cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 421 results. Next

A003506 Triangle of denominators in Leibniz's Harmonic Triangle a(n,k), n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 12, 12, 4, 5, 20, 30, 20, 5, 6, 30, 60, 60, 30, 6, 7, 42, 105, 140, 105, 42, 7, 8, 56, 168, 280, 280, 168, 56, 8, 9, 72, 252, 504, 630, 504, 252, 72, 9, 10, 90, 360, 840, 1260, 1260, 840, 360, 90, 10, 11, 110, 495, 1320, 2310, 2772, 2310, 1320, 495, 110, 11
Offset: 1

Views

Author

Keywords

Comments

Array 1/Beta(n,m) read by antidiagonals. - Michael Somos, Feb 05 2004
a(n,3) = A027480(n-2); a(n,4) = A033488(n-3). - Ross La Haye, Feb 13 2004
a(n,k) = total size of all of the elements of the family of k-size subsets of an n-element set. For example, a 2-element set, say, {1,2}, has 3 families of k-size subsets: one with 1 0-size element, one with 2 1-size elements and one with 1 2-size element; respectively, {{}}, {{1},{2}}, {{1,2}}. - Ross La Haye, Dec 31 2006
Second slice along the 1-2-plane in the cube a(m,n,o) = a(m-1,n,o) + a(m,n-1,o) + a(m,n,o-1) with a(1,0,0)=1 and a(m<>1=0,n>=0,0>=o)=0, for which the first slice is Pascal's triangle (slice read by antidiagonals). - Thomas Wieder, Aug 06 2006
Triangle, read by rows, given by [2,-1/2,1/2,0,0,0,0,0,0,...] DELTA [2,-1/2,1/2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 07 2007
This sequence * [1/1, 1/2, 1/3, ...] = (1, 3, 7, 15, 31, ...). - Gary W. Adamson, Nov 14 2007
n-th row = coefficients of first derivative of corresponding Pascal's triangle row. Example: x^4 + 4x^3 + 6x^2 + 4x + 1 becomes (4, 12, 12, 4). - Gary W. Adamson, Dec 27 2007
From Paul Curtz, Jun 03 2011: (Start)
Consider
1 1/2 1/3 1/4 1/5
-1/2 -1/6 -1/12 -1/20 -1/30
1/3 1/12 1/30 1/60 1/105
-1/4 -1/20 -1/60 -1/140 -1/280
1/5 1/30 1/105 1/280 1/630
This is an autosequence (the inverse binomial transform is the sequence signed) of the second kind: the main diagonal is 2 times the first upper diagonal.
Note that 2, 12, 60, ... = A005430(n+1), Apery numbers = 2*A002457(n). (End)
From Louis Conover (for the 9th grade G1c mathematics class at the Chengdu Confucius International School), Mar 02 2015: (Start)
The i-th order differences of n^-1 appear in the (i+1)th row.
1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, ...
1/2, 1/6, 1/12, 1/20, 1/30, 1/42, 1/56, 1/72, ...
1/3, 1/12, 1/30, 1/60, 1/105, 1/168, 1/252, 1/360, ...
1/4, 1/20, 1/60, 1/140, 1/280, 1/504, 1/840, 1/1320, ...
1/5, 1/30, 1/105, 1/280, 1/630, 1/1260, 1/2310, 1/3960, ...
1/6, 1/42, 1/168, 1/504, 1/1260, 1/2772, 1/5544, 1/12012, ...
(End)
T(n,k) is the number of edges of distance k from a fixed vertex in the n-dimensional hypercube. - Simon Burton, Nov 04 2022

Examples

			The triangle begins:
  1;
  1/2, 1/2;
  1/3, 1/6, 1/3;
  1/4, 1/12, 1/12, 1/4;
  1/5, 1/20, 1/30, 1/20, 1/5;
  ...
The triangle of denominators begins:
   1
   2   2
   3   6   3
   4  12  12    4
   5  20  30   20    5
   6  30  60   60   30    6
   7  42 105  140  105   42    7
   8  56 168  280  280  168   56    8
   9  72 252  504  630  504  252   72   9
  10  90 360  840 1260 1260  840  360  90  10
  11 110 495 1320 2310 2772 2310 1320 495 110 11
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, see 130.
  • B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 38.
  • G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 26.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.
  • M. Elkadi and B. Mourrain, Symbolic-numeric methods for solving polynomial equations and applications, Chap 3. of A. Dickenstein and I. Z. Emiris, eds., Solving Polynomial Equations, Springer, 2005, pp. 126-168. See p. 152.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 35.

Crossrefs

Row sums are in A001787. Central column is A002457. Half-diagonal is in A090816. A116071, A215652.
Denominators of i-th order differences of n^-1 are given in: (1st) A002378, (2nd) A027480, (3rd) A033488, (4th) A174002, (5th) A253946. - Louis Conover, Mar 02 2015
Columns k >= 1 (offset 1): A000027, A002378, A027480, A033488, A174002, A253946(n+4), ..., with sum of reciprocals: infinity, 1, 1/2, 1/3, 1/4, 1/5, ..., respectively. - Wolfdieter Lang, Jul 20 2022

Programs

  • Haskell
    a003506 n k = a003506_tabl !! (n-1) !! (n-1)
    a003506_row n = a003506_tabl !! (n-1)
    a003506_tabl = scanl1 (\xs ys ->
       zipWith (+) (zipWith (+) ([0] ++ xs) (xs ++ [0])) ys) a007318_tabl
    a003506_list = concat a003506_tabl
    -- Reinhard Zumkeller, Nov 14 2013, Nov 17 2011
    
