cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 237 results. Next

A024206 Expansion of x^2*(1+x-x^2)/((1-x^2)*(1-x)^2).

Original entry on oeis.org

0, 1, 3, 5, 8, 11, 15, 19, 24, 29, 35, 41, 48, 55, 63, 71, 80, 89, 99, 109, 120, 131, 143, 155, 168, 181, 195, 209, 224, 239, 255, 271, 288, 305, 323, 341, 360, 379, 399, 419, 440, 461, 483, 505, 528, 551, 575, 599, 624, 649, 675, 701, 728, 755, 783, 811, 840
Offset: 1

Views

Author

Keywords

Comments

a(n+1) is the number of 2 X n binary matrices with no zero rows or columns, up to row and column permutation.
[ (4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n)) ], where S(n) = {first n+3 odd positive integers}.
First differences are 1, 2, 2, 3, 3, 4, 4, 5, 5, ... .
Let M_n denotes the n X n matrix m(i,j) = 1 if i =j; m(i,j) = 1 if (i+j) is odd; m(i,j) = 0 if i+j is even, then a(n) = -det M_(n+1) - Benoit Cloitre, Jun 19 2002
a(n) is the number of squares with corners on an n X n grid, distinct up to translation. See also A002415, A108279.
Starting (1, 3, 5, 8, 11, ...), = row sums of triangle A135841. - Gary W. Adamson, Dec 01 2007
Number of solutions to x+y >= n-1 in integers x,y with 1 <= x <= y <= n-1. - Franz Vrabec, Feb 22 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=5, a(n-4)=-coeff(charpoly(A,x),x^2). - Milan Janjic, Jan 26 2010
Equals row sums of a triangle with alternate columns of (1,2,3,...) and (1,1,1,...). - Gary W. Adamson, May 21 2010
Conjecture: if a(n) = p#(primorial)-1 for some prime number p, then q=(n+1) is also a prime number where p#=floor(q^2/4). Tested up to n=10^100000 no counterexamples are found. It seems that the subsequence is very scattered. So far the triples (p,q,a(q-1)) are {(2,3,1), (3,5,5), (5,11,29), (7,29,209), (17,1429,510509)}. - David Morales Marciel, Oct 02 2015
Numbers of an Ulam spiral starting at 0 in which the shape of the spiral is exactly a rectangle. E.g., a(4)=5 the Ulam spiral is including at that moment only the elements 0,1,2,3,4,5 and the shape is a rectangle. The area is always a(n)+1. E.g., for a(4) the area of the rectangle is 2(rows) X 3(columns) = 6 = a(4) + 1. - David Morales Marciel, Apr 05 2016
Numbers of different quadratic forms (quadrics) in the real projective space P^n(R). - Serkan Sonel, Aug 26 2020
a(n+1) is the number of one-dimensional subspaces of (F_3)^n, counted up to coordinate permutation. E.g.: For n=4, there are five one-dimensional subspaces in (F_3)^3 up to coordinate permutation: [1 2 2] [0 2 2] [1 0 2] [0 0 2] [1 1 1]. This example suggests a bijection (which has to be adjusted for the all-ones matrix) with the binary matrices of the first comment. - Álvar Ibeas, Sep 21 2021

Examples

			There are five 2 X 3 binary matrices with no zero rows or columns up to row and column permutation:
   [1 0 0]  [1 0 0]  [1 1 0]  [1 1 0]  [1 1 1]
   [0 1 1]  [1 1 1]  [0 1 1]  [1 1 1]  [1 1 1].
		

References

  • O. Giering, Vorlesungen über höhere Geometrie, Vieweg, Braunschweig, 1982. See p. 59.

Crossrefs

Cf. A014616, A135841, A034856, A005744 (partial sums), A008619 (1st differences).
A row or column of the array A196416 (possibly with 1 subtracted from it).
Cf. A008619.
Second column of A232206.

Programs

  • GAP
    a:=[0,1,3,5];; for n in [5..65] do a[n]:=2*a[n-1]-2*a[n-3]+a[n-4]; od; a; # Muniru A Asiru, Oct 23 2018
    
  • Haskell
    a024206 n = (n - 1) * (n + 3) `div` 4
    a024206_list = scanl (+) 0 $ tail a008619_list
    -- Reinhard Zumkeller, Dec 18 2013
    
  • Magma
    [(2*n^2+4*n-7-(-1)^n)/8 : n in [1..100]]; // Wesley Ivan Hurt, Jul 22 2014
    
  • Maple
    A024206:=n->(2*n^2+4*n-7-(-1)^n)/8: seq(A024206(n), n=1..100);
  • Mathematica
    f[x_, y_] := Floor[ Abs[ y/x - x/y]]; Table[ Floor[ f[2, n^2 + 2 n - 2] /2], {n, 57}] (* Robert G. Wilson v, Aug 11 2010 *)
    LinearRecurrence[{2,0,-2,1},{0,1,3,5},60] (* Harvey P. Dale, Jun 14 2013 *)
    Rest[CoefficientList[Series[x^2 (1 + x - x^2)/((1 - x^2) (1 - x)^2), {x, 0, 70}], x]] (* Vincenzo Librandi, Oct 02 2015 *)
  • PARI
    a(n)=(n-1)*(n+3)\4 \\ Charles R Greathouse IV, Jun 26 2013
    
  • PARI
    x='x+O('x^99); concat(0, Vec(x^2*(1+x-x^2)/ ((1-x^2)*(1-x)^2))) \\ Altug Alkan, Apr 05 2016
    
