cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A141615 Inverse binomial transform of A120070.

Original entry on oeis.org

3, 5, -8, 21, -47, 84, -108, 53, 207, -876, 2289, -5097, 10770, -22720, 48489, -103569, 217292, -440178, 848628, -1533887, 2542431, -3695469, 4141675, -1365090, -10867236, 46576386, -135501531, 338590821, -778823106, 1704048861, -3617744616, 7553704652, -15651526743, 32346059748, -66772731098
Offset: 0

Views

Author

Paul Curtz, Aug 23 2008

Keywords

Crossrefs

Programs

  • Magma
    A120070:= [n^2-k^2: k in [1..n-1], n in [2..100]];
    A141615:= func< n | (&+[(-1)^(n+k)*Binomial(n, k)*A120070[k+1]: k in [0..n]]) >;
    [A141615(n): n in [0..40]]; // G. C. Greubel, Sep 22 2024
    
  • Mathematica
    A120070 = Table[n^2 - k^2, {n,2,100}, {k,n-1}]//Flatten;
    A141615[n_]:= Sum[(-1)^(n+k)*Binomial[n, k]*A120070[[k+1]], {k,0,n}];
    Table[A141615[n], {n,0,40}] (* G. C. Greubel, Sep 22 2024 *)
  • SageMath
    A120070=flatten([[n^2 -k^2 for k in range(1, n)] for n in range(2, 101)])
    def A141615(n): return sum((-1)^(n+k)*binomial(n, k)*A120070[k] for k in range(n+1))
    [A141615(n) for n in range(41)] # G. C. Greubel, Sep 22 2024

Formula

a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(n,k)*A120070(k). - G. C. Greubel, Sep 22 2024

Extensions

More terms from N. J. A. Sloane, Jan 25 2011

A143753 Irregular triangle: A120070 read downwards antidiagonals.

Original entry on oeis.org

3, 8, 5, 15, 12, 24, 7, 21, 35, 16, 32, 48, 9, 27, 45, 63, 20, 40, 60, 80, 11, 33, 55, 77, 99, 24, 48, 72, 96, 120, 13, 39, 65, 91, 117, 143, 28, 56, 84, 112, 140, 168, 15, 45, 75, 105, 135, 165, 195, 32, 64, 96, 128, 160, 192, 224
Offset: 1

Views

Author

Paul Curtz, Aug 31 2008

Keywords

Comments

The triangle in this rearrangement contains 1, 1, 2, 2, 3, 3, 4, 4,... = floor((n+1)/2) entries in row n.
The first differences between terms in row n are A005843(n+2).

Examples

			3;
8;
5,15;
12,24;
7,21,35;
16,32,48;
		

A158233 a(n) = A120070(n+1)*A120070(n+2) mod 9.

Original entry on oeis.org

6, 4, 3, 0, 3, 6, 0, 3, 0, 0, 4, 0, 0, 4, 6, 0, 0, 6, 0, 6, 0, 0, 6, 3, 0, 3, 6, 3, 4, 0, 0, 4, 0, 0, 4, 0, 0, 6, 3, 0, 3, 6, 0, 0, 3, 0, 0, 6, 0, 6, 0, 0, 3, 3, 6, 4, 0, 0, 4, 0, 0, 4, 0, 0, 4, 3, 0, 3, 0, 0, 0, 3, 0, 6, 6, 0, 3, 6, 0, 3, 0, 0, 0, 3, 0, 6, 6, 0, 3, 0, 0, 4, 0, 0, 4, 0, 0, 4, 0, 0, 4, 0, 0, 4, 6
Offset: 1

Views

Author

Paul Curtz, Mar 14 2009

Keywords

Comments

Conjecture: this contains only the numbers 0,3,4,6 (verified for the first 5000 terms).
This multiply-modulo transformation is also used in the unrelated A157742, A158012, A158068, A158090.