  • Maple
    with(combstruct):for n from 0 to 11 do seq(m*count(Combination(n), size=m), m = 1 .. n) od; # Zerinvary Lajos, Apr 09 2008
    A003506 := (n,k) -> k*binomial(n,k):
    seq(print(seq(A003506(n,k),k=1..n)),n=1..7); # Peter Luschny, May 27 2011
  • Mathematica
    L[n_, 1] := 1/n; L[n_, m_] := L[n, m] = L[n - 1, m - 1] - L[n, m - 1]; Take[ Flatten[ Table[ 1 / L[n, m], {n, 1, 12}, {m, 1, n}]], 66]
    t[n_, m_] = Gamma[n]/(Gamma[n - m]*Gamma[m]); Table[Table[t[n, m], {m, 1, n - 1}], {n, 2, 12}]; Flatten[%] (* Roger L. Bagula and Gary W. Adamson, Sep 14 2008 *)
    Table[k*Binomial[n,k],{n,1,7},{k,1,n}] (* Peter Luschny, May 27 2011 *)
    t[n_, k_] := Denominator[n!*k!/(n+k+1)!]; Table[t[n-k, k] , {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2013 *)
  • PARI
    A(i,j)=if(i<1||j<1,0,1/subst(intformal(x^(i-1)*(1-x)^(j-1)),x,1))
    
  • PARI
    A(i,j)=if(i<1||j<1,0,1/sum(k=0,i-1,(-1)^k*binomial(i-1,k)/(j+k)))
    
  • PARI
    {T(n, k) = (n + 1 - k) * binomial( n, k - 1)} /* Michael Somos, Feb 06 2011 */
    
  • SageMath
    T_row = lambda n: (n*(x+1)^(n-1)).list()
    for n in (1..10): print(T_row(n)) # Peter Luschny, Feb 04 2017
    # Assuming offset 0:
    def A003506(n, k):
        return falling_factorial(n+1,n)//(factorial(k)*factorial(n-k))
    for n in range(9): print([A003506(n, k) for k in range(n+1)]) # Peter Luschny, Aug 13 2022

Formula

a(n, 1) = 1/n; a(n, k) = a(n-1, k-1) - a(n, k-1) for k > 1.
Considering the integer values (rather than unit fractions): a(n, k) = k*C(n, k) = n*C(n-1, k-1) = a(n, k-1)*a(n-1, k-1)/(a(n, k-1) - a(n-1, k-1)) = a(n-1, k) + a(n-1, k-1)*k/(k-1) = (a(n-1, k) + a(n-1, k-1))*n/(n-1) = k*A007318(n, k) = n*A007318(n-1, k-1). Row sums of integers are n*2^(n-1) = A001787(n); row sums of the unit fractions are A003149(n-1)/A000142(n). - Henry Bottomley, Jul 22 2002
From Vladeta Jovovic, Nov 01 2003: (Start)
G.f.: x*y/(1-x-y*x)^2.
E.g.f.: x*y*exp(x+x*y). (End)
T(n,k) = n*binomial(n-1,k-1) = n*A007318(n-1,k-1). - Philippe Deléham, Aug 04 2006
Binomial transform of A128064(unsigned). - Gary W. Adamson, Aug 29 2007
From Roger L. Bagula and Gary W. Adamson, Sep 14 2008: (Start)
t(n,m) = Gamma(n)/(Gamma(n - m)*Gamma(m)).
f(s,n) = Integral_{x=0..oo} exp(-s*x)*x^n dx = Gamma(n)/s^n; t(n,m) = f(s,n)/(f(s,n-m)*f(s,m)) = Gamma(n)/(Gamma(n - m)*Gamma(m)); the powers of s cancel out. (End)
From Reinhard Zumkeller, Mar 05 2010: (Start)
T(n,5) = T(n,n-4) = A174002(n-4) for n > 4.
T(2*n,n) = T(2*n,n+1) = A005430(n). (End)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1) - T(n-2,k-2), T(1,1) = 1 and, for n > 1, T(n,k) = 0 if k <= 1 or if k > n. - Philippe Deléham, Mar 17 2012
T(n,k) = Sum_{i=1..k} i*binomial(k,i)*binomial(n+1-k,k+1-i). - Mircea Merca, Apr 11 2012
If we include a main diagonal of zeros so that the array is in the form
0
1 0
2 2 0
3 6 3 0
4 12 12 4 0
...
then we obtain the exponential Riordan array [x*exp(x),x], which factors as [x,x]*[exp(x),x] = A132440*A007318. This array is the infinitesimal generator for A116071. A signed version of the array is the infinitesimal generator for A215652. - Peter Bala, Sep 14 2012
a(n,k) = (n-1)!/((n-k)!(k-1)!) if k > n/2 and a(n,k) = (n-1)!/((n-k-1)!k!) otherwise. [Forms 'core' for Pascal's recurrence; gives common term of RHS of T(n,k) = T(n-1,k-1) + T(n-1,k)]. - Jon Perry, Oct 08 2013
Assuming offset 0: T(n, k) = FallingFactorial(n + 1, n) / (k! * (n - k)!). The counterpart using the rising factorial is A356546. - Peter Luschny, Aug 13 2022

Extensions

Edited by N. J. A. Sloane, Oct 07 2007

A027471 a(n) = (n-1)*3^(n-2), n > 0.