  • Python
    def A024206(n): return (n+1)**2//4 - 1 # Ya-Ping Lu, Jan 01 2024

Formula

G.f.: x^2*(1+x-x^2)/((1-x^2)*(1-x)^2) = x^2*(1+x-x^2) / ( (1+x)*(1-x)^3 ).
a(n+1) = A002623(n) - A002623(n-1) - 1.
a(n) = A002620(n+1) - 1 = A014616(n-2) + 1.
a(n+1) = A002620(n) + n, n >= 0. - Philippe Deléham, Feb 27 2004
a(0)=0, a(n) = floor(a(n-1) + sqrt(a(n-1)) + 1) for n > 0. - Gerald McGarvey, Jul 30 2004
a(n) = floor((n+1)^2/4) - 1. - Franz Vrabec, Feb 22 2008
a(n) = A005744(n-1) - A005744(n-2). - R. J. Mathar, Nov 04 2008
a(n) = a(n-1) + [side length of the least square > a(n-1) ], that is a(n) = a(n-1) + ceiling(sqrt(a(n-1) + 1)). - Ctibor O. Zizka, Oct 06 2009
For a(1)=0, a(2)=1, a(n) = 2*a(n-1) - a(n-2) + 1 if n is odd; a(n) = 2*a(n-1) - a(n-2) if n is even. - Vincenzo Librandi, Dec 23 2010
a(n) = A181971(n, n-1) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4); a(1)=0, a(2)=1, a(3)=3, a(4)=5. - Harvey P. Dale, Jun 14 2013
a(n) = floor( (n-1)*(n+3)/4 ). - Wesley Ivan Hurt, Jun 23 2013
a(n) = (2*n^2 + 4*n - 7 - (-1)^n)/8. - Wesley Ivan Hurt, Jul 22 2014
a(n) = a(-n-2) = n-1 + floor( (n-1)^2/4 ). - Bruno Berselli, Feb 03 2015
a(n) = (1/4)*(n+3)^2 - (1/8)*(1 + (-1)^n) - 1. - Serkan Sonel, Aug 26 2020
a(n) + a(n+1) = A034856(n). - R. J. Mathar, Mar 13 2021
a(2*n) = n^2 + n - 1, a(2*n+1) = n^2 + 2*n. - Greg Dresden and Zijie He, Jun 28 2022
Sum_{n>=2} 1/a(n) = 7/4 + tan(sqrt(5)*Pi/2)*Pi/sqrt(5). - Amiram Eldar, Dec 10 2022
E.g.f.: (4 + (x^2 + 3*x - 4)*cosh(x) + (x^2 + 3*x - 3)*sinh(x))/4. - Stefano Spezia, Aug 06 2024

Extensions

Corrected and extended by Vladeta Jovovic, Jun 02 2000

A008611 a(n) = a(n-3) + 1, with a(0)=a(2)=1, a(1)=0.

Original entry on oeis.org

1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, 7, 6, 7, 8, 7, 8, 9, 8, 9, 10, 9, 10, 11, 10, 11, 12, 11, 12, 13, 12, 13, 14, 13, 14, 15, 14, 15, 16, 15, 16, 17, 16, 17, 18, 17, 18, 19, 18, 19, 20, 19, 20, 21, 20, 21, 22, 21, 22, 23, 22, 23, 24, 23, 24, 25, 24, 25, 26, 25, 26, 27, 26, 27, 28
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Molien series of 2-dimensional representation of cyclic group of order 3 over GF(2).
One step back, two steps forward.
The crossing number of the graph C(n, {1,3}), n >= 8, is [n/3] + n mod 3, which gives this sequence starting at the first 4. [Yang Yuansheng et al.]
A Chebyshev transform of A078008. The g.f. is the image of (1-x)/(1-x-2*x^2) (g.f. of A078008) under the Chebyshev transform A(x)-> (1/(1+x^2))*A(x/(1+x^2)). - Paul Barry, Oct 15 2004
A047878 is an essentially identical sequence. - Anton Chupin, Oct 24 2009
Rhyme scheme of Dante Alighieri's "Divine Comedy." - David Gaita, Feb 11 2011
A194960 results from deleting the first four terms of A008611. Note that deleting the first term or first four terms of A008611 leaves a concatenation of segments (n, n+1, n+2); for related concatenations, see
A008619, (n,n+1) after deletion of first term;
A053737, (n,n+1,n+2,n+3) beginning with n=0;
A053824, (n to n+4) beginning with n=0. - Clark Kimberling, Sep 07 2011
It appears that a(n) is the number of roots of x^(n+1) + x + 1 inside the unit circle. - Michel Lagneau, Nov 02 2012
Also apparently for n >= 2: a(n) is the largest remainder r that results from dividing n+2 by 1..n+2 more than once, i.e., a(n) = max(i, A072528(n+2,i)>1). - Ralf Stephan, Oct 21 2013
Number of n-element subsets of [n+1] whose sum is a multiple of 3. a(4) = 1: {1,2,4,5}. - Alois P. Heinz, Feb 06 2017
It appears that a(n) is the number of roots of the Fibonacci polynomial F(n+2,x) strictly inside the unit circle of the complex plane. - Michel Lagneau, Apr 07 2017
For the proof of the preceding conjecture see my comments under A008615 and A049310. Chebyshev S(n,x) = i^n*F(n+1,-i*x), with i = sqrt(-1). - Wolfdieter Lang, May 06 2017
The sequence is the interleaving of three sequences: the positive integers (A000027), the nonnegative integers (A001477), and the positive integers, in that order. - Guenther Schrack, Nov 07 2020
a(n) is the number of multiples of 3 between n and 2n. - Christian Barrientos, Dec 20 2021
a(n) is the least number of football games a team has to play to be able to get n-1 points, where a win is 3 points, a draw is 1 point, and a loss is 0 points. - Sigurd Kittilsen, Dec 01 2022

Examples

			G.f. = 1 + x^2 + 2*x^3 + x^4 + 2*x^5 + 3*x^6 + 2*x^7 + 3*x^8 + 4*x^9 + ...
		

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 103.

