Bergot, Aug 02 2013
The sequence with interspersed zeros and o.g.f. x/(1 - 3*x^2), A(2*k) = 0, A(2*k + 1) = 3^k = a(k), k >= 0, can be called hexagon numbers. This is because the algebraic number rho(6) = 2*cos(Pi/6) = sqrt(3) of degree 2, with minimal polynomial C(6, x) = x^2 - 3 (see A187360, n = 6), is the length ratio of the smaller diagonal and the side in the hexagon. Hence rho(6)^n = A(n-1)*1 + A(n)*rho(6), in the power basis of the quadratic number field Q(rho(6)). One needs also A(-1) = 1. See also a Dec 02 2010 comment and the P. Steinbach reference given in A049310. - Wolfdieter Lang, Oct 02 2013
Numbers k such that sigma(3k) = 3k + sigma(k). - Jahangeer Kholdi, Nov 23 2013
All powers of 3 are perfect totient numbers (A082897), since phi(3^n) = 2 * 3^(n - 1) for n > 0, and thus Sum_{i = 0..n} phi(3^i) = 3^n. - Alonso del Arte, Apr 20 2014
The least number k > 0 such that 3^k ends in n consecutive decreasing digits is a 3-term sequence given by {1, 13, 93}. The consecutive increasing digits are {3, 23, 123}. There are 100 different 3-digit endings for 3^k. There are no k-values such that 3^k ends in '012', '234', '345', '456', '567', '678', or '789'. The k-values for which 3^k ends in '123' are given by 93 mod 100. For k = 93 + 100*x, the digit immediately before the run of '123' is {9, 5, 1, 7, 3, 9, 5, 1, 3, 7, ...} for x = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...}, respectively. Thus we see the digit before '123' will never be a 0. So there are no further terms. - Derek Orr, Jul 03 2014
All elements of A^n where A = (1, 1, 1; 1, 1, 1; 1, 1, 1). - David Neil McGrath, Jul 23 2014
Counts all walks of length n (open or closed) on the vertices of a triangle containing a loop at each vertex starting from any given vertex. - David Neil McGrath, Oct 03 2014
a(n) counts walks (closed) on the graph G(1-vertex;1-loop,1-loop,1-loop). - David Neil McGrath, Dec 11 2014
2*a(n-2) counts all permutations of a solitary closed walk of length (n) from the vertex of a triangle that contains 2 loops on each of the remaining vertices. In addition, C(m,k)=2*(2^m)*B(m+k-2,m) counts permutations of walks that contain (m) loops and (k) arcs. - David Neil McGrath, Dec 11 2014
a(n) is the sum of the coefficients of the n-th layer of Pascal's pyramid (a.k.a., Pascal's tetrahedron - see A046816). - Bob Selcoe, Apr 02 2016
Numbers n such that the trinomial x^(2*n) + x^n + 1 is irreducible over GF(2). Of these only the trinomial for n=1 is primitive. - Joerg Arndt, May 16 2016
Satisfies Benford's law [Berger-Hill, 2011]. - N. J. A. Sloane, Feb 08 2017
a(n-1) is also the number of compositions of n if the parts can be runs of any length from 1 to n, and can contain any integers from 1 to n. - Gregory L. Simay, May 26 2017
Also the number of independent vertex sets and vertex covers in the n-ladder rung graph n P_2. - Eric W. Weisstein, Sep 21 2017
Also the number of (not necessarily maximal) cliques in the n-cocktail party graph. - Eric W. Weisstein, Nov 29 2017
a(n-1) is the number of 2-compositions of n; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 15 2020
a(n) is the number of faces of any dimension (vertices, edges, square faces, etc.) of the n-dimensional hypercube. For example, the 0-dimensional hypercube is a point, and its only face is itself. The 1-dimensional hypercube is a line, which has two vertices and an edge. The 2-dimensional hypercube is a square, which has four vertices, four edges, and a square face. - Kevin Long, Mar 14 2023
Number of pairs (A,B) of subsets of M={1,2,...,n} with union(A,B)=M. For nonempty subsets cf. A058481. - Manfred Boergens, Mar 28 2023
From Jianing Song, Sep 27 2023: (Start)
a(n) is the number of disjunctive clauses of n variables up to equivalence. A disjunctive clause is a propositional formula of the form l_1 OR ... OR l_m, where l_1, ..., l_m are distinct elements in {x_1, ..., x_n, NOT x_1, ..., NOT x_n} for n variables x_1, ... x_n, and no x_i and NOT x_i appear at the same time. For each 1 <= i <= n, we can have neither of x_i or NOT x_i, only x_i or only NOT x_i appearing in a disjunctive clause, so the number of such clauses is 3^n. Viewing the propositional formulas of n variables as functions {0,1}^n -> {0,1}, a disjunctive clause corresponds to a function f such that the inverse image of 0 is of the form A_1 X ... X A_n, where A_i is nonempty for all 1 <= i <= n. Since each A_i has 3 choices ({0}, {1} or {0,1}), we also find that the number of disjunctive clauses of n variables is 3^n.
Equivalently, a(n) is the number of conjunctive clauses of n variables. (End)
The finite subsequence a(2), a(3), a(4), a(5) = 9, 27, 81, 243 is one of only two geometric sequences that can be formed with all interior angles (all integer, in degrees) of a simple polygon. The other sequence is a subsequence of A007283 (see comment there). - Felix Huber, Feb 15 2024

Examples

			G.f. = 1 + 3*x + 9*x^2 + 27*x^3 + 81*x^4 + 243*x^5 + 729*x^6 + 2187*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008776 (2*a(n), and first differences).
a(n) = A092477(n, 2) for n > 0.
a(n) = A159991(n) / A009964(n).
Cf. A100772, A035002. Row sums of A125076 and A153279.
a(n) = A217764(0, n).
Cf. A046816, A006521, A014945, A275414 (multisets).
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