Original entry on oeis.org

0, 1, 6, 27, 108, 405, 1458, 5103, 17496, 59049, 196830, 649539, 2125764, 6908733, 22320522, 71744535, 229582512, 731794257, 2324522934, 7360989291, 23245229340, 73222472421, 230127770466, 721764371007, 2259436291848
Offset: 1

Views

Author

Keywords

Comments

Arithmetic derivative of 3^(n-1): a(n) = A003415(A000244(n-1)). - Reinhard Zumkeller, Feb 26 2002 [Offset corrected by Jianing Song, May 28 2024]
Binomial transform of A053220(n+1) is a(n+2). Binomial transform of A001787 is a(n+1). Binomial transform of A045883(n-1). - Michael Somos, Jul 10 2003
If X_1,X_2,...,X_n are 3-blocks of a (3n+1)-set X then, for n >= 1, a(n+2) is the number of (n+1)-subsets of X intersecting each X_i, (i=1,2,...,n). > - Milan Janjic, Nov 18 2007
Let S be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xSy if x is a subset of y. Then a(n+1) = the sum of the differences in size (i.e., |y|-|x|) for all (x, y) of S. - Ross La Haye, Nov 19 2007
Number of substrings 00 (or 11, or 22) in all ternary words of length n: a(3) = 6 because we have 000, 001, 002, 100, 200 (with 000 contributing two substrings). - Darrell Minor, Jul 17 2025

Crossrefs

Second column of A027465.
Partial sums of A081038.
Cf. A006234.

Programs

  • GAP
    List([1..40], n-> (n-1)*3^(n-2)); # Muniru A Asiru, Jul 15 2018
    
  • Magma
    [(n-1)*3^(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 09 2011
    
  • Maple
    seq((n-1)*3^(n-2), n=1..40); # Muniru A Asiru, Jul 15 2018
  • Mathematica
    Table[(n-1)3^(n-2),{n,30}] (* or *)
    LinearRecurrence[{6,-9},{0,1},30] (* Harvey P. Dale, Apr 14 2016 *)
    Range[0, 24]! CoefficientList[ Series[x*Exp[3 x], {x, 0, 24}], x] (* Robert G. Wilson v, Aug 03 2018 *)
  • PARI
    a(n)=if(n<1, 0, (n-1)*3^(n-2));
    
  • Sage
    [3^(n-2)*(n-1) for n in (1..30)] # G. C. Greubel, May 20 2021

Formula

From Wolfdieter Lang: (Start)
G.f.: (x/(1-3*x))^2.
E.g.f.: (1 + (3*x-1)*exp(3*x))/9.
a(n) = 3^(n-2)*(n-1) (convolution of A000244, powers of 3, with itself). (End)
a(n) = 6*a(n-1) - 9*a(n-2), n > 2, a(1)=0, a(2)=1. - Barry E. Williams, Jan 13 2000
a(n) = A036290(n-1)/3, for n>0. - Paul Barry, Feb 06 2004 [corrected by Jerzy R Borysowicz, Apr 03 2025]
a(n) = Sum_{k=0..n} 3^(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2.
From Paul Barry, Feb 15 2005: (Start)
a(n) = (1/3)*Sum_{k=0..2n} T(n, k)*k, where T(n, k) is given by A027907.
a(n) = (1/3)*Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j+k).
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j-k).
a(n+1) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j+k+1). (End)
Sum_{n>=2} 1/a(n) = 3*log(3/2). - Jaume Oliver Lafont, Sep 19 2009
a(n) = 3*a(n-1) + 3^(n-2) (with a(1)=0). - Vincenzo Librandi, Dec 30 2010
Sum_{n>=2} (-1)^n/a(n) = 3*log(4/3). - Amiram Eldar, Oct 28 2020

Extensions

Edited by Michael Somos, Jul 10 2003

A075513 Triangle read by rows. T(n, m) are the coefficients of Sidi polynomials.

Original entry on oeis.org

1, -1, 2, 1, -8, 9, -1, 24, -81, 64, 1, -64, 486, -1024, 625, -1, 160, -2430, 10240, -15625, 7776, 1, -384, 10935, -81920, 234375, -279936, 117649, -1, 896, -45927, 573440, -2734375, 5878656, -5764801, 2097152, 1, -2048, 183708, -3670016, 27343750, -94058496, 161414428, -134217728, 43046721
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

Coefficients of the Sidi polynomials (-1)^(n-1)*D_{n-1,1,n-1}(x), for n >=1, where D_{k,n,m}(z) is given in Theorem 4.2., p. 862, of Sidi [1980].
The row polynomials p(n, x) := Sum_{m=0..n-1} a(n, m)x^m, n >= 1, are obtained from ((Eu(x)^n)*(x-1)^n)/(n*x), where Eu(x) := xd/dx is the Euler-derivative with respect to x.
The row polynomials p(n, y) := Sum_{m=0..n-1} a(n, m)*y^m, n >= 1, are also obtained from ((d^m/dx^m)((exp(x)-1)^m)/m)/exp(x) after replacement of exp(x) by y. Here (d^m/dx^m)f(x), m >= 1, denotes m-fold differentiation of f(x) with respect to x.
b(k,m,n) := (Sum_{p=0..m-1} (a(m, p)*((p+1)*k)^n))/(m-1)!, n >= 0, has g.f. 1/Product_{p=1..m} (1 - k*p*x) for k = 1, 2,... and m = 1, 2,...
The (signed) row sums give A000142(n-1), n >= 1, (factorials) and (unsigned) A074932(n).
The (unsigned) columns give A000012 (powers of 1), 2*A001787(n+1), (3^2)*A027472(n), (4^3)*A038846(n-1), (5^4)*A036071(n-5), (6^5)*A036084(n-6), (7^6)*A036226(n-7), (8^7)*A053107(n-8) for m=0..7.
Right edge of triangle is A000169. - Michel Marcus, May 17 2013