Programs

  • Maple
    A120070 := proc(m,n) if m-1 >= n then m^2-n^2; else 0; fi; end:
    A120070flat := proc(n) i := 2 ; for m from 2 do for l from 1 to m-1 do if i = n then RETURN(A120070(m,l)) ; else i := i+1 ; fi; od: od: end:
    A158233 := proc(n) (A120070flat(n+1)*A120070flat(n+2) ) mod 9 ; end: seq(A158233(n),n=1..180) ; # R. J. Mathar, Apr 09 2009

Extensions

Edited and extended by R. J. Mathar, Apr 09 2009

A165447 T(n,k) = n^4 - 2*k^2*n^2 + k^4 = A120070(n, k)^2.

Original entry on oeis.org

9, 64, 25, 225, 144, 49, 576, 441, 256, 81, 1225, 1024, 729, 400, 121, 2304, 2025, 1600, 1089, 576, 169, 3969, 3600, 3025, 2304, 1521, 784, 225, 6400, 5929, 5184, 4225, 3136, 2025, 1024, 289, 9801, 9216, 8281, 7056, 5625, 4096, 2601, 1296, 361, 14400, 13689, 12544, 11025, 9216, 7225, 5184, 3249, 1600, 441, 20449, 19600, 18225, 16384, 14161, 11664, 9025, 6400, 3969, 1936, 529
Offset: 2

Views

Author

Paul Curtz, Sep 20 2009

Keywords

Examples

			Triangle begins:
     9;
    64,   25;
   225,  144,   49;
   576,  441,  256,   81;
  1225, 1024,  729,  400, 121;
  2304, 2025, 1600, 1089, 576, 169;
  ...
		

Crossrefs

Cf. A120070.

Programs

  • GAP
    Flat(List([2..12],n->List([1..n-1],k->n^4-2*k^2*n^2+k^4))); # Muniru A Asiru, Oct 21 2018
    
  • Magma
    [(Floor((Sqrt(8*n-15)-1)/2)*(Floor((Sqrt(8*n-15)-1)/2)+3)-2*(n-3))^2*(Floor((Sqrt(8*n-15)-1)/2)*(1-Floor((Sqrt(8*n-15)-1)/2))+2*(n+1))^2/16: n in [2..30]]; // G. C. Greubel, Oct 20 2018
  • Maple
    a:=(n,k)->(n^2-k^2)^2: seq(seq(a(n,k),k=1..n-1),n=2..12); # Muniru A Asiru, Oct 21 2018
  • Mathematica
    Table[n^2 - k^2, {n, 2, 12}, {k, n - 1}]^2 // Flatten (* Michael De Vlieger, Jun 06 2017, after Alonso del Arte at A120070 *)
    f[n_] := Table[SeriesCoefficient[(x (1 + 11 x + 11 x^2 + x^3) (-1 + y)^4 - 2 (-1 + x)^2 x (1 + x) (-1 + y)^2 y (1 + y) + (-1 + x)^4 y (1 + 11 y + 11 y^2 + y^3))/((-1 + x)^5 (-1 + y)^5) , {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 1, n-1}]; Flatten[Array[f, 11]] (* Stefano Spezia, Oct 21 2018 *)
  • PARI
    for (n=2, 10, for(k=1, n-1, print1((n^2-k^2)^2, ", ")); print()); \\ Michel Marcus, Jun 04 2017
    

Formula

a(n) = (R*(R+3)-2*(n-3))^2*(R*(1-R)+2*(n+1))^2/16 where R = floor((sqrt(8*n-15)-1)/2). - Luce ETIENNE, Jun 04 2017
G.f.: (x*(1 + 11*x + 11*x^2 + x^3)*(-1 + y)^4 - 2*(-1 + x)^2*x*(1 + x)*(-1 + y)^2*y*(1 + y) + (-1 + x)^4*y*(1 + 11*y + 11*y^2 + y^3))/((-1 + x)^5*(-1 + y)^5). - Stefano Spezia, Oct 21 2018

Extensions

More terms from Michel Marcus, Jun 04 2017

A165969 Triangle read by rows: T(n,m) = A094310(n,m)*A120070(n+1,m), 1 <= m <= n.