Formula

a(n) = 3^n.
a(0) = 1; a(n) = 3*a(n-1).
G.f.: 1/(1-3*x).
E.g.f.: exp(3*x).
a(n) = n!*Sum_{i + j + k = n, i, j, k >= 0} 1/(i!*j!*k!). - Benoit Cloitre, Nov 01 2002
a(n) = Sum_{k = 0..n} 2^k*binomial(n, k), binomial transform of A000079.
a(n) = A090888(n, 2). - Ross La Haye, Sep 21 2004
a(n) = 2^(2n) - A005061(n). - Ross La Haye, Sep 10 2005
a(n) = A112626(n, 0). - Ross La Haye, Jan 11 2006
Hankel transform of A007854. - Philippe Deléham, Nov 26 2006
a(n) = 2*StirlingS2(n+1,3) + StirlingS2(n+2,2) = 2*(StirlingS2(n+1,3) + StirlingS2(n+1,2)) + 1. - Ross La Haye, Jun 26 2008
a(n) = 2*StirlingS2(n+1, 3) + StirlingS2(n+2, 2) = 2*(StirlingS2(n+1, 3) + StirlingS2(n+1, 2)) + 1. - Ross La Haye, Jun 09 2008
Sum_{n >= 0} 1/a(n) = 3/2. - Gary W. Adamson, Aug 29 2008
If p(i) = Fibonacci(2i-2) and if A is the Hessenberg matrix of order n defined by A(i, j) = p(j-i+1), (i <= j), A(i, j) = -1, (i = j+1), and A(i, j) = 0 otherwise, then, for n >= 1, a(n-1) = det A. - Milan Janjic, May 08 2010
G.f. A(x) = M(x)/(1-M(x))^2, M(x) - o.g.f for Motzkin numbers (A001006). - Vladimir Kruchinin, Aug 18 2010
a(n) = A133494(n+1). - Arkadiusz Wesolowski, Jul 27 2011
2/3 + 3/3^2 + 2/3^3 + 3/3^4 + 2/3^5 + ... = 9/8. [Jolley, Summation of Series, Dover, 1961]
a(n) = Sum_{k=0..n} A207543(n,k)*4^(n-k). - Philippe Deléham, Feb 25 2012
a(n) = Sum_{k=0..n} A125185(n,k). - Philippe Deléham, Feb 26 2012
Sum_{n > 0} Mobius(n)/a(n) = 0.181995386702633887827... (see A238271). - Alonso del Arte, Aug 09 2012. See also the sodium 3s orbital energy in table V of J. Chem. Phys. 53 (1970) 348.
a(n) = (tan(Pi/3))^(2*n). - Bernard Schott, May 06 2022
a(n-1) = binomial(2*n-1, n) + Sum_{k >= 1} binomial(2*n, n+3*k)*(-1)^k. - Greg Dresden, Oct 14 2022
G.f.: Sum_{k >= 0} x^k/(1-2*x)^(k+1). - Kevin Long, Mar 14 2023

A025192 a(0)=1; a(n) = 2*3^(n-1) for n >= 1.

Original entry on oeis.org

1, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098, 354294, 1062882, 3188646, 9565938, 28697814, 86093442, 258280326, 774840978, 2324522934, 6973568802, 20920706406, 62762119218, 188286357654, 564859072962, 1694577218886, 5083731656658, 15251194969974
Offset: 0