Crossrefs

Programs

  • Haskell
    a008611 n = n' + mod r 2 where (n', r) = divMod (n + 1) 3
    a008611_list = f [1,0,1] where f xs = xs ++ f (map (+ 1) xs)
    -- Reinhard Zumkeller, Nov 25 2013
    
  • Magma
    [(n-1)-2*Floor((n-1)/3): n in [0..90]]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    with(numtheory): for n from 1 to 70 do:it:=0:
    y:=[fsolve(x^n+x+1, x, complex)] : for m from 1 to nops(y) do : if abs(y[m])< 1 then it:=it+1:else fi:od: printf(`%d, `,it):od:
    A008611:=n->(n-1)-2*floor((n-1)/3); seq(A008611(n), n=0..50); # Wesley Ivan Hurt, May 18 2014
  • Mathematica
    With[{nn=30},Riffle[Riffle[Range[nn],Range[0,nn-1]],Range[nn],3]] (* or *) RecurrenceTable[{a[0]==a[2]==1,a[1]==0,a[n]==a[n-3]+1},a,{n,90}] (* Harvey P. Dale, Nov 06 2011 *)
    LinearRecurrence[{1, 0, 1, -1}, {1, 0, 1, 2}, 100] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
    a[ n_] := Quotient[n - 1, 3] + Mod[n + 2, 3]; (* Michael Somos, Jan 23 2014 *)
  • PARI
    {a(n) = (n-1) \ 3 + (n+2) % 3}; /* Michael Somos, Jan 23 2014 */

Formula

a(n) = a(n-3) + 1.
a(n) = (n-1) - 2*floor((n-1)/3).
G.f.: (1 + x^2 + x^4)/(1 - x^3)^2.
After the initial term, has form {n, n+1, n+2} for n=0, 1, 2, ...
From Paul Barry, Mar 18 2004: (Start)
a(n) = Sum_{k=0..n} (-1)^floor(2*(k-2)/3);
a(n) = 4*sqrt(3)*cos(2*Pi*n/3 + Pi/6)/9 + (n+1)/3. (End)
From Paul Barry, Oct 15 2004: (Start)
G.f.: (1 - x + x^2)/((1 + x + x^2)*(x-1)^2);
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*A078008(n-2k)*(-1)^k. (End)
a(n) = -a(-2-n) for all n in Z.
Euler transform of length 6 sequence [0, 1, 2, 0, 0, -1]. - Michael Somos, Jan 23 2014
a(n) = ((n-1) mod 3) + floor((n-1)/3). - Wesley Ivan Hurt, May 18 2014
PSUM transform of A257075. - Michael Somos, Apr 15 2015
a(n) = A194960(n-3), n >= 0, with extended A194960. See the a(n) formula two lines above. - Wolfdieter Lang, May 06 2017
From Guenther Schrack, Nov 07 2020: (Start)
a(n) = (3*n + 3 + 2*(w^(2*n)*(1 - w) + w^n*(2 + w)))/9, where w = (-1 + sqrt(-3))/2, a primitive third root of unity;
a(n) = (n + 1 + 2*A049347(n))/3;
a(n) = (2*n - A330396(n-1))/3. (End)
E.g.f.: (3*exp(x)*(1 + x) + exp(-x/2)*(6*cos(sqrt(3)*x/2) - 2*sqrt(3)*sin(sqrt(3)*x/2)))/9. - Stefano Spezia, May 06 2022
Sum_{n>=2} (-1)^n/a(n) = 3*log(2) - 1. - Amiram Eldar, Sep 10 2023

A005993 Expansion of (1+x^2)/((1-x)^2*(1-x^2)^2).

Original entry on oeis.org

1, 2, 6, 10, 19, 28, 44, 60, 85, 110, 146, 182, 231, 280, 344, 408, 489, 570, 670, 770, 891, 1012, 1156, 1300, 1469, 1638, 1834, 2030, 2255, 2480, 2736, 2992, 3281, 3570, 3894, 4218, 4579, 4940, 5340, 5740, 6181, 6622, 7106, 7590, 8119, 8648, 9224, 9800
Offset: 0

Views

Author

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

Alkane (or paraffin) numbers l(6,n).
Dimension of the space of homogeneous degree n polynomials in (x1, y1, x2, y2) invariant under permutation of variables x1<->y1, x2<->y2.
Also multidigraphs with loops on 2 nodes with n arcs (see A138107). - Vladeta Jovovic, Dec 27 1999
Euler transform of finite sequence [2,3,0,-1]. - Michael Somos, Mar 17 2004
a(n-2) is the number of plane partitions with trace 2. - Michael Somos, Mar 17 2004
With offset 4, a(n) is the number of bracelets with n beads, 3 of which are red, 1 of which is blue. For odd n, a(n) = C(n-1,3)/2. For even n, a(n) = C(n-1,3)/2 +(n-2)/4. For n >= 6, with K = (n-1)(n-2)/((n-5)(n-4)), for odd n, a(n) = K*a(n-2). For even n, a(n) = K*a(n-2) -(n-2)/(n-5). - Washington Bomfim, Aug 05 2008
Equals (1,2,3,4,...) convolved with (1,0,3,0,5,...). - Gary W. Adamson, Feb 16 2009
Equals row sums of triangle A177878.
Equals (1/2)*((1, 4, 10, 20, 35, 56, ...) + (1, 0, 2 0, 3, 0, 4, ...)).
From Ctibor O. Zizka, Nov 21 2014: (Start)
With offset 4, a(n) is the number of different patterns of the 2-color 4-partition of n.
P(n)_(k;t) gives the number of different patterns of the t-color, k-partition of n.
P(n;i;j) = Sum(r=1..m) c_(i,j)*v_r*F_r(X_1,...,X_i).
m partition number of i.
c_(i,j) number of different coloring patterns on the r-th form (X_1,...,X_i) of i-partition with j-colors.
v_r number of i-partitions of n of the r-th form (X_1,...,X_i).
F_r(X_1,...,X_i) number of different patterns of the r-th form i-partition of n.
Some simple results:
P(1)(k;t)=1, P(2)(k;t)=2, P(3)(k;t)=4, P(4)(k;t)=11, etc.
P(n;1;1) = P(n;n;n) = 1 for all n;
P(n;2;2) = floor(n/2) (A004526);
P(n;3;2) = (n*n - 2*n + n mod 2)/4 (A002620).
This sequence is a(n) = P(n;4;2).
2-coloring of 4-partition is (A,B,A,B) or (B,A,B,A).
Each 4-partition of n has one of the form (X_1,X_1,X_1,X_1),(X_1,X_1,X_1,X_2), (X_1,X_1,X_2,X_2),(X_1,X_1,X_2,X_3),(X_1,X_2,X_3,X_4).
The number of forms is m=5 which is the partition number of k=4.
Partition form (X_1,X_1,X_1,X_1) gives 1 pattern ((X_1A,X_1B,X_1A,X_1B), (X_1,X_1,X_1,X_2) gives 2 patterns, (X_1,X_1,X_2,X_2) gives 4 patterns, (X_1,X_1,X_2,X_3) gives 6 patterns and (X_1,X_2,X_3,X_4) gives 12 patterns.
Thus a(n) = P(n;4;2) = 1*1*v_1 + 1*2*v_2 + 1*4*v_3 + 1*6*v_4 + 1*12*v_5 where v_r is the number of different 4-partitions of the r-th form (X_1,X_2,X_3,X_4) for a given n.
Example:
The 4-partitions of 8 are (2,2,2,2), (1,1,1,5), (1,1,3,3), (1,1,2,4), and (1,2,2,3):
(2,2,2,2) 1 pattern
(1,1,1,5), (1,1,5,1) 2 patterns
(1,1,3,3), (1,3,3,1), (3,1,1,3), (1,3,1,3) 4 patterns
(1,1,2,4), (1,1,4,2), (1,2,1,4), (1,2,4,1), (1,4,1,2), (2,1,1,4) 6 patterns
(2,2,1,3), (2,2,3,1), (2,1,2,3), (2,1,3,2), (2,3,2,1), (1,2,2,3) 6 patterns
Thus a(8) = P(8,4,2) = 1 + 2 + 4 + 6 + 6 = 19. (End)
a(n) = length of run n+2 of consecutive 1's in A254338. - Reinhard Zumkeller, Feb 27 2015
Take a chessboard of (n+2) X (n+2) unit squares in which the a1 square is black. a(n) is the number of composite squares having black unit squares on their vertices. - Ivan N. Ianakiev, Jul 19 2018
a(n) is the number of 1423-avoiding odd Grassmannian permutations of size n+2. Avoiding any of the patterns 2314 or 3412 gives the same sequence. - Juan B. Gil, Mar 09 2023