Original entry on oeis.org

3, 16, 5, 90, 36, 14, 576, 252, 128, 54, 4200, 1920, 1080, 600, 264, 34560, 16200, 9600, 5940, 3456, 1560, 317520, 151200, 92400, 60480, 39312, 23520, 10800, 3225600, 1552320, 967680, 655200, 451584, 302400, 184320, 85680, 35925120, 17418240, 11007360, 7620480, 5443200, 3870720, 2643840, 1632960, 766080
Offset: 1

Views

Author

Paul Curtz, Oct 02 2009

Keywords

Comments

The second array mentioned in the comment in A129326.

Examples

			Triangle begins
        3;
       16,       5;
       90,      36,     14;
      576,     252,    128,     54;
     4200,    1920,   1080,    600,    264;
    34560,   16200,   9600,   5940,   3456,   1560;
   317520,  151200,  92400,  60480,  39312,  23520,  10800;
  3225600, 1552320, 967680, 655200, 451584, 302400, 184320, 85680;
		

Crossrefs

Programs

A141695 Triangle T(n,m) = A120070(n,m)-A143814(n,m) read by rows, 1<=m

Original entry on oeis.org

0, 3, -3, 3, 5, -8, 3, 5, 7, -15, 3, 5, 7, 9, -24, 3, 5, 7, 9, 11, -35, 3, 5, 7, 9, 11, 13, -48, 3, 5, 7, 9, 11, 13, 15, -63, 3, 5, 7, 9, 11, 13, 15, 17, -80, 3, 5, 7, 9, 11, 13, 15, 17, 19, -99, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, -120
Offset: 2

Views

Author

Paul Curtz, Sep 11 2008

Keywords

Comments

Row sums are sum_{1<=m

Examples

			0
3 -3
3 5 -8
3 5 7 -15
3 5 7 9 -24
3 5 7 9 11 -35
3 5 7 9 11 13 -48
3 5 7 9 11 13 15 -63
3 5 7 9 11 13 15 17 -80
		

Formula

T(n,n-1) = -A005563(n-2).
T(n,m) = 2*m+1, m

A142882 First trisection of A120070.

Original entry on oeis.org

3, 15, 24, 9, 27, 48, 33, 63, 48, 15, 72, 45, 99, 84, 51, 120, 105, 72, 21, 135, 108, 63, 168, 153, 120, 69, 195, 180, 147, 96, 27, 216, 189, 144, 81, 255, 240, 207, 156, 87, 288, 273, 240, 189, 120, 33, 315, 288, 243, 180, 99, 360, 345, 312, 261, 192, 105, 399, 384, 351, 300, 231, 144, 39
Offset: 1

Author

Paul Curtz, Sep 28 2008

Keywords

Comments

All entries are multiples of 3.

Examples

			If we keep the association with lines in A120070, this triangle here that keeps only each third element starts:
3;
./.;
15;
24,9;
27;
48,33;
63,48,15;
72,45;
99,84,51;
120,105,72,21;
135,108,63;
168,153,120,69;
195,180,147,96,27;
216,189,144,81;
255,240,207,156,87;
288,273,240,189,120,33;
315,288,243,180,99;
360,345,312,261,192,105;
399,384,351,300,231,144,39;
		

A005563 a(n) = n*(n+2) = (n+1)^2 - 1.