Views

Author

Keywords

Comments

Warning: there is considerable overlap between this entry and the essentially identical A008776.
Shifts one place left when plus-convolved (PLUSCONV) with itself. a(n) = 2*Sum_{i=0..n-1} a(i). - Antti Karttunen, May 15 2001
Let M = { 0, 1, ..., 2^n-1 } be the set of all n-bit numbers. Consider two operations on this set: "sum modulo 2^n" (+) and "bitwise exclusive or" (XOR). The results of these operations are correlated.
To give a numerical measure, consider the equations over M: u = x + y, v = x XOR y and ask for how many pairs (u,v) is there a solution? The answer is exactly a(n) = 2*3^(n-1) for n >= 1. The fraction a(n)/4^n of such pairs vanishes as n goes to infinity. - Max Alekseyev, Feb 26 2003
Number of (s(0), s(1), ..., s(2n+2)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+2, s(0) = 3, s(2n+2) = 3. - Herbert Kociemba, Jun 10 2004
Number of compositions of n into parts of two kinds. For a string of n objects, before the first, choose first kind or second kind; before each subsequent object, choose continue, first kind, or second kind. For example, compositions of 3 are 3; 2,1; 1,2; and 1,1,1. Using parts of two kinds, these produce respectively 2, 4, 4 and 8 compositions, 2+4+4+8 = 18. - Franklin T. Adams-Watters, Aug 18 2006
In the compositions the kinds of parts are ordered inside a run of identical parts, see example. Replacing "ordered" by "unordered" gives A052945. - Joerg Arndt, Apr 28 2013
Number of permutations of {1, 2, ..., n+1} such that no term is more than 2 larger than its predecessor. For example, a(3) = 18 because all permutations of {1, 2, 3, 4} are valid except 1423, 1432, 2143, 3142, 2314, 3214, in which 1 is followed by 4. Proof: removing (n + 1) gives a still-valid sequence. For n >= 2, can insert (n + 1) either at the beginning or immediately following n or immediately following (n - 1), but nowhere else. Thus the number of such permutations triples when we increase the sequence length by 1. - Joel B. Lewis, Nov 14 2006
Antidiagonal sums of square array A081277. - Philippe Deléham, Dec 04 2006
Equals row sums of triangle A160760. - Gary W. Adamson, May 25 2009
Let M = a triangle with (1, 2, 4, 8, ...) as the left border and all other columns = (0, 1, 2, 4, 8, ...). A025192 = lim_{n->oo} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
Number of nonisomorphic graded posets with 0 and uniform hasse graph of rank n with no 3-element antichain. ("Uniform" used in the sense of Retakh, Serconek and Wilson. By "graded" we mean that all maximal chains have the same length n.) - David Nacin, Feb 13 2012
Equals partial sums of A003946 prefaced with a 1: (1, 1, 4, 12, 36, 108, ...). - Gary W. Adamson, Feb 15 2012
Number of vertices (or sides) of the (n-1)-th iteration of a Gosper island. - Arkadiusz Wesolowski, Feb 07 2013
Row sums of triangle in A035002. - Jon Perry, May 30 2013
a(n) counts walks (closed) on the graph G(1-vertex; 1-loop, 1-loop, 2-loop, 2-loop, 3-loop, 3-loop, ...). - David Neil McGrath, Jan 01 2015
From Tom Copeland, Dec 03 2015: (Start)
For n > 0, a(n) are the traces of the even powers of the adjacency matrix M of the simple Lie algebra B_3, tr(M^(2n)) where M = Matrix(row 1; row 2; row 3) = Matrix[0,1,0; 1,0,2; 0,1,0], same as the traces of Matrix[0,2,0; 1,0,1; 0,1,0] (cf. Damianou). The traces of the odd powers vanish.
The characteristic polynomial of M equals determinant(x*I - M) = x^3 - 3x = A127672(3,x), so 1 - 3*x^2 = det(I - x M) = exp(-Sum_{n>=1} tr(M^n) x^n / n), implying Sum_{n>=1} a(n+1) x^(2n) / (2n) = -log(1 - 3*x^2), giving a logarithmic generating function for the aerated sequence, excluding a(0) and a(1).
a(n+1) = tr(M^(2n)), where tr(M^n) = 3^(n/2) + (-1)^n * 3^(n/2) = 2^n*(cos(Pi/6)^n + cos(5*Pi/6)^n) = n-th power sum of the eigenvalues of M = n-th power sum of the zeros of the characteristic polynomial.
The relation det(I - x M) = exp(-Sum_{n>=1} tr(M^n) x^n / n) = Sum_{n>=0} P_n(-tr(M), -tr(M^2), ..., -tr(M^n)) x^n/n! = exp(P.(-tr(M), -tr(M^2), ...)x), where P_n(x(1), ..., x(n)) are the partition polynomials of A036039 implies that with x(2n) = -tr(M^(2n)) = -a(n+1) for n > 0 and x(n) = 0 otherwise, the partition polynomials evaluate to zero except for P_2(x(1), x(2)) = P_2(0,-6) = -6.
Because of the inverse relation between the partition polynomials of A036039 and the Faber polynomials F_k(b1,b2,...,bk) of A263916, F_k(0,-3,0,0,...) = tr(M^k) gives aerated a(n), excluding n=0,1. E.g., F_2(0,-3) = -2(-3) = 6, F_4(0,-3,0,0) = 2 (-3)^2 = 18, and F_6(0,-3,0,0,0,0) = -2(-3)^3 = 54. (Cf. A265185.)
(End)
Number of permutations of length n > 0 avoiding the partially ordered pattern (POP) {1>2, 1>3, 1>4} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is the largest. - Sergey Kitaev, Dec 08 2020
For n > 0, a(n) is the number of 3-colorings of the grid graph P_2 X P_(n-1). More generally, for q > 1, the number of q-colorings of the grid graph P_2 X P_n is given by q*(q - 1)*((q - 1)*(q - 2) + 1)^(n - 1). - Sela Fried, Sep 25 2023
For n > 1, a(n) is the largest solution to the equation phi(x) = a(n-1). - M. Farrokhi D. G., Oct 25 2023
Number of dotted compositions of degree n. - Diego Arcis, Feb 01 2024

Examples

			There are a(3)=18 compositions of 3 into 2 kinds of parts. Here p:s stands for "part p of sort s":
01:  [ 1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:1  ]
03:  [ 1:0  1:1  1:0  ]
04:  [ 1:0  1:1  1:1  ]
05:  [ 1:0  2:0  ]
06:  [ 1:0  2:1  ]
07:  [ 1:1  1:0  1:0  ]
08:  [ 1:1  1:0  1:1  ]
09:  [ 1:1  1:1  1:0  ]
10:  [ 1:1  1:1  1:1  ]
11:  [ 1:1  2:0  ]
12:  [ 1:1  2:1  ]
13:  [ 2:0  1:0  ]
14:  [ 2:0  1:1  ]
15:  [ 2:1  1:0  ]
16:  [ 2:1  1:1  ]
17:  [ 3:0  ]
18:  [ 3:1  ]
- _Joerg Arndt_, Apr 28 2013
G.f. = 1 + 2*x + 6*x^2 + 18*x^3 + 54*x^4 + 162*x^5 + 486*x^6 + 1458*x^7 + ...
		

References

  • Richard P. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

First differences of 3^n (A000244). Other self-convolved sequences: A000108, A007460, A007461, A007462, A007463, A007464, A061922.
Apart from initial term, same as A008776.