Examples

			a(2) = 6, since ( x1*y1, x2*y2, x1*x1+y1*y1, x2*x2+y2*y2, x1*x2+y1*y2, x1*y2+x2*y1 ) are a basis for homogeneous quadratic invariant polynomials.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • L. Smith, Polynomial Invariants of Finite Groups, A K Peters, 1995, p. 96.

Crossrefs

Cf. A177878.
Partial sums of A008794 (without 0). - Bruno Berselli, Aug 30 2013

Programs

  • Haskell
    Following Gary W. Adamson.
    import Data.List (inits, intersperse)
    a005993 n = a005994_list !! n
    a005993_list = map (sum . zipWith (*) (intersperse 0 [1, 3 ..]) . reverse) $
                       tail $ inits [1..]
    -- Reinhard Zumkeller, Feb 27 2015
    
  • Magma
    I:=[1,2,6,10,19,28]; [n le 6 select I[n] else 2*Self(n-1)+Self(n-2)-4*Self(n-3)+Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jul 19 2015
    
  • Maple
    g := proc(n) local i; add(floor(i/2)^2,i=1..n+1) end: # Joseph S. Riel (joer(AT)k-online.com), Mar 22 2002
    a:= n-> (Matrix([[1, 0$3, -1, -2]]).Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -4, 1, 2, -1][i] else 0 fi)^n)[1,1]; seq (a(n), n=0..44); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    CoefficientList[Series[(1+x^2)/((1-x)^2*(1-x^2)^2),{x,0,44}],x]  (* Jean-François Alcover, Apr 08 2011 *)
    LinearRecurrence[{2,1,-4,1,2,-1},{1,2,6,10,19,28},50] (* Harvey P. Dale, Feb 20 2012 *)
  • PARI
    a(n)=polcoeff((1+x^2)/(1-x)^2/(1-x^2)^2+x*O(x^n),n)
    
  • PARI
    a(n) = (binomial(n+3, n) + (1-n%2)*binomial((n+2)/2, n>>1))/2 \\ Washington Bomfim, Aug 05 2008
    
  • PARI
    a = vector(50); a[1]=1; a[2]=2;
    for(n=3, 50, a[n] = ((n+2)*a[n-2]+2*a[n-1]-n)/(n-2)); a \\ Gerry Martens, Jun 03 2018
    
  • Sage
    def A005993():
        a, b, to_be = 0, 0, True
        while True:
            yield (a*(a*(2*a+9)+13)+b*(b+1)*(2*b+1)+6)//6
            if to_be: b += 1
            else: a += 1
            to_be = not to_be
    a = A005993()
    [next(a) for  in range(48)] # _Peter Luschny, May 04 2016

Formula

l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
G.f.: (1+x^2)/((1-x)^2*(1-x^2)^2) = (1+x^2)/((1+x)^2*(x-1)^4) = (1/(1-x)^4 +1/(1-x^2)^2)/2.
a(2n) = (n+1)(2n^2+4n+3)/3, a(2n+1) = (n+1)(n+2)(2n+3)/3. a(-4-n) = -a(n).
From Yosu Yurramendi, Sep 12 2008: (Start)
a(n+1) = a(n) + A008794(n+3) with a(1)=1.
a(n) = A027656(n) + 2*A006918(n).
a(n+2) = a(n) + A000982(n+2) with a(1)=1, a(2)=2. (End)
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6). - Jaume Oliver Lafont, Dec 05 2008
a(n) = (n^3 + 6*n^2 + 11*n + 6)/12 + ((n+2)/4)[n even] (the bracket means that the second term is added if and only if n is even). - Benoit Jubin, Mar 31 2012
a(n) = (1/12)*n*(n+1)*(n+2) + (1/4)*(n+1)*(1/2)*(1-(-1)^n), with offset 1. - Yosu Yurramendi, Jun 20 2013
a(n) = Sum_{i=0..n+1} ceiling(i/2) * round(i/2) = Sum_{i=0..n+2} floor(i/2)^2. - Bruno Berselli, Aug 30 2013
a(n) = (n + 2)*(3*(-1)^n + 2*n^2 + 8*n + 9)/24. - Ilya Gutkovskiy, May 04 2016
Recurrence formula: a(n) = ((n+2)*a(n-2)+2*a(n-1)-n)/(n-2), a(1)=1, a(2)=2. - Gerry Martens, Jun 10 2018
E.g.f.: exp(-x)*(6 - 3*x + exp(2*x)*(18 + 39*x + 18*x^2 + 2*x^3))/24. - Stefano Spezia, Feb 23 2020
a(n) = Sum_{j=0..n/2} binomial(c+2*j-1,2*j)*binomial(c+n-2*j-1,n-2*j) where c=2. For other values of c we have: A008619 (c=1), A005995 (c=3), A018211 (c=4), A018213 (c=5), A062136 (c=6). - Miquel A. Fiol, Sep 24 2024

A060546 a(n) = 2^ceiling(n/2).