Examples

			The triangle T(n, m)  begins:
  n\m 0     1      2        3        4         5         6          7       8
  1:  1
  2: -1     2
  3:  1    -8      9
  4: -1    24    -81       64
  5:  1   -64    486    -1024      625
  6: -1   160  -2430    10240   -15625      7776
  7:  1  -384  10935   -81920   234375   -279936    117649
  8: -1   896 -45927   573440 -2734375   5878656  -5764801    2097152
  9:  1 -2048 183708 -3670016 27343750 -94058496 161414428 -134217728 4304672
  [Reformatted by _Wolfdieter Lang_, Oct 12 2022]
-----------------------------------------------------------------------------
p(2,x) = -1+2*x = (1/(2*x))*x*(d/dx)*x*(d/dx)*(x-1)^2.
		

References

  • A. Sidi, Practical Extrapolation Methods: Theory and Applications, Cambridge University Press, Cambridge, 2003.

Crossrefs

Programs

  • Maple
    # Assuming offset 0.
    seq(seq((-1)^(n-k)*binomial(n, k)*(k+1)^n, k=0..n), n=0..8);
    # Alternative:
    egf := x -> 1/(exp(LambertW(-exp(-x)*x*y) + x) - x*y):
    ser := x -> series(egf(x), x, 12):
    row := n -> seq(coeff(n!*coeff(ser(x), x, n), y, k), k=0..n):
    seq(print(row(n)), n = 0..8); # Peter Luschny, Oct 21 2022
  • Mathematica
    p[n_, x_] := p[n, x] = Nest[ x*D[#, x]& , (x-1)^n, n]/(n*x); a[n_, m_] := Coefficient[ p[n, x], x, m]; Table[a[n, m], {n, 1, 9}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 03 2013 *)
  • PARI
    tabl(nn) = {for (n=1, nn, for (m=0, n-1, print1((-1)^(n-m-1)*binomial(n-1, m)*(m+1)^(n-1), ", ");); print(););} \\ Michel Marcus, May 17 2013

Formula

T(n, m) = ((-1)^(n-m-1)) binomial(n-1, m)*(m+1)^(n-1), n >= m+1 >= 1, else 0.
G.f. for m-th column: ((m+1)^m)(x/(1+(m+1)*x))^(m+1), m >= 0.
E.g.f.: -LambertW(-x*y*exp(-x))/((1+LambertW(-x*y*exp(-x)))*x*y). - Vladeta Jovovic, Feb 13 2008 [corrected for offset 0 <= m <= n. For offset n >= 1 take the integral over x. - Wolfdieter Lang, Oct 12 2022]
T(n, k) = S(n, k+1) / n where S(, ) is triangle in A258773. - Michael Somos, May 13 2018
E.g.f. of column k, with offset n >= 0: exp(-(k + 1)*x)*((k + 1)*x)^k/k!. - Wolfdieter Lang, Oct 20 2022
E.g.f: 1/(exp(LambertW(-exp(-x)*x*y) + x) - x*y) assuming offset = 0. - Peter Luschny, Oct 21 2022

A000581 a(n) = binomial coefficient C(n,8).

Original entry on oeis.org

1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, 43758, 75582, 125970, 203490, 319770, 490314, 735471, 1081575, 1562275, 2220075, 3108105, 4292145, 5852925, 7888725, 10518300, 13884156, 18156204, 23535820, 30260340, 38608020, 48903492, 61523748, 76904685
Offset: 8

Views

Author

Keywords

Comments

Figurate numbers based on 8-dimensional regular simplex. - Jonathan Vos Post, Nov 28 2004
Just as A005712 and A000574 are described as the coefficients of x^4 and x^5 in the expansion of (1+x+x^2)^n, so should this sequence be described as the coefficients of x^3 therein. - R. K. Guy, Oct 19 2007
Product of 8 consecutive numbers divided by 8!. - Artur Jasinski, Dec 02 2007
In this sequence there are no primes. - Artur Jasinski, Dec 02 2007
a(n) = number of (n-8)-digit numbers with nondescending digits. E.g., a(9) = 9 = {1,2,3,..,9}, a(10) = 45 = {11-19, 22-29, 33-39, ..., 99} [0 is counted as a zero-digit number rather than a 1-digit number]. - Toby Gottfried, Feb 14 2012
a(n) =fallfac(n, 8)/8! = binomial(n, 8) is also the number of independent components of an antisymmetric tensor of rank 8 and dimension n >= 8 (for n = 1..7 this becomes 0). Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Number of compositions (ordered partitions) of n+1 into exactly 9 parts. - Juergen Will, Jan 02 2016
Number of weak compositions (ordered weak partitions) of n-8 into exactly 9 parts. - Juergen Will, Jan 02 2016
Partial sums of A000580. - Art Baker, Mar 26 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: x^8/(1-x)^9.
a(n) = A110555(n+1,8). - Reinhard Zumkeller, Jul 27 2005
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)/8!. - Artur Jasinski, Dec 02 2007
Sum_{k>=8} 1/a(k) = 8/7. - Tom Edgar, Sep 10 2015
Sum_{n>=8} (-1)^n/a(n) = A001787(8)*log(2) - A242091(8)/7! = 1024*log(2) - 74432/105 = 0.9065224171... - Amiram Eldar, Dec 10 2020

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 17 2000
Some formulas referring to other offsets rewritten by R. J. Mathar, Jul 07 2009
3 more terms from William Boyles, Aug 06 2015

A109466 Riordan array (1, x(1-x)).