Programs

  • Haskell
    a025192 0 = 1
    a025192 n = 2 * 3 ^ (n -1)
    a025192_list = 1 : iterate (* 3) 2  -- Reinhard Zumkeller, Nov 27 2012
  • Maple
    A025192 := proc(n): if n=0 then 1 else 2*3^(n-1) fi: end: seq(A025192(n),n=0..26);
  • Mathematica
    Join[{1},2*3^(Range[30]-1)]  (* Harvey P. Dale, Mar 22 2011 *)
  • PARI
    a(n)=max(1,2*3^(n-1)) \\ Charles R Greathouse IV, Jul 25 2011
    
  • PARI
    Vec((1-x)/(1-3*x) + O(x^100)) \\ Altug Alkan, Dec 05 2015
    
  • Python
    [1]+[2*3**(n-1) for n in range(1,30)] # David Nacin, Mar 04 2012
    

Formula

G.f.: (1-x)/(1-3*x).
E.g.f.: (2*exp(3*x) + exp(0))/3. - Paul Barry, Apr 20 2003
a(n) = phi(3^n) = A000010(A000244(n)). - Labos Elemer, Apr 14 2003
a(0) = 1, a(n) = Sum_{k=0..n-1} (a(k) + a(n-k-1)). - Benoit Cloitre, Jun 24 2003
a(n) = A002326((3^n-1)/2). - Vladimir Shevelev, May 26 2008
a(1) = 2, a(n) = 3*a(n-1). - Vincenzo Librandi, Jan 01 2011
a(n) = lcm(a(n-1), Sum_{k=1..n-1} a(k)) for n >= 3. - David W. Wilson, Sep 27 2011
a(n) = ((2*n-1)*a(n-1) + (3*n-6)*a(n-2))/(n-1); a(0)=1, a(1)=2. - Sergei N. Gladkovskii, Jul 16 2012
From Sergei N. Gladkovskii, Jul 17 2012: (Start)
For the e.g.f. E(x) = (2/3)*exp(3*x) + exp(0)/3 we have
E(x) = 2*G(0)/3 where G(k) = 1 + k!/(3*(9*x)^k - 3*(9*x)^(2*k+1)/((9*x)^(k+1) + (k+1)!/G(k+1))); (continued fraction, 3rd kind, 3-step).
E(x) = 1+2*x/(G(0)-3*x) where G(k) = 3*x + 1 + k - 3*x*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). (End)
a(n) = A114283(0,0). - Reinhard Zumkeller, Nov 27 2012
G.f.: 1 + ((1/2)/G(0) - 1)/x where G(k) = 1 - 2^k/(2 - 4*x/(2*x - 2^k/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 22 2012
G.f.: 1 + x*W(0), where W(k) = 1 + 1/(1 - x*(2*k+3)/(x*(2*k+4) + 1/W(k+1))); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
G.f.: 1 / (1 - 2*x / (1 - x)). - Michael Somos, Apr 03 2014
Construct the power matrix T(n,j) = [A(n)^*j]*[S(n)^*(j-1)] where A(n)=(2,2,2,...) and S(n)=(0,1,0,0,...). (* is convolution operation.) Then a(n) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 01 2015
G.f.: 1 + 2*x/(1 + 2*x)*( 1 + 5*x/(1 + 5*x)*( 1 + 8*x/(1 + 8*x)*( 1 + 11*x/(1 + 11*x)*( 1 + .... - Peter Bala, May 27 2017
Sum_{n>=0} 1/a(n) = 7/4. - Bernard Schott, Oct 02 2021
From Amiram Eldar, May 08 2023: (Start)
Sum_{n>=0} (-1)^n/a(n) = 5/8.
Product_{n>=1} (1 - 1/a(n)) = A132019. (End)

Extensions

Additional comments from Barry E. Williams, May 27 2000
a(22) corrected by T. D. Noe, Feb 08 2008
Maple programs simplified by Johannes W. Meijer, Jun 02 2011

A059576 Summatory Pascal triangle T(n,k) (0 <= k <= n) read by rows. Top entry is 1. Each entry is the sum of the parallelogram above it.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 8, 8, 4, 8, 20, 26, 20, 8, 16, 48, 76, 76, 48, 16, 32, 112, 208, 252, 208, 112, 32, 64, 256, 544, 768, 768, 544, 256, 64, 128, 576, 1376, 2208, 2568, 2208, 1376, 576, 128, 256, 1280, 3392, 6080, 8016, 8016, 6080, 3392, 1280, 256
Offset: 0

Views

Author

Floor van Lamoen, Jan 23 2001

Keywords

Comments

We may also relabel the entries as U(0,0), U(1,0), U(0,1), U(2,0), U(1,1), U(0,2), U(3,0), ... [That is, T(n,k) = U(n-k, k) for 0 <= k <= n and U(m,s) = T(m+s, s) for m,s >= 0.]
From Petros Hadjicostas, Jul 16 2020: (Start)
We explain the parallelogram definition of T(n,k).
T(0,0) *
|\
| \
| * T(k,k)
T(n-k,0) * |
\ |
\|
* T(n,k)
The definition implies that T(n,k) is the sum of all T(i,j) such that (i,j) has integer coordinates over the set
{(i,j): a(1,0) + b(1,1), 0 <= a <= n-k, 0 <= b <= k} - {(n,k)}.
The parallelogram can sometimes be degenerate; e.g., when k = 0 or n = k. (End)
T(n,k) is the number of 2-compositions of n having sum of the entries of the first row equal to k (0 <= k <= n). A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n. - Emeric Deutsch, Oct 12 2010
From Michel Marcus and Petros Hadjicostas, Jul 16 2020: (Start)
Robeva and Sun (2020) let A(m,n) = U(m-1, n-1) be the number of subdivisions of a 2-row grid with m points on the top and n points at the bottom (and such that the lower left point is the origin).
The authors proved that A(m,n) = 2*(A(m,n-1) + A(m-1,n) - A(m-1,n-1)) for m, n >= 2 (with (m,n) <> (2,2)), which is equivalent to a similar recurrence for U(n,k) given in the Formula section below. (They did not explicitly specify the value of A(1,1) = U(0,0) because they did not care about the number of subdivisions of a degenerate polygon with only one side.)
They also proved that, for (m,n) <> (1,1), A(m,n) = (2^(m-2)/(n-1)!) * Q_n(m) =
= (2^(m-2)/(n-1)!) * Sum_{k=1..n} A336244(n,k) * m^(n-k), where Q_n(m) is a polynomial in m of degree n-1. (End)
With the square array notation of Petros Hadjicostas, Jul 16 2020 below, U(i,j) is the number of lattice paths from (0,0) to (i,j) whose steps move north or east or have positive slope. For example, representing a path by its successive lattice points rather than its steps, U(1,2) = 8 counts {(0,0),(1,2)}, {(0,0),(0,1),(1,2)}, {(0,0),(0,2),(1,2)}, {(0,0),(1,0),(1,2)}, {(0,0),(1,1),(1,2)}, {(0,0),(0,1),(0,2),(1,2)}, {(0,0),(0,1),(1,1),(1,2)}, {(0,0),(1,0),(1,1),(1,2)}. If north (vertical) steps are excluded, the resulting paths are counted by A049600. - David Callan, Nov 25 2021