Original entry on oeis.org

0, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, 2499, 2600
Offset: 0

Keywords

Comments

Erdős conjectured that n^2 - 1 = k! has a solution if and only if n is 5, 11 or 71 (when k is 4, 5 or 7).
Second-order linear recurrences y(m) = 2y(m-1) + a(n)*y(m-2), y(0) = y(1) = 1, have closed form solutions involving only powers of integers. - Len Smiley, Dec 08 2001
Number of edges in the join of two cycle graphs, both of order n, C_n * C_n. - Roberto E. Martinez II, Jan 07 2002
Let k be a positive integer, M_n be the n X n matrix m_(i,j) = k^abs(i-j) then det(M_n) = (-1)^(n-1)*a(k-1)^(n-1). - Benoit Cloitre, May 28 2002
Also numbers k such that 4*k + 4 is a square. - Cino Hilliard, Dec 18 2003
For each term k, the function sqrt(x^2 + 1), starting with 1, produces an integer after k iterations. - Gerald McGarvey, Aug 19 2004
a(n) mod 3 = 0 if and only if n mod 3 > 0: a(A008585(n)) = 2; a(A001651(n)) = 0; a(n) mod 3 = 2*(1-A079978(n)). - Reinhard Zumkeller, Oct 16 2006
a(n) is the number of divisors of a(n+1) that are not greater than n. - Reinhard Zumkeller, Apr 09 2007
Nonnegative X values of solutions to the equation X^3 + X^2 = Y^2. To find Y values: b(n) = n(n+1)(n+2). - Mohamed Bouhamida, Nov 06 2007
Sequence allows us to find X values of the equation: X + (X + 1)^2 + (X + 2)^3 = Y^2. To prove that X = n^2 + 2n: Y^2 = X + (X + 1)^2 + (X + 2)^3 = X^3 + 7*X^2 + 15X + 9 = (X + 1)(X^2 + 6X + 9) = (X + 1)*(X + 3)^2 it means: (X + 1) must be a perfect square, so X = k^2 - 1 with k>=1. we can put: k = n + 1, which gives: X = n^2 + 2n and Y = (n + 1)(n^2 + 2n + 3). - Mohamed Bouhamida, Nov 12 2007
From R. K. Guy, Feb 01 2008: (Start)
Toads and Frogs puzzle:
This is also the number of moves that it takes n frogs to swap places with n toads on a strip of 2n + 1 squares (or positions, or lily pads) where a move is a single slide or jump, illustrated for n = 2, a(n) = 8 by
T T - F F
T - T F F
T F T - F
T F T F -
T F - F T
- F T F T
F - T F T
F F T - T
F F - T T
I was alerted to this by the Holton article, but on consulting Singmaster's sources, I find that the puzzle goes back at least to 1867.
Probably the first to publish the number of moves for n of each animal was Edouard Lucas in 1883. (End)
a(n+1) = terms of rank 0, 1, 3, 6, 10 = A000217 of A120072 (3, 8, 5, 15). - Paul Curtz, Oct 28 2008
Row 3 of array A163280, n >= 1. - Omar E. Pol, Aug 08 2009
Final digit belongs to a periodic sequence: 0, 3, 8, 5, 4, 5, 8, 3, 0, 9. - Mohamed Bouhamida, Sep 04 2009 [Comment edited by N. J. A. Sloane, Sep 24 2009]
Let f(x) be a polynomial in x. Then f(x + n*f(x)) is congruent to 0 (mod f(x)); here n belongs to N. There is nothing interesting in the quotients f(x + n*f(x))/f(x) when x belongs to Z. However, when x is irrational these quotients consist of two parts, a) rational integers and b) integer multiples of x. The present sequence represents the non-integer part when the polynomial is x^2 + x + 1 and x = sqrt(2), f(x+n*f(x))/f(x) = A056108(n) + a(n)*sqrt(2). - A.K. Devaraj, Sep 18 2009
For n >= 1, a(n) is the number for which 1/a(n) = 0.0101... (A000035) in base (n+1). - Rick L. Shepherd, Sep 27 2009
For n > 0, continued fraction [n, 1, n] = (n+1)/a(n); e.g., [6, 1, 6] = 7/48. - Gary W. Adamson, Jul 15 2010
Starting (3, 8, 15, ...) = binomial transform of [3, 5, 2, 0, 0, 0, ...]; e.g., a(3) = 15 = (1*3 + 2*5 +1*2) = (3 + 10 + 2). - Gary W. Adamson, Jul 30 2010