Original entry on oeis.org

1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 2097152, 2097152
Offset: 0

Views

Author

André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001

Keywords

Comments

a(n) is also the number of median-reflective (palindrome) symmetric patterns in a top-down equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement. The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells.
The number of possibilities for an n-game (sub)set of tennis with neither player gaining a 2-game advantage. (Motivated by the marathon Isner-Mahut match at Wimbledon, 2010.) - Barry Cipra, Jun 28 2010
Number of achiral rows of n colors using up to two colors. For a(3)=4, the rows are AAA, ABA, BAB, and BBB. - Robert A. Russell, Nov 07 2018
Also the number of walks of length n on the graph x--y--z starting at y. - Sean A. Irvine, May 30 2025

Crossrefs

Column k=2 of A321391.
Cf. A000079 (oriented), A005418(n+1) (unoriented), A122746(n-2) (chiral).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Magma
    [2^Ceiling(n/2): n in [0..50]]; // G. C. Greubel, Nov 07 2018
  • Maple
    for n from 0 to 100 do printf(`%d,`,2^ceil(n/2)) od:
  • Mathematica
    2^Ceiling[Range[0,50]/2] (* or *) Riffle[2^Range[0, 25], 2^Range[25]] (* Harvey P. Dale, Mar 05 2013 *)
    LinearRecurrence[{0, 2}, {1, 2}, 40] (* Robert A. Russell, Nov 07 2018 *)
  • PARI
    a(n) = { 2^ceil(n/2) } \\ Harry J. Smith, Jul 06 2009
    

Formula

a(n) = 2^ceiling(n/2).
a(n) = A016116(n+1) for n >= 1.
a(n) = 2^A008619(n-1) for n >= 1.
G.f.: (1 + 2*x) / (1 - 2*x^2). - Ralf Stephan, Jul 15 2013
E.g.f.: cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x). - Stefano Spezia, Feb 02 2023

Extensions

More terms from James Sellers, Apr 04 2001
a(0)=1 prepended by Robert A. Russell, Nov 07 2018
Edited by N. J. A. Sloane, Nov 10 2018

A080512 a(n) = n if n is odd, a(n) = 3*n/2 if n is even.

Original entry on oeis.org

1, 3, 3, 6, 5, 9, 7, 12, 9, 15, 11, 18, 13, 21, 15, 24, 17, 27, 19, 30, 21, 33, 23, 36, 25, 39, 27, 42, 29, 45, 31, 48, 33, 51, 35, 54, 37, 57, 39, 60, 41, 63, 43, 66, 45, 69, 47, 72, 49, 75, 51, 78, 53, 81, 55, 84, 57, 87, 59, 90, 61, 93, 63, 96, 65, 99, 67, 102
Offset: 1

Views

Author

Amarnath Murthy, Mar 20 2003

Keywords

Comments

First differences of the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 10 2011
Last term in n-th row of A080511.
Also A005408 and positive terms of A008585 interleaved. - Omar E. Pol, May 28 2012
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized heptagonal numbers. - Omar E. Pol, Jul 27 2018

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a080512 n = if m == 0 then 3 * n' else n  where (n', m) = divMod n 2
    a080512_list = concat $ transpose [[1, 3 ..], [3, 6 ..]]
    -- Reinhard Zumkeller, Apr 06 2015
  • Magma
    [n*(5+(-1)^n)/4: n in [1..60]]; // Vincenzo Librandi, Sep 11 2011
    
  • Mathematica
    Table[If[EvenQ[n],3n/2,n],{n,68}] (* Jayanta Basu, May 20 2013 *)

Formula

a(n) = n if n is odd, a(n) = 3*n/2 if n is even.
a(n)*a(n+3) = -3 + a(n+1)*a(n+2).
From Paul Barry, Sep 04 2003: (Start)
G.f.: (1+3*x+x^2)/((1-x^2)^2);
a(n) = n*(5 + (-1)^n)/4. (End)
Multiplicative with a(2^e) = 3*2^(e-1), a(p^e) = p^e otherwise. - Christian G. Bower, May 17 2005
Equals A126988 * (1, 1, 0, 0, 0, ...) - Gary W. Adamson, Apr 17 2007
Dirichlet g.f.: zeta(s-1) * (1 + 1/2^s). - Amiram Eldar, Oct 25 2023
Sum_{d divides n} mu(n/d)*a(d) = A126246(n), where mu(n) = A008683(n) is the Möbius function. - Peter Bala, Dec 31 2023

A034008 a(n) = floor(2^|n-1|/2). Or: 1, 0, followed by powers of 2.

Original entry on oeis.org

1, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648
Offset: 0

Views

Author

Keywords

Comments

Powers of 2 with additional first two terms.
Essentially the same as A131577 (and A000079).
[(-1)^n*a(n)] = [1, 0, 1, -2, 4, -8, 16, -32, ...] is the inverse binomial transform of A008619 = [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...]. - Philippe Deléham, Nov 15 2009
Number of compositions (ordered partitions) of n into an even number of parts. - Geoffrey Critzer, Mar 28 2010
Number of compositions of n into an even number of even parts.
Number of compositions of n into parts k >= 2 where there are k - 1 sorts of part k. - Joerg Arndt, Sep 30 2012
Taking n-th differences of this sequence reproduces the same sequence except for a(1) = n mod 2 (parity of n) and a(0) = (-1)^a(1)*floor(n/2 + 1). - M. F. Hasler, Jan 13 2015

References

  • Richard P. Stanley, Enumerative Combinatorics, Vol. I, Cambridge University Press, 1997, p. 45, exercise 9.