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins
[0]   1;
[1]   1,   1;
[2]   2,   3,   2;
[3]   4,   8,   8,   4;
[4]   8,  20,  26,  20,   8;
[5]  16,  48,  76,  76,  48,  16;
[6]  32, 112, 208, 252, 208, 112, 32;
  ...
T(5,2) = 76 is the sum of the elements above it in the parallelogram bordered by T(0,0), T(5-2,0) = T(3,0), T(2,2) and T(5,2). We of course exclude T(5,2) from the summation. Thus
T(5,2) = Sum_{a=0..5-2, b=0..2, (a,b) <> (5-2,2)} T(a(1,0) + b(1,1)) =
= (1 + 1 + 2) + (1 + 3 + 8) + (2 + 8 + 26) + (4 + 20) = 76. [Edited by _Petros Hadjicostas_, Jul 16 2020]
From _Petros Hadjicostas_, Jul 16 2020: (Start)
Square array U(n,k) (with rows n >= 0 and columns k >= 0) begins
   1,   1,   2,    4,    8, ...
   1,   3,   8,   20,   48, ...
   2,   8,  26,   76,  208, ...
   4,  20,  76,  252,  768, ...
   8,  48, 208,  768, 2568, ...
  16, 112, 544, 2208, 8016, ...
  ...
Consider the following 2-row grid with n = 3 points at the top and k = 2 points at the bottom:
   A  B  C
   *--*--*
   |    /
   |   /
   *--*
   D  E
The sets of the dividing internal lines of the A(3,2) = U(3-1, 2-1) = 8 subdivisions of the above 2-row grid are as follows: { }, {DC}, {DB}, {EB}, {EA}, {DB, DC}, {DB, EB}, and {EA, EB}. See Robeva and Sun (2020).
These are the 2-compositions of n = 3 with sum of first row entries equal to k = 1:
[1; 2], [0,1; 2,0], [0,1; 1,1], [1,0; 0,2], [1,0; 1,1], [0,0,1; 1,1,0], [0,1,0; 1,0,1], and [1,0,0; 0,1,1]. We have T(3,2) = 8 such matrices. See _Emeric Deutsch_'s contribution above. See also Section 2 in Castiglione et al. (2007). (End)
		

Crossrefs

Programs

  • Haskell
    a059576 n k = a059576_tabl !! n !! k
    a059576_row n = a059576_tabl !! n
    a059576_tabl = [1] : map fst (iterate f ([1,1], [2,3,2])) where
       f (us, vs) = (vs, map (* 2) ws) where
         ws = zipWith (-) (zipWith (+) ([0] ++ vs) (vs ++ [0]))
                          ([0] ++ us ++ [0])
    -- Reinhard Zumkeller, Dec 03 2012
    
  • Magma
    A011782:= func< n | n eq 0 select 1 else 2^(n-1) >;
    function T(n,k) // T = A059576
      if k eq 0 or k eq n then return A011782(n);
      else return 2*T(n-1, k-1) + 2*T(n-1, k) - (2 - 0^(n-2))*T(n-2, k-1);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 02 2022
    
  • Maple
    A059576 := proc(n,k) local b,t1; t1 := min(n+k-2,n,k); add( (-1)^b * 2^(n+k-b-2) * (n+k-b-2)! * (1/(b! * (n-b)! * (k-b)!)) * (-2 * n-2 * k+2 * k^2+b^2-3 * k * b+2 * n^2+5 * n * k-3 * n * b), b=0..t1); end;
    T := proc (n, k) if k <= n then add((-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k), j = 0 .. min(k, n-k)) fi end proc: 1; for n to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form # Emeric Deutsch, Oct 12 2010
    T := (n, k) -> `if`(n=0, 1, 2^(n-1)*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2)): seq(seq(simplify(T(n, k)), k=0..n), n=0..10); # Peter Luschny, Nov 26 2021
  • Mathematica
    T[0, 0] = 1; T[n_, k_] := 2^(n-k-1)*n!*Hypergeometric2F1[ -k, -k, -n, -1 ] / (k!*(n-k)!); Flatten[ Table[ T[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Feb 01 2012, after Robert Israel *)
  • SageMath
    def T(n,k): # T = A059576
        if (k==0 or k==n): return 1 if (n==0) else 2^(n-1) # A011782
        else: return 2*T(n-1, k-1) + 2*T(n-1, k) - (2 - 0^(n-2))*T(n-2, k-1)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 02 2022