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 0, -2, 1, 0, 0, 1, -3, 1, 0, 0, 0, 3, -4, 1, 0, 0, 0, -1, 6, -5, 1, 0, 0, 0, 0, -4, 10, -6, 1, 0, 0, 0, 0, 1, -10, 15, -7, 1, 0, 0, 0, 0, 0, 5, -20, 21, -8, 1, 0, 0, 0, 0, 0, -1, 15, -35, 28, -9, 1, 0, 0, 0, 0, 0, 0, -6, 35, -56, 36, -10, 1, 0, 0, 0, 0, 0, 0, 1, -21, 70, -84, 45, -11, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Aug 28 2005

Keywords

Comments

Inverse is Riordan array (1, xc(x)) (A106566).
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, -1, 1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Modulo 2, this sequence gives A106344. - Philippe Deléham, Dec 18 2008
Coefficient array of the polynomials Chebyshev_U(n, sqrt(x)/2)*(sqrt(x))^n. - Paul Barry, Sep 28 2009

Examples

			Rows begin:
  1;
  0,  1;
  0, -1,  1;
  0,  0, -2,  1;
  0,  0,  1, -3,  1;
  0,  0,  0,  3, -4,   1;
  0,  0,  0, -1,  6,  -5,   1;
  0,  0,  0,  0, -4,  10,  -6,   1;
  0,  0,  0,  0,  1, -10,  15,  -7,  1;
  0,  0,  0,  0,  0,   5, -20,  21, -8,  1;
  0,  0,  0,  0,  0,  -1,  15, -35, 28, -9, 1;
From _Paul Barry_, Sep 28 2009: (Start)
Production array is
  0,    1,
  0,   -1,    1,
  0,   -1,   -1,   1,
  0,   -2,   -1,  -1,   1,
  0,   -5,   -2,  -1,  -1,  1,
  0,  -14,   -5,  -2,  -1, -1,  1,
  0,  -42,  -14,  -5,  -2, -1, -1,  1,
  0, -132,  -42, -14,  -5, -2, -1, -1,  1,
  0, -429, -132, -42, -14, -5, -2, -1, -1, 1 (End)
		

Crossrefs

Cf. A026729 (unsigned version), A000108, A030528, A124644.

Programs

  • Magma
    /* As triangle */ [[(-1)^(n-k)*Binomial(k, n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jan 14 2016
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1&, #(1-#)&, 13] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

Number triangle T(n, k) = (-1)^(n-k)*binomial(k, n-k).
T(n, k)*2^(n-k) = A110509(n, k); T(n, k)*3^(n-k) = A110517(n, k).
Sum_{k=0..n} T(n,k)*A000108(k)=1. - Philippe Deléham, Jun 11 2007
From Philippe Deléham, Oct 30 2008: (Start)
Sum_{k=0..n} T(n,k)*A144706(k) = A082505(n+1).
Sum_{k=0..n} T(n,k)*A002450(k) = A100335(n).
Sum_{k=0..n} T(n,k)*A001906(k) = A100334(n).
Sum_{k=0..n} T(n,k)*A015565(k) = A099322(n).
Sum_{k=0..n} T(n,k)*A003462(k) = A106233(n). (End)
Sum_{k=0..n} T(n,k)*x^(n-k) = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1), A000012(n), A010892(n), A107920(n+1), A106852(n), A106853(n), A106854(n), A145934(n), A145976(n), A145978(n), A146078(n), A146080(n), A146083(n), A146084(n) for x = -12,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12 respectively. - Philippe Deléham, Oct 27 2008
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A010892(n), A099087(n), A057083(n), A001787(n+1), A030191(n), A030192(n), A030240(n), A057084(n), A057085(n+1), A057086(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively. - Philippe Deléham, Oct 28 2008
G.f.: 1/(1-y*x+y*x^2). - Philippe Deléham, Dec 15 2011
T(n,k) = T(n-1,k-1) - T(n-2,k-1), T(n,0) = 0^n. - Philippe Deléham, Feb 15 2012
Sum_{k=0..n} T(n,k)*x^(n-k) = F(n+1,-x) where F(n,x)is the n-th Fibonacci polynomial in x defined in A011973. - Philippe Deléham, Feb 22 2013
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Feb 26 2013
Sum_{k=0..n} T(n,k)*T(n+1,k) = -A110320(n). - Philippe Deléham, Feb 26 2013
For T(0,0) = 0, the signed triangle below has the o.g.f. G(x,t) = [t*x(1-x)]/[1-t*x(1-x)] = L[t*Cinv(x)] where L(x) = x/(1-x) and Cinv(x)=x(1-x) with the inverses Linv(x) = x/(1+x) and C(x)= [1-sqrt(1-4*x)]/2, an o.g.f. for the shifted Catalan numbers A000108, so the inverse o.g.f. is Ginv(x,t) = C[Linv(x)/t] = [1-sqrt[1-4*x/(t(1+x))]]/2 (cf. A124644 and A030528). - Tom Copeland, Jan 19 2016

A016627 Decimal expansion of log(4).

