G.f.: x / (1 - 6*x + x^2). -
Simon Plouffe in his 1992 dissertation.
a(n) = S(n-1, 6) = U(n-1, 3) with U(n, x) Chebyshev's polynomials of the second kind. S(-1, x) := 0. Cf. triangle
A049310 for S(n, x).
a(n) = sqrt((
A001541(n)^2-1)/8) (cf. Richardson comment).
a(n) = 3*a(n-1) + sqrt(8*a(n-1)^2+1). -
R. J. Mathar, Oct 09 2000
a(n) ~ (1/8)*sqrt(2)*(sqrt(2) + 1)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(2*n) = a(n)*
A003499(n). 4*a(n) =
A005319(n). - Mario Catalani (mario.catalani(AT)unito.it), Mar 21 2003
a(k)*a(2*n+k) = a(n+k)^2 - a(n)^2; e.g., 204*7997214 = 40391^2 - 35^2. -
Charlie Marion, Jan 15 2004
For j < n+1, a(k+j)*a(2*n+k-j) - Sum_{i = 0..j-1} a(2*n-(2*i+1)) = a(n+k)^2 - a(n)^2. -
Charlie Marion, Jan 18 2004
a(n) = ((1+sqrt(2))^(2*n) - (1-sqrt(2))^(2*n))*sqrt(2)/8;
a(n) = Sum_{i=0..n} Sum_{j=0..n}
A000129(i+j)*n!/(i!*j!*(n-i-j)!)/2. (End)
E.g.f.: exp(3*x)*sinh(2*sqrt(2)*x)/(2*sqrt(2)). -
Paul Barry, Apr 21 2004
a(n) = Sum_{k=0..n} binomial(2*n, 2*k+1)*2^(k-1). -
Paul Barry, Oct 01 2004
a(n) = 7*(a(n-1) - a(n-2)) + a(n-3), a(1) = 0, a(2) = 1, a(3) = 6, n > 3. Also a(n) = ( (1 + sqrt(2) )^(2*n) - (1 - sqrt(2) )^(2*n) ) / (4*sqrt(2)). -
Antonio Alberto Olivares, Oct 23 2003
Define f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. a(n) = f(a(n-1),3), see second formula. -
Marcos Carreira, Dec 27 2006
The perfect median m(n) can be expressed in terms of the Pell numbers P() =
A000129() by m(n) = P(n + 2) * (P(n + 2) + P(n + 1)) for n >= 0. - Winston A. Richards (ugu(AT)psu.edu), Jun 11 2007
a(n) = Sum_{k=0..n-1} 4^k*binomial(n+k,2*k+1). -
Paul Barry, Apr 20 2009
Product_{n >= 1} (1 + 1/a(n)) = 1 + sqrt(2).
Product_{n >= 2} (1 - 1/a(n)) = (1/3)*(1 + sqrt(2)). (End)
G.f.: G(0)*x/(2-6*x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). -
Sergei N. Gladkovskii, Aug 12 2013
G.f.: H(0)*x/2, where H(k) = 1 + 1/( 1 - x*(6-x)/(x*(6-x) + 1/H(k+1) )); (continued fraction). -
Sergei N. Gladkovskii, Feb 18 2014
a(n) = (a(n-1)^2 - a(n-3)^2)/a(n-2) + a(n-4) for n > 3. -
Patrick J. McNab, Jul 24 2015
Dirichlet g.f.: (PolyLog(s,3+2*sqrt(2)) - PolyLog(s,3-2*sqrt(2)))/(4*sqrt(2)). -
Ilya Gutkovskiy, Jun 27 2016
a(n) = (a(n-3) + a(n+3))/198.
a(n) = Sum_{i=1..n}
A001653(i), n>=1.
a(n) = sinh( 2 * n * arccsch(1) ) / ( 2 * sqrt(2) ). -
Federico Provvedi, Feb 01 2021
(End)
a(n) = Sum_{k = 0..n-1} (-1)^(n+k+1)*binomial(n+k, 2*k+1)*8^k. -
Peter Bala, Jul 17 2023
Comments