Formula

T(n, n-1) = A001792(n-1).
T(2*n, n) = A052141(n).
Sum_{k=0..n} T(n, k) = A003480(n).
G.f.: U(z, w) = Sum_{n >= 0, k >= 0} U(n, k)*z^n*w^k = Sum{n >= 0, k >= 0} T(n, k)*z^(n-k)*w^k = (1-z)*(1-w)/(1 - 2*w - 2*z + 2*z*w).
Maple code gives another explicit formula for U(n, k).
From Jon Stadler (jstadler(AT)capital.edu), Apr 30 2003: (Start)
U(n,k) is the number of ways of writing the vector (n,k) as an ordered sum of vectors, equivalently, the number of paths from (0,0) to (n,k) in which steps may be taken from (i,j) to (p,q) provided (p,q) is to the right or above (i,j).
2*U(n,k) = Sum_{i <= n, j <= k} U(i,j).
U(n,k) = 2*U(n-1,k) + Sum_{i < k} U(n,i).
U(n,k) = Sum_{j=0..n+k} C(n,j-k+1)*C(k,j-n+1)*2^j. (End)
T(n, k) = 2*(T(n-1, k-1) + T(n-1, k)) - (2 - 0^(n-2))*T(n-2, k-1) for n > 1 and 1 < k < n; T(n, 0) = T(n, n) = 2*T(n-1, 0) for n > 0; and T(0, 0) = 1. - Reinhard Zumkeller, Dec 03 2004
From Emeric Deutsch, Oct 12 2010: (Start)
Sum_{k=0..n} k*T(n,k) = A181292(n).
T(n,k) = Sum_{j=0..min(k, n-k)} (-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k) for (n,k) != (0,0).
G.f.: G(t,z) = (1-z)*(1-t*z)/(1 - 2*z - 2*t*z + 2*t*z^2). (End)
U(n,k) = 0 if k < 0; else U(k,n) if k > n; else 1 if n <= 1; else 3 if n = 2 and k = 1; else 2*U(n,k-1) + 2*U(n-1,k) - 2*U(n-1,k-1). - David W. Wilson; corrected in the case k > n by Robert Israel, Jun 15 2011 [Corrected by Petros Hadjicostas, Jul 16 2020]
U(n,k) = binomial(n,k) * 2^(n-1) * hypergeom([-k,-k], [n+1-k], 2) if n >= k >= 0 with (n,k) <> (0,0). - Robert Israel, Jun 15 2011 [Corrected by Petros Hadjicostas, Jul 16 2020]
U(n,k) = Sum_{0 <= i+j <= n+k-1} (-1)^j*C(i+j+1, j)*C(n+i, n)*C(k+i, k). - Masato Maruoka, Dec 10 2019
T(n, k) = 2^(n - 1)*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2) = A059474(n, k)/2 for n >= 1. - Peter Luschny, Nov 26 2021
From G. C. Greubel, Sep 02 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = T(n, n) = A011782(n).
T(n, n-2) = 2*A049611(n-1), n >= 2.
T(n, n-3) = 4*A049612(n-2), n >= 3.
T(n, n-4) = 8*A055589(n-3), n >= 4.
T(n, n-5) = 16*A055852(n-4), n >= 5.
T(n, n-6) = 32*A055853(n-5), n >= 6.
Sum_{k=0..floor(n/2)} T(n, k) = A181306(n). (End)

A279212 Fill an array by antidiagonals upwards; in the top left cell enter a(0)=1; thereafter, in the n-th cell, enter the sum of the entries of those earlier cells that can be seen from that cell.

Original entry on oeis.org

1, 1, 2, 2, 6, 11, 4, 15, 39, 72, 8, 37, 119, 293, 543, 16, 88, 330, 976, 2364, 4403, 32, 204, 870, 2944, 8373, 20072, 37527, 64, 464, 2209, 8334, 26683, 74150, 176609, 331072, 128, 1040, 5454, 22579, 79534, 246035, 673156, 1595909, 2997466, 256, 2304, 13176, 59185, 226106, 762221, 2303159, 6231191, 14721429, 27690124
Offset: 0

Views

Author

N. J. A. Sloane, Dec 24 2016

Keywords

Comments

"That can be seen from" means "that are on the same row, column, diagonal, or antidiagonal as".
Inspired by A279967.
Conjecture: Every column has a finite number of odd entries, and every row and diagonal have an infinite number of odd entries. - Peter Kagey, Mar 28 2020. The conjecture about columns is true, see that attached pdf file from Alec Jones.
The "look" keyword refers to Peter Kagey's bitmap. - N. J. A. Sloane, Mar 29 2020
The number of sequences of queen moves from (1, 1) to (n, k) in the first quadrant moving only up, right, diagonally up-right, or diagonally up-left. - Peter Kagey, Apr 12 2020
Column 0 gives A011782. In the column 1, the only powers of 2 occur at positions A233328(k) with value a(k(k+1)/2 + 1), k >=1 (see A335903). Conjecture: Those are the only multiple occurrences of numbers greater than 1 in this sequence (checked through the first 2000 antidiagonals). - Hartmut F. W. Hoft, Jun 29 2020

Examples

			The array begins:
i/j|  0    1    2     3     4      5      6       7       8
-------------------------------------------------------------
0  |  1    2   11    72   543   4403  37527  331072 2997466 ...
1  |  1    6   39   293  2364  20072 176609 1595909 ...
2  |  2   15  119   976  8373  74150 673156 ...
3  |  4   37  330  2944 26683 246035 ...
4  |  8   88  870  8334 79534 ...
5  | 16  204 2209 22579 ...
6  | 32  464 5454 ...
7  | 64 1040 ...
8  |128 ...
  ...
For example, when we get to the antidiagonal that reads 4, 15, 39, ..., the reason for the 39 is that from that cell we can see one cell that has been filled in above it (containing 11), one cell to the northwest (2), two cells to the west (1, 6), and two to the southwest (4, 15), for a total of a(8) = 39.
The next pair of duplicates greater than 2 is 2^20 = 1048576 = a(154) = a(231), located in antidiagonals 17 = A233328(2) and 21, respectively. For additional duplicate numbers in this sequence see A335903.  - _Hartmut F. W. Hoft_, Jun 29 2020
		

Crossrefs

Cf. A064642 is analogous if a cell can only "see" its immediate neighbors.
See A280026, A280027 for similar sequences based on a spiral.