Original entry on oeis.org

1, 3, 8, 6, 2, 9, 4, 3, 6, 1, 1, 1, 9, 8, 9, 0, 6, 1, 8, 8, 3, 4, 4, 6, 4, 2, 4, 2, 9, 1, 6, 3, 5, 3, 1, 3, 6, 1, 5, 1, 0, 0, 0, 2, 6, 8, 7, 2, 0, 5, 1, 0, 5, 0, 8, 2, 4, 1, 3, 6, 0, 0, 1, 8, 9, 8, 6, 7, 8, 7, 2, 4, 3, 9, 3, 9, 3, 8, 9, 4, 3, 1, 2, 1, 1, 7, 2, 6, 6, 5, 3, 9, 9, 2, 8, 3, 7, 3, 7
Offset: 1

Views

Author

Keywords

Comments

This constant (negated) is the 1-dimensional analog of Madelung's constant. - Jean-François Alcover, May 20 2014
This constant is the sum over the reciprocals of the hexagonal numbers A000384(n), n >= 1. See the Downey et al. link, and the formula by Robert G. Wilson v below. - Wolfdieter Lang, Sep 12 2016
log(4) - 1 is the mean ratio between the smaller length and the larger length of the two parts of a stick that is being broken at a point that is uniformly chosen at random (Mosteller, 1965). - Amiram Eldar, Jul 25 2020
From Bernard Schott, Sep 11 2020: (Start)
This constant was the subject of the problem B5 during the 42nd Putnam competition in 1981 (see formula Sep 11 2020 and Putnam link).
Jeffrey Shallit generalizes this result obtained for base 2 to any base b (see Amer. Math. Month. link): Sum_{k>=1} digsum(k)_b / (k*(k+1)) = (b/(b-1)) * log(b) where digsum(k)_b is the sum of the digits of k when expressed in base b (for base 10 see A334388). (End)

Examples

			1.38629436111989061883446424291635313615100026872051050824136...
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
  • Frederick Mosteller, Fifty challenging problems of probability, Dover, New York, 1965. See problem 42, pp. 10 and 63.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:13:8 at page 23.

Crossrefs

Cf. A016732 (continued fraction).
Cf. A002162 (half), A133362 (reciprocal).

Programs

  • Mathematica
    RealDigits[Log@ 4, 10, 111][[1]] (* Robert G. Wilson v, Aug 31 2014 *)
  • PARI
    default(realprecision, 20080); x=log(4); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016627.txt", n, " ", d)); \\ Harry J. Smith, May 16 2009, corrected May 19 2009
    
  • PARI
    A016627_vec(N)=digits(floor(log(precision(4.,N))*10^(N-1))) \\ Or: default(realprecision,N);digits(log(4)\.1^N) \\ M. F. Hasler, Oct 20 2013

Formula

log(4) = Sum_{k >= 1} H(k)/2^k where H(k) is the k-th harmonic number. - Benoit Cloitre, Jun 15 2003
Equals 1 - Sum_{k >= 1} (-1)^k/A002378(k) = 1 + 2*Sum_{k >= 0} 1/A069072(k) = 5/4 - Sum_{k >= 1} (-1)^k/A007531(k+2). - R. J. Mathar, Jan 23 2009
Equals 2*A002162 = Sum_{n >= 1} binomial(2*n, n)/(n*4^n) [D. H. Lehmer, Am. Math. Monthly 92 (1985) 449 and Jolley eq. 262]. - R. J. Mathar, Mar 04 2009
log(4) = Sum_{k >= 1} A191907(4, k)/k, (conjecture). - Mats Granvik, Jun 19 2011
log(4) = lim_{n -> infinity} A066066(n)/n. - M. F. Hasler, Oct 20 2013
Equals Sum_{k >= 1} 1/( 2*k^2 - k ). - Robert G. Wilson v, Aug 31 2014
Equals gamma(0, 1/2) - gamma(0, 1) = -(EulerGamma + polygamma(0, 1/2)), where gamma(n,x) denotes the generalized Stieltjes constants, see A020759. - Peter Luschny, May 16 2018
From Amiram Eldar, Jul 25 2020: (Start)
Equals Sum_{k>=1} (3/4)^k/k.
Equals Sum_{k>=1} 1/(k*2^(k-1)) = Sum_{k>=1} 1/A001787(k).
Equals Integral_{x=0..1} log(1+1/x) dx. (End)
Equals Sum_{k>=1} A000120(k) / (k*(k+1)). - Bernard Schott, Sep 11 2020
Equals 1 + Sum_{k>=1} zeta(2*k+1)/4^k. - Amiram Eldar, May 27 2021
Equals Sum_{k>=1} (2*k+1)*Fibonacci(k)/(k*(k+1)*2^k) (Seiffert, 1994). - Amiram Eldar, Jan 15 2022
Continued fraction: log(4) = 1 + 1/(2 + (1*2)/(2 + (2*3)/(2 + (3*4)/(2 + (4*5)/(2 + ... ))))) due to Euler. - Peter Bala, Mar 05 2024
log(4) = 2*Sum_{k>=1} 1/(k*P(k, 5/3)*P(k-1, 5/3)), where P(k, x) denotes the k-th Legendre polynomial. The first 20 terms of the series gives log(4) correct to 18 decimal places. - Peter Bala, Mar 18 2024
Equals Sum_{k>=1} (2*k - 1)!!/(k*(2*k)!!) [Ross] (see Spanier at p. 23). - Stefano Spezia, Dec 27 2024
Equals 1 + Sum_{k>=1} 1/(k*(4*k^2-1)). - Sean A. Irvine, Apr 05 2025
Equals Sum_{k>=1} (12*k^2-1)/(k*(4*k^2-1)^2). - Sean A. Irvine, Apr 06 2025
Equals Integral_{x=0..1} arctanh(sqrt(x))/sqrt(x) dx. - Kritsada Moomuang, Jun 06 2025
From Kritsada Moomuang, Jun 18 2025: (Start)
Equals Integral_{x=0..1} (x^(n - 1)*(x^(3*n) - 1))/log(x) dx, for n > 0.
Equals Integral_{x=0..Pi} sin(x)/(1 + abs(cos(x))) dx. (End)