Crossrefs

Programs

  • Maple
    A034008:=n->2^(n-2): 1, 0, seq(A034008(n), n=2..50); # Wesley Ivan Hurt, Apr 12 2017
  • Mathematica
    a = x/(1 - x); CoefficientList[Series[1/(1 - a^2), {x, 0, 30}], x] (* Geoffrey Critzer, Mar 28 2010 *)
  • PARI
    a(n)=if(n<2,n==0,2^(n-2))

Formula

a(n) = 2^(n-2), n >= 2; a(0) = 1, a(1) = 0.
G.f.: (1-x)^2/(1-2*x).
G.f. 1/( 1 - Sum_{k >= 1} (k-1)*x^k ). - Joerg Arndt, Sep 30 2012
G.f.: x*G(0), where G(k) = 1 + 1/(1 - (1 - x)/(1 + x*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 01 2013
a(n+1) = A131577(n) and a(n+2) = A000079(n) for all n >= 0. - M. F. Hasler, Jan 13 2015
Inverse binomial transform of (3^n - 2*n + 1)/2 for n >= 0. - Paul Curtz, Sep 24 2019
E.g.f.: (1/4)*(3 + exp(2*x) - 2*x). - Stefano Spezia, Sep 25 2019
Binomial transform of A001057(n+1) or (-1)^n*A008619(n). - Paul Curtz, Oct 07 2019

Extensions

Additional comments from Barry E. Williams, May 27 2000
Additional comments from Michael Somos, Jun 18 2002
Edited by M. F. Hasler, Jan 13 2015

A010551 Multiply successively by 1,1,2,2,3,3,4,4,..., n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 36, 144, 576, 2880, 14400, 86400, 518400, 3628800, 25401600, 203212800, 1625702400, 14631321600, 131681894400, 1316818944000, 13168189440000, 144850083840000, 1593350922240000, 19120211066880000, 229442532802560000, 2982752926433280000
Offset: 0

Views

Author

Keywords

Comments

From Emeric Deutsch, Dec 14 2008: (Start)
Number of permutations of {1,2,...,n-1} having a single run of odd entries. Example: a(5)=12 because we have 1324,1342,3124,3142,2134,4132,2314,4312, 2413, 4213, 2431 and 4231.
a(n) = A152666(n-1,1). (End)
a(n+1) gives the permanent of the n X n matrix whose (i,j)-element is i+j-1 modulo 2. - John W. Layman, Jan 03 2011
From Daniel Forgues, May 20 2011: (Start)
a(0) = 1 since it is the empty product.
A010551(n-2), n >= 2, equal to (ceiling((n-2)/2))! * (floor((n-2)/2))!, gives the number of arrangements of n-2 entries from 2 to n-1, starting with an even entry and where the parity of adjacent entries alternates. This is the number of arrangements to investigate for row n of a prime pyramid (A051237). (End)
Partial products of A008619. - Reinhard Zumkeller, Apr 02 2012
Also size of the equivalence class of S_n containing the identity permutation under transformations of positionally adjacent elements of the form abc <--> acb where a < b < c, cf. A210667 (equivalently under such transformations of the form abc <--> bac where a < b < c.) - Tom Roby, May 15 2012
Row sums of A246117. - Peter Bala, Aug 15 2014
a(n) is the number of parity-alternating permutations of size n. A permutation is parity-alternating if it sends even integers to even, and odd to odd. - Per W. Alexandersson, Jun 06 2022
n divides a(n) if and only if n is not prime. Since a(n) = floor(n/2)!*floor((n+1)/2)!, if n is prime then n is not a factor of a(n). All the prime factors of a(n) are in fact less than or equal to (n+1)/2. If n is composite, then it's possible to write it as p*q with p and q less than or equal to n/2. So p and q are factors of a(n). - Davide Oliveri, Apr 01 2023
Number of permutations of {1, 2, ..., n-1} where each entry is not greater than twice the previous entry. - Dewangga Putra Sheradhien, Jul 13 2024

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 12*x^5 + 36*x^6 + 144*x^7 + 576*x^8 + ...
For n = 7, a(n) = 1*1*2*2*3*3*4 (7 factors), which is 144. - _Michael B. Porter_, Jul 03 2016
		

Crossrefs

Column k=2 of A275062.

Programs

  • Haskell
    a010551 n = a010551_list !! n
    a010551_list = scanl (*) 1 a008619_list
    -- Reinhard Zumkeller, Apr 02 2012
    
  • Magma
    [Factorial(n div 2)*Factorial((n+1) div 2): n in [0..25]]; // Vincenzo Librandi Jan 17 2018
    
  • Maple
    A010551 := proc(n)
        option remember;
        if n <= 1 then
            1
        else
            procname(n-1) *trunc( (n+1)/2 );
        fi;
    end:
  • Mathematica
    FoldList[ Times, 1, Flatten@ Array[ {#, #} &, 11]] (* Robert G. Wilson v, Jul 14 2010 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n)); 1/polcoeff(besseli(0,2*X)+X*besseli(1,2*X),n,x)} \\ Paul D. Hanna, Apr 07 2005
    
  • PARI
    A010551(n)=(n\2)!*((n+1)\2)! \\ Michael Somos, Dec 29 2012, edited by M. F. Hasler, Nov 26 2017
    
  • Python
    def O(f):
        c = 1
        while len(f) > 1:
            f.sort()
            m = abs(f[0] - f[1])
            c *= m
            f[0] = m
            f.pop(1)
        return c
    a = lambda n: O(list(range(1, n+1)))
    print([a(n) for n in range(0, 26)]) # Darío Clavijo, Aug 24 2024