Programs

  • Mathematica
    s[0, 0] = 1; s[i_, j_] := s[i, j] = Sum[s[k, j], {k, 0, i-1}] + Sum[s[i, k], {k, 0, j-1}] + Sum[s[i+j-k, k], {k, 0, j-1}] + Sum[s[i-k-1, j-k-1], {k, 0, Min[i, j] - 1}]
    aDiag[m_] := Map[s[m-#, #]&, Range[0, m]]
    a279212[n_] := Flatten[Map[aDiag, Range[0, n]]]
    a279212[9] (* data - 10 antidiagonals;  Hartmut F. W. Hoft, Jun 29 2020 *)

Formula

T(0, 0) = 1; T(i, j) = Sum_{k=0..i-1} T(k, j) + Sum_{k=0..j-1} T(i, k) + Sum_{k=0..j-1} T(i+j-k, k) + Sum_{k=0..min(i, j)-1} T(i-k-1, j-k-1), with recursion upwards along antidiagonals. - Hartmut F. W. Hoft, Jun 29 2020

A051708 Number of ways to move a chess rook from the lower left corner to square (n,n), with the rook moving only up or right.

Original entry on oeis.org

1, 2, 14, 106, 838, 6802, 56190, 470010, 3968310, 33747490, 288654574, 2480593546, 21400729382, 185239360178, 1607913963614, 13991107041306, 122002082809110, 1065855419418690, 9327252391907790, 81744134786314410, 717367363052796678, 6303080714967178962
Offset: 1

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

This sequence arises in connection with mean lengths of ascents and descents in Dyck paths as follows. Let u(n,k) denote the mean length of the k-th ascent taken over all Dyck n-paths (A000108) where it is understood that if a Dyck path has fewer than k ascents, then the length of the k-th ascent is 0. For example, the second ascent in UUDUUUDDDDUD has length 3 and its fourth has length 0. Similarly, let v(n,k) denote the mean length of the k-th descent. Then u(k) := lim_{n->infinity} u(n,k) and v(k) := lim_{n->infinity} v(n,k) both exist. The sequence (u(k)){k>=1} begins 3, 8/3, ... and decreases steadily toward a limit of 2. Analogously, v(k) increases steadily from 4/3 toward the same limit of 2. For all k >= 1, u(k+1) exceeds 2 by the same amount that v(k) falls below 2. The common difference u(k+1) - 2 = 2 - v(k) is a(k+1)/3^(2k-1). Thus the common difference sequence begins 2/3, 14/27, 106/243, ..., for k=1,2,3,... . - _David Callan, Jul 14 2006
Number of ways to partition the 1 X (n-1) grid into triangles, with all vertices on grid points. - Peter Kagey, Nov 30 2018

Examples

			G.f. = x + 2*x^2 + 14*x^3 + 106*x^4 + 838*x^5 + 6802*x^6 + 56190*x^7 + ...
		

References

  • Posting to newsgroup rec.puzzles, Dec 03 1999 by Nick Wedd (Nick(AT)maproom.co.uk).

Crossrefs

Main diagonal of the square array given in A035002.
First differences of (A084771-1)/2.
Row d=2 of A181731.

Programs

  • GAP
    a:=[1,2];; for n in [3..25] do a[n]:=((10*n-16)*a[n-1]-(9*n-27)*a[n-2])/(n-1); od; a; # Muniru A Asiru, Nov 30 2018
    
  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( ((x*(1-x))/(Sqrt(1-10*x+9*x^2))+x)/2 )); // G. C. Greubel, Dec 01 2018
  • Maple
    a:= proc(n) option remember;
          `if`(n<3, n, ((10*n-16)*a(n-1)-(9*n-27)*a(n-2))/(n-1))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jul 21 2012
  • Mathematica
    CoefficientList[Series[(9*x^2 - Sqrt[9*x^2-10*x+1]*x-x) / (2*(9*x-1)), {x,0,20}],x] // Rest (* Jean-François Alcover, Mar 30 2011, after g.f. given by Ralf Stephan *)
    RecurrenceTable[{a[1]==1,a[2]==2,a[n]==((10n-16)a[n-1]-(9n-27)a[n-2])/ (n-1)},a,{n,30}] (* Harvey P. Dale, Sep 28 2013 *)
  • Maxima
    a(n):=sum(binomial(n-1,n-i)*sum(binomial(k+i,i)*binomial(n-1,n-k),k,0,n),i,0,n); /* Vladimir Kruchinin, Apr 20 2015 */
    
  • PARI
    {a(n) = if( n<1, 0, n--; polcoeff( 1/2 + (1 - x) / (2 * sqrt( 1 - 10*x + 9*x^2 + x * O(x^n) ) ), n ) )} /* Michael Somos, Jan 08 2011 */
    
  • PARI
    a(n) = n--; sum(i=0,n, binomial(n-1, n-i)*sum(k=0, n, binomial(k+i, i)*binomial(n-1, n-k))); \\ Michel Marcus, Apr 20 2015
    

Formula

G.f.: ((x*(1-x))/(sqrt(1-10*x+9*x^2)) + x)/2. - Ralf Stephan, Mar 23 2004; confirmed by Martin J. Erickson, Oct 05 2007
D-finite with recurrence a(1)=1; a(2)=2; a(n) = ((10*n-16)*a(n-1) - (9*n-27)*a(n-2)) / (n-1), for n >= 3. - Martin J. Erickson (erickson(AT)truman.edu), Nov 12 2007
a(n) is asymptotic to (sqrt(2)/27)*9^n/(sqrt(Pi*n)). - Martin J. Erickson, Nov 09 2007
G.f.: A(x) satisfies 2 * x^3 = (1 - 9*x) * A(x) * (A(x) - x). - Michael Somos, Jan 08 2011
a(n+1) = Sum_{i=0..n} (C(n-1,n-i)*Sum_{k=0..n} (C(k+i,i)*C(n-1,n-k))). - Vladimir Kruchinin, Apr 20 2015
a(n) = Sum_{k=0..n} (k+1)*C(n-2,k-1)*hypergeom([2+k,2-n],[2],-1) for n >= 2. - Peter Luschny, Apr 20 2015
a(n) = ((-1)^(n-1) * 4^(n-1)) / (48*(n-1)*n) * ( -(4*(n-1)^2 + 16*(n-1) + 28)*JacobiP(n-2, -2*(n-1)-1, 2, -1/2) + (n+2)*(n-2)*JacobiP(n-3, -2*(n-1), 3, -1/2) ) for n > 1. - Alexander R. Povolotsky, Apr 26 2025