A048881 a(n) = A000120(n+1) - 1 = wt(n+1) - 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 3, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3
Offset: 0

Views

Author

Keywords

Comments

Highest power of 2 dividing n-th Catalan number (A000108).
a(n) = 0 iff n = 2^k - 1, k=0,1,...
Appears to be number of binary left-rotations (iterations of A006257) to reach fixed point of form 2^k-1. Right-rotation analog is A063250. This would imply that for n >= 0, a(n)=f(n), recursively defined to be 0 for n=0, otherwise as f( ( (1-n)(1-p)(1-s) - (1-n-p-s) ) / 2) + p (s+1) / 2, where p = n mod 2 and s = - signum(n) (f(n<0) is A000120(-n)). - Marc LeBrun, Jul 11 2001
Let f(0) = 01, f(1) = 12, f(2) = 23, f(3) = 34, f(4) = 45, etc. Sequence gives concatenation of 0, f(0), f(f(0)), f(f(f(0))), ... Also f(f(...f(0)...)) converges to A000120. - Philippe Deléham, Aug 14 2003
C(n, k) is the number of occurrence of k in the n-th group of terms in this sequence read by rows: {0}; {0, 1}; {0, 1, 1, 2}; {0, 1, 1, 2, 1, 2, 2, 3}; {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }; ... - Philippe Deléham, Jan 01 2004
Highest power of 2 dividing binomial(n,floor(n/2)). - Benoit Cloitre, Oct 20 2003
2^a(n) are numerators in the Maclaurin series for (sin x)^2. - Jacob A. Siehler, Nov 11 2009
Conjecture: a(n) is the sum of digits of the n-th word in A076478, for n >= 1; has been confirmed for n up to 20000. - Clark Kimberling, Jul 14 2021

Examples

			From _Omar E. Pol_, Mar 08 2011: (Start)
Sequence can be written in the following form (irregular triangle):
  0,
  0,1,
  0,1,1,2,
  0,1,1,2,1,2,2,3,
  0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,
  0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
  ...
Row sums are A001787.
(End)
		

Crossrefs

First differences of A078903.

Programs

  • Haskell
    a048881 n = a048881_list !! n
    a048881_list = c [0] where c (x:xs) = x : c (xs ++ [x,x+1])
    -- Reinhard Zumkeller, Mar 07 2011
    (Python 3.10+)
    def A048881(n): return (n+1).bit_count()-1 # Chai Wah Wu, Nov 15 2022
  • Maple
    A048881 := proc(n)
        A000120(n+1)-1 ;
    end proc:
    seq(A048881(n),n=0..200) ; # R. J. Mathar, Mar 12 2018
  • Mathematica
    a[n_] := IntegerExponent[ CatalanNumber[n], 2]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Jun 21 2013 *)
  • PARI
    { a(n) = if( n<0, 0, n++; n /= 2^valuation(n,2); subst( Pol( binary( n ) ), x, 1) - 1 ) } /* Michael Somos, Aug 23 2007 */
    
  • PARI
    {a(n) = if( n<0, 0, valuation( (2*n)! / n! / (n+1)!, 2 ) ) } /* Michael Somos, Aug 23 2007 */
    
  • PARI
    a(n) = hammingweight(n+1) - 1; \\ Michel Marcus, Nov 15 2022
    

Formula

Writing n as 2^m+k with -1 <= k < 2^m-1, then a(n) = A000120(k+1). - Henry Bottomley, Mar 28 2000
a(n) = k if 2^k divides A000108(n) but 2^(k+1) does not divide A000108(n).
a(2*n) = a(n-1)+1, a(2*n+1) = a(n). - Vladeta Jovovic, Oct 10 2002
G.f.: (1/(x-x^2)) * (x^2/(1-x) - Sum_{k>=1} x^(2^k)/(1-x^(2^k))). - Ralf Stephan, Apr 13 2002
a(n) = A000120(A129760(n+1)). - Reinhard Zumkeller, Jun 30 2010
a(n+k) = A240857(n,k), 0 <= k <= n; in particular: a(n) = A240857(n,0). - Reinhard Zumkeller, Apr 14 2014
a(n) = (n+1)*2 - A101925(n+1). - Gleb Ivanov, Jan 12 2022

Extensions

Entry revised by N. J. A. Sloane, Jun 07 2009

A190958 a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0

Views

Author

Keywords

Comments

For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {0,1}, 50]
  • PARI
    a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    [lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022

A000582 a(n) = binomial coefficient C(n,9).