Formula

a(n) = floor(n/2)!*floor((n+1)/2)! is the number of permutations p of {1, 2, 3, ..., n} such that for every i, i and p(i) have the same parity, i.e., p(i) - i is even. - Avi Peretz (njk(AT)netvision.net.il), Feb 22 2001
a(n) = n!/binomial(n, floor(n/2)). - Paul Barry, Sep 12 2004
G.f.: Sum_{n>=0} x^n/a(n) = besseli(0, 2*x) + x*besseli(1, 2*x). - Paul D. Hanna, Apr 07 2005
E.g.f.: 1/(1-x/2) + (1/2)/(1-x/2)*arccos(1-x^2/2)/sqrt(1-x^2/4). - Paul D. Hanna, Aug 28 2005
G.f.: G(0) where G(k) = 1 + (k+1)*x/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 28 2012
D-finite with recurrence: 4*a(n) - 2*a(n-1) - n*(n-1)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012
a(n) = a(n-1) * (a(n-2) + a(n-3)) / a(n-3) for all n >= 3. - Michael Somos, Dec 29 2012
G.f.: 1 + x + x^2*(1 + x*(G(0) - 1)/(x-1)) where G(k) = 1 - (k+2)/(1-x/(x - 1/(1 - (k+2)/(1-x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (k+1)/(1-x/(x - 1/(1 - (k+1)/(1-x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: 1 + x*G(0), where G(k) = 1 + x*(k+1)/(1 - x*(k+2)/(x*(k+2) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
G.f.: Q(0), where Q(k) = 1 + x*(k+1)/(1 - x*(k+1)/(x*(k+1) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013
Sum_{n >= 1} 1/a(n) = A130820. - Peter Bala, Jul 02 2016
a(n) ~ sqrt(Pi*n) * n! / 2^(n + 1/2). - Vaclav Kotesovec, Oct 02 2018
Sum_{n>=0} (-1)^n/a(n) = A229020. - Amiram Eldar, Apr 12 2021

A027656 Expansion of 1/(1-x^2)^2 (included only for completeness - the policy is always to omit the zeros from such sequences).

Original entry on oeis.org

1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0, 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0, 41, 0, 42, 0, 43, 0
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of nonnegative integer solutions to the equation x+y+z=n such that x+y=z. - Geoffrey Critzer, Jul 12 2013

Crossrefs

Programs

Formula

From Paul Barry, May 27 2003: (Start)
Binomial transform is A045891. Partial sums are A008805. The sequence 0, 1, 0, 2, ... has a(n)=floor((n+2)/2)(1-(-1)^n)/2.
a(n) = floor((n+3)/2) * (1+(-1)^n)/2. (End)
a(n) = (n+2)(n+3)/2 mod n+2. - Amarnath Murthy, Jun 17 2004
a(n) = (n+2)*(1 + (-1)^n)/4. - Bruno Berselli, Apr 01 2011
a(n) = A008619(n) * A059841(n). - Wesley Ivan Hurt, Jun 17 2013
E.g.f.: cosh(x) + x*sinh(x)/2. - Stefano Spezia, Mar 26 2022

A058187 Expansion of (1+x)/(1-x^2)^4: duplicated tetrahedral numbers.

Original entry on oeis.org

1, 1, 4, 4, 10, 10, 20, 20, 35, 35, 56, 56, 84, 84, 120, 120, 165, 165, 220, 220, 286, 286, 364, 364, 455, 455, 560, 560, 680, 680, 816, 816, 969, 969, 1140, 1140, 1330, 1330, 1540, 1540, 1771, 1771, 2024, 2024, 2300, 2300, 2600, 2600, 2925, 2925, 3276, 3276
Offset: 0

Views

Author

Henry Bottomley, Nov 20 2000

Keywords

Comments

For n >= i, i = 6,7, a(n - i) is the number of incongruent two-color bracelets of n beads, i of which are black (cf. A005513, A032280), having a diameter of symmetry. The latter means the following: if we imagine (0,1)-beads as points (with the corresponding labels) dividing a circumference of a bracelet into n identical parts, then a diameter of symmetry is a diameter (connecting two beads or not) such that a 180-degree turn of one of two sets of points around it (obtained by splitting the circumference by this diameter) leads to the coincidence of the two sets (including their labels). - Vladimir Shevelev, May 03 2011
From Johannes W. Meijer, May 20 2011: (Start)
The Kn11, Kn12, Kn13, Fi1 and Ze1 triangle sums, see A180662 for their definitions, of the Connell-Pol triangle A159797 are linear sums of shifted versions of the duplicated tetrahedral numbers, e.g., Fi1(n) = a(n-1) + 5*a(n-2) + a(n-3) + 5*a(n-4).
The Kn11, Kn12, Kn13, Kn21, Kn22, Kn23, Fi1, Fi2, Ze1 and Ze2 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above. (End)
The number of quadruples of integers [x, u, v, w] that satisfy x > u > v > w >= 0, n + 5 = x + u. - Michael Somos, Feb 09 2015
Also, this sequence is the fourth column in the triangle of the coefficients of the sum of two consecutive Fibonacci polynomials F(n+1, x) and F(n, x) (n>=0) in ascending powers of x. - Mohammad K. Azarian, Jul 18 2018

Crossrefs

Cf. A057884. Sum of 2 consecutive terms gives A006918, whose sum of 2 consecutive terms gives A002623, whose sum of 2 consecutive terms gives A000292, which is this sequence without the duplication. Continuing to sum 2 consecutive terms gives A000330, A005900, A001845, A008412 successively.