Extensions

More terms from James Sellers, Dec 08 1999

A132439 Square array a(m,n) read by antidiagonals, where a(m,n) is the number of ways to move a chess queen from the lower left corner to square (m,n), with the queen moving only up, right, or diagonally up-right.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 7, 7, 4, 8, 17, 22, 17, 8, 16, 40, 60, 60, 40, 16, 32, 92, 158, 188, 158, 92, 32, 64, 208, 401, 543, 543, 401, 208, 64, 128, 464, 990, 1498, 1712, 1498, 990, 464, 128, 256, 1024, 2392, 3985, 5079, 5079, 3985, 2392, 1024, 256
Offset: 1

Views

Author

Martin J. Erickson (erickson(AT)truman.edu), Nov 13 2007

Keywords

Comments

a(m,n) is the sum of all the entries above it plus the sum of all the entries to the left of it plus the sum of all the entries on the northwest diagonal from it.

Examples

			The table begins
  1  1   2   4    8   16    32 ...
  1  3   7  17   40   92   208 ...
  2  7  22  60  158  401   990 ...
  4 17  60 188  543 1498  3985 ...
  8 40 158 543 1712 5079 14430 ...
a(3,4)=4+17+2+7+22+1+7=60.
		

Crossrefs

Cf. A035002.

Formula

a(1,1)=1; a(1,2)=1; a(1,3)=2; a(2,1)=1; a(2,2)=3; a(2,3)=7; a(3,1)=2; a(3,2)=7; a(3,3)=22; a(m,n) = 2*a(m-1,n)+2*a(m,n-1)-a(m-1,n-1)-3*a(m-2,n-1)-3*a(m-1,n-2)+4*a(m-2,n-2), where m >=3 or n >= 3 and a(m,n)=0 if m <= 0 or n <= 0.
G.f.: (xy-x^2y-xy^2+x^3y^2+x^2y^3-x^3y^3)/(1-2x-2y+xy+3x^2y+3xy^2-4x^2y^2).

A059513 Variation of Boustrophedon transform applied to 1,1,1,1,... Fill an array by diagonals, in alternating directions. The first entry is 1 each time. For the next element of a diagonal, add to the previous element the elements of the row and the column the new element is in. The final element of each diagonal gives a(n).

Original entry on oeis.org

1, 2, 6, 23, 116, 736, 5659, 50796, 521040, 6006587, 76874524, 1081439062, 16586149365, 275442822510, 4924040788654
Offset: 1

Views

Author

Floor van Lamoen, Jan 23 2001

Keywords

Examples

			The array begins
1 ....2 ...1 ..23 ..1 ...
1 ....4 ..19 ..48 ...
6 ...13 ..87 ...
1 ..107 ...
116 ...
1 ...
		

Crossrefs

A059574 The array described in A059513 read by antidiagonals in the 'up' direction.

Original entry on oeis.org

1, 1, 2, 6, 4, 1, 1, 13, 19, 23, 116, 107, 87, 48, 1, 1, 243, 458, 635, 708, 736, 5659, 5533, 5163, 4239, 2967, 1517, 1, 1, 11562, 22824, 33291, 41772, 47733, 50031, 50796, 521040, 515254, 497789, 452016, 385422, 301161, 204598, 103125, 1
Offset: 1

Views

Author

Floor van Lamoen, Jan 23 2001

Keywords

Crossrefs

A334016 Table read by antidiagonals upward: T(n,k) is the number of ways to move a chess queen from (1,1) to (n,k) in the first quadrant using only right, diagonal up-right, and diagonal up-left moves.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 4, 10, 21, 35, 8, 25, 65, 139, 237, 16, 60, 179, 451, 978, 1684, 32, 140, 470, 1337, 3339, 7239, 12557, 64, 320, 1189, 3725, 10325, 25559, 55423, 96605, 128, 720, 2926, 9958, 30018, 81716, 200922, 435550, 761938, 256, 1600, 7048, 25802, 83518
Offset: 1

Views

Author

Peter Kagey, Apr 12 2020

Keywords

Examples

			Table begins:
n\k|   1    2     3      4       5        6         7          8
---+------------------------------------------------------------
  1|   1    1     6     35     237     1684     12557      96605
  2|   1    4    21    139     978     7239     55423     435550
  3|   2   10    65    451    3339    25559    200922    1611624
  4|   4   25   179   1337   10325    81716    658918    5394051
  5|   8   60   470   3725   30018   245220   2027447   16935981
  6|  16  140  1189   9958   83518   703635   5961973   50811786
  7|  32  320  2926  25802  224831  1951587  16938814  147261146
  8|  64  720  7048  65241  589701  5269220  46826316  415175289
For example, the T(2,2) = 4 valid sequences of moves from (1,1) to (2,2) are:
(1,1) -> (2,1) -> (1,2) -> (2,2),
(1,1) -> (2,1) -> (3,1) -> (2,2),
(1,1) -> (2,2), and
(1,1) -> (3,1) -> (2,2).
		

Crossrefs

Cf. A035002 (up, right), A059450 (right, up-left), A132439 (up, right, up-right), A279212 (up, right, up-right, up-left), A334017 (up, right, up-left).
A071945 is the analog for king moves. For both king and queen moves, A094727 is the length of the longest sequence of moves.

Formula

T(n,k) = Sum_{i=1..k-1} T(n+i, k-i) + Sum_{i=1..min(n,k)-1} T(n-i, k-i) + Sum_{i=1..n-1} T(n-i, k).
Showing 1-10 of 14 results. Next