Original entry on oeis.org

1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92378, 167960, 293930, 497420, 817190, 1307504, 2042975, 3124550, 4686825, 6906900, 10015005, 14307150, 20160075, 28048800, 38567100, 52451256, 70607460, 94143280, 124403620, 163011640, 211915132
Offset: 9

Views

Author

Keywords

Comments

Figurate numbers based on 9-dimensional regular simplex. - Jonathan Vos Post, Nov 28 2004
Product of 9 consecutive numbers divided by 9!. - Artur Jasinski, Dec 02 2007
In this sequence there are no primes. - Artur Jasinski, Dec 02 2007
a(9+n) gives the number of words with n letters over the alphabet {0,1,..,9} such that these letters are read from left to right in weakly increasing (nondecreasing) order. - R. J. Cano, Jul 20 2014
a(n) = fallfac(n, 9)/9! = binomial(n, 9) is also the number of independent components of an antisymmetric tensor of rank 9 and dimension n >= 9 (for n=1..8 this becomes 0). Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
From Juergen Will, Jan 23 2016: (Start)
Number of compositions (ordered partitions) of n+1 into exactly 10 parts.
Number of weak compositions (ordered weak partitions) of n-9 into exactly 10 parts. (End)
Number of integers divisible by 9 in the interval [0, 10^(n-8)-1]. - Miquel Cerda, Jul 02 2017

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: x^9/(1-x)^10.
a(n) = -A110555(n+1, 9). - Reinhard Zumkeller, Jul 27 2005
a(n+8) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)/9!. - Artur Jasinski, Dec 02 2007; R. J. Mathar, Jul 07 2009
Sum_{k>=9} 1/a(k) = 9/8. - Tom Edgar, Sep 10 2015
Sum_{n>=9} (-1)^(n+1)/a(n) = A001787(9)*log(2) - A242091(9)/8! = 2304*log(2) - 446907/280 = 0.9146754386... - Amiram Eldar, Dec 10 2020

Extensions

Formulas referring to other offsets rewritten by R. J. Mathar, Jul 07 2009

A228369 Triangle read by rows in which row n lists the compositions (ordered partitions) of n in lexicographic order.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 2, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 2, 1, 3, 1, 1, 4, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 3, 3, 1, 1, 3, 2, 4, 1, 5, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 28 2013

Keywords

Comments

The representation of the compositions (for fixed n) is as lists of parts, the order between individual compositions (for the same n) is lexicographic. - Joerg Arndt, Sep 02 2013
The equivalent sequence for partitions is A026791.
Row n has length A001792(n-1).
Row sums give A001787, n >= 1.
The m-th composition has length A008687(m+1), m >= 1. - Andrey Zabolotskiy, Jul 19 2017

Examples

			Illustration of initial terms:
-----------------------------------
n  j       Diagram   Composition j
-----------------------------------
.               _
1  1           |_|   1;
.             _ _
2  1         | |_|   1, 1,
2  2         |_ _|   2;
.           _ _ _
3  1       | | |_|   1, 1, 1,
3  2       | |_ _|   1, 2,
3  3       |   |_|   2, 1,
3  4       |_ _ _|   3;
.         _ _ _ _
4  1     | | | |_|   1, 1, 1, 1,
4  2     | | |_ _|   1, 1, 2,
4  3     | |   |_|   1, 2, 1,
4  4     | |_ _ _|   1, 3,
4  5     |   | |_|   2, 1, 1,
4  6     |   |_ _|   2, 2,
4  7     |     |_|   3, 1,
4  8     |_ _ _ _|   4;
.
Triangle begins:
[1];
[1,1],[2];
[1,1,1],[1,2],[2,1],[3];
[1,1,1,1],[1,1,2],[1,2,1],[1,3],[2,1,1],[2,2],[3,1],[4];
[1,1,1,1,1],[1,1,1,2],[1,1,2,1],[1,1,3],[1,2,1,1],[1,2,2],[1,3,1],[1,4],[2,1,1,1],[2,1,2],[2,2,1],[2,3],[3,1,1],[3,2],[4,1],[5];
...
		

Crossrefs

Programs

  • Haskell
    a228369 n = a228369_list !! (n - 1)
    a228369_list = concatMap a228369_row [1..]
    a228369_row 0 = []
    a228369_row n
      | 2^k == 2 * n + 2 = [k - 1]
      | otherwise        = a228369_row (n `div` 2^k) ++ [k] where
        k = a007814 (n + 1) + 1
    -- Peter Kagey, Jun 27 2016
    
  • Mathematica
    Table[Sort[Join@@Permutations/@IntegerPartitions[n],OrderedQ[PadRight[{#1,#2}]]&],{n,5}] (* Gus Wiseman, Dec 14 2017 *)
  • PARI
    gen_comp(n)=
    {  /* Generate compositions of n as lists of parts (order is lex): */
        my(ct = 0);
        my(m, z, pt);
        \\ init:
        my( a = vector(n, j, 1) );
        m = n;
        while ( 1,
            ct += 1;
            pt = vector(m, j, a[j]);
            /* for A228369  print composition: */
            for (j=1, m, print1(pt[j],", ") );
    \\        /* for A228525 print reversed (order is colex): */
    \\        forstep (j=m, 1, -1, print1(pt[j],", ") );
            if ( m<=1,  return(ct) );  \\ current is last
            a[m-1] += 1;
            z = a[m] - 2;
            a[m] = 1;
            m += z;
        );
        return(ct);
    }
    for(n=1, 12, gen_comp(n) );
    \\ Joerg Arndt, Sep 02 2013
    
  • Python
    a = [[[]], [[1]]]
    for s in range(2, 9):
        a.append([])
        for k in range(1, s+1):
            for ss in a[s-k]:
                a[-1].append([k]+ss)
    print(a)
    # Andrey Zabolotskiy, Jul 19 2017
Previous Showing 31-40 of 421 results. Next