Programs

  • Haskell
    a058187 n = a058187_list !! n
    a058187_list = 1 : f 1 1 [1] where
       f x y zs = z : f (x + y) (1 - y) (z:zs) where
         z = sum $ zipWith (*) [1..x] [x,x-1..1]
    -- Reinhard Zumkeller, Dec 21 2011
    
  • Maple
    A058187:= proc(n) option remember; A058187(n):= binomial(floor(n/2)+3, 3) end: seq(A058187(n), n=0..51); # Johannes W. Meijer, May 20 2011
  • Mathematica
    a[n_]:= Length @ FindInstance[{x>u, u>v, v>w, w>=0, x+u==n+5}, {x, u, v, w}, Integers, 10^9]; (* Michael Somos, Feb 09 2015 *)
    With[{tetra=Binomial[Range[30]+2,3]},Riffle[tetra,tetra]] (* Harvey P. Dale, Mar 22 2015 *)
  • PARI
    {a(n) = binomial(n\2+3, 3)}; /* Michael Somos, Jun 07 2005 */
    
  • Sage
    [binomial((n//2)+3, 3) for n in (0..60)] # G. C. Greubel, Feb 18 2022

Formula

a(n) = A006918(n+1) - a(n-1).
a(2*n) = a(2*n+1) = A000292(n) = (n+1)*(n+2)*(n+3)/6.
a(n) = (2*n^3 + 21*n^2 + 67*n + 63)/96 + (n^2 + 7*n + 11)(-1)^n/32. - Paul Barry, Aug 19 2003
a(n) = A108299(n-3,n)*(-1)^floor(n/2) for n > 2. - Reinhard Zumkeller, Jun 01 2005
Euler transform of finite sequence [1, 3]. - Michael Somos, Jun 07 2005
G.f.: 1 / ((1 - x) * (1 - x^2)^3) = 1 / ((1 + x)^3 * (1 - x)^4). a(n) = -a(-7-n) for all n in Z.
a(n) = binomial(floor(n/2) + 3, 3). - Vladimir Shevelev, May 03 2011
a(-n) = -a(n-7); a(n) = A000292(A008619(n)). - Guenther Schrack, Sep 13 2018
Sum_{n>=0} 1/a(n) = 3. - Amiram Eldar, Aug 18 2022

A059570 Number of fixed points in all 231-avoiding involutions in S_n.

Original entry on oeis.org

1, 2, 6, 14, 34, 78, 178, 398, 882, 1934, 4210, 9102, 19570, 41870, 89202, 189326, 400498, 844686, 1776754, 3728270, 7806066, 16311182, 34020466, 70837134, 147266674, 305718158, 633805938, 1312351118, 2714180722, 5607318414, 11572550770, 23860929422
Offset: 1

Views

Author

Emeric Deutsch, Feb 16 2001

Keywords

Comments

Number of odd parts in all compositions (ordered partitions) of n: a(3)=6 because in 3=2+1=1+2=1+1+1 we have 6 odd parts. Number of even parts in all compositions (ordered partitions) of n+1: a(3)=6 because in 4=3+1=1+3=2+2=2+1+1=1+2+1=1+1+2=1+1+1+1 we have 6 even parts.
Convolved with (1, 2, 2, 2, ...) = A001787: (1, 4, 12, 32, 80, ...). - Gary W. Adamson, May 23 2009
An elephant sequence, see A175654. For the corner squares 36 A[5] vectors, with decimal values between 15 and 480, lead to this sequence. For the central square these vectors lead to the companion sequence 4*A172481, for n>=-1. - Johannes W. Meijer, Aug 15 2010
a(n) is the total number of runs of equal parts in the compositions of n. a(5) = 34 because there are 34 runs of equal parts in the compositions of 5, with parentheses enclosing each run: (5), (4)(1), (1)(4), (3)(2), (2)(3), (3)(1,1), (1)(3)(1), (1,1)(3), (2,2)(1), (2)(1)(2), (1)(2,2), (2)(1,1,1), (1)(2)(1,1), (1,1)(2)(1), (1,1,1)(2), (1,1,1,1,1). - Gregory L. Simay, Apr 28 2017
a(n) - a(n-2) is the number of 1's in all compositions of n and more generally, the number of k's in all compositions of n+k-1. - Gregory L. Simay, May 01 2017

Examples

			a(3) = 6 because in the 231-avoiding involutions of {1,2,3}, i.e., in 123, 132, 213, 321, we have altogether 6 fixed points (3+1+1+1).
		

Crossrefs

Programs

  • Magma
    [(3*n+4)*2^n/18-2*(-1)^n/9: n in [1..40]]; // Vincenzo Librandi, May 01 2017
  • Mathematica
    LinearRecurrence[{3,0,-4},{1,2,6},30] (* Harvey P. Dale, Dec 29 2013 *)
    Table[(3 n + 4) 2^n/18 - 2 (-1)^n/9, {n, 30}] (* Vincenzo Librandi, May 01 2017 *)

Formula

a(n) = (3*n+4)*2^n/18 - 2*(-1)^n/9.
G.f.: z*(1-z)/((1+z)*(1-2*z)^2).
a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(n-k, k+j)*2^k. - Paul Barry, Aug 29 2004
a(n) = Sum_{k=0..n+1} (-1)^(k+1)*binomial(n+1, k+j)*A001045(k). - Paul Barry, Jan 30 2005
Convolution of "Expansion of (1-x)/(1-x-2*x^2)" (A078008) with "Powers of 2" (A000079), treating the result as if offset=1. - Graeme McRae, Jul 12 2006
Convolution of "Difference sequence of A045623" (A045891) with "Positive integers repeated" (A008619), treating the result as if offset=1. - Graeme McRae, Jul 12 2006
a(n) = 3*a(n-1)-4*a(n-3); a(1)=1,a(2)=2,a(3)=6. - Philippe Deléham, Aug 30 2006
Equals row sums of A128255. (1, 2, 6, 14, 34, ...) - (0, 0, 1, 2, 6, 14, 34, ...) = A045623: (1, 2, 5, 12, 28, 64, ...). - Gary W. Adamson, Feb 20 2007
Equals triangle A059260 * [1, 2, 3, ...] as a vector. - Gary W. Adamson, Mar 06 2012
a(n) + a(n-1) = A001792(n-1). - Gregory L. Simay, Apr 30 2017
a(n) - a(n-2) = A045623(n-1). - Gregory L. Simay, May 01 2017
a(n) = A045623(n-1) + A045623(n-3) + A045623(n-5) + ... - Gregory L. Simay, Feb 19 2018
a(n) = A225084(2n,n). - Alois P. Heinz, Aug 30 2018

Extensions

More terms from Eugene McDonnell (eemcd(AT)mac.com), Jan 13 2005
Previous Showing 51-60 of 237 results. Next