a(n) is essentially the case 0 of the polygonal numbers. The polygonal numbers are defined as P_k(n) = Sum_{i=1..n} ((k-2)*i-(k-3)). Thus P_0(n) = 2*n-n^2 and a(n) = -P_0(n+2). See also A067998 and for the case k=1 A080956. - Peter Luschny, Jul 08 2011
a(n) is the maximal determinant of a 2 X 2 matrix with integer elements from {1, ..., n+1}, so the maximum determinant of a 2x2 matrix with integer elements from {1, ..., 5} = 5^2 - 1 = a(4) = 24. - Aldo González Lorenzo, Oct 12 2011
Using four consecutive triangular numbers t1, t2, t3 and t4, plot the points (0, 0), (t1, t2), and (t3, t4) to create a triangle. Twice the area of this triangle are the numbers in this sequence beginning with n = 1 to give 8. - J. M. Bergot, May 03 2012
Given a particle with spin S = n/2 (always a half-integer value), the quantum-mechanical expectation value of the square of the magnitude of its spin vector evaluates to = S(S+1) = n(n+2)/4, i.e., one quarter of a(n) with n = 2S. This plays an important role in the theory of magnetism and magnetic resonance. - Stanislav Sykora, May 26 2012
Twice the harmonic mean [H(x, y) = (2*x*y)/(x + y)] of consecutive triangular numbers A000217(n) and A000217(n+1). - Raphie Frank, Sep 28 2012
Number m such that floor(sqrt(m)) = floor(m/floor(sqrt(m))) - 2 for m > 0. - Takumi Sato, Oct 10 2012
The solutions of equation 1/(i - sqrt(j)) = i + sqrt(j), when i = (n+1), j = a(n). For n = 1, 2 + sqrt(3) = 3.732050.. = A019973. For n = 2, 3 + sqrt(8) = 5.828427... = A156035. - Kival Ngaokrajang, Sep 07 2013
The integers in the closed form solution of a(n) = 2*a(n-1) + a(m-2)*a(n-2), n >= 2, a(0) = 0, a(1) = 1 mentioned by Len Smiley, Dec 08 2001, are m and -m + 2 where m >= 3 is a positive integer. - Felix P. Muga II, Mar 18 2014
Let m >= 3 be a positive integer. If a(n) = 2*a(n-1) + a(m-2) * a(n-2), n >= 2, a(0) = 0, a(1) = 1, then lim_{n->oo} a(n+1)/a(n) = m. - Felix P. Muga II, Mar 18 2014
For n >= 4 the Szeged index of the wheel graph W_n (with n + 1 vertices). In the Sarma et al. reference, Theorem 2.7 is incorrect. - Emeric Deutsch, Aug 07 2014
If P_{k}(n) is the n-th k-gonal number, then a(n) = t*P_{s}(n+2) - s*P_{t}(n+2) for s=t+1. - Bruno Berselli, Sep 04 2014
For n >= 1, a(n) is the dimension of the simple Lie algebra A_n. - Wolfdieter Lang, Oct 21 2015
Finding all positive integers (n, k) such that n^2 - 1 = k! is known as Brocard's problem, (see A085692). - David Covert, Jan 15 2016
For n > 0, a(n) mod (n+1) = a(n) / (n+1) = n. - Torlach Rush, Apr 04 2016
Conjecture: When using the Sieve of Eratosthenes and sieving (n+1..a(n)), with divisors (1..n) and n>0, there will be no more than a(n-1) composite numbers. - Fred Daniel Kline, Apr 08 2016
a(n) mod 8 is periodic with period 4 repeating (0,3,0,7), that is a(n) mod 8 = 5/2 - (5/2) cos(n*Pi) - sin(n*Pi/2) + sin(3*n*Pi/2). - Andres Cicuttin, Jun 02 2016
Also for n > 0, a(n) is the number of times that n-1 occurs among the first (n+1)! terms of A055881. - R. J. Cano, Dec 21 2016
The second diagonal of composites (the only prime is number 3) from the right on the Klauber triangle (see Kival Ngaokrajang link), which is formed by taking the positive integers and taking the first 1, the next 3, the following 5, and so on, each centered below the last. - Charles Kusniec, Jul 03 2017
Also the number of independent vertex sets in the n-barbell graph. - Eric W. Weisstein, Aug 16 2017
Interleaving of A000466 and A033996. - Bruce J. Nicholson, Nov 08 2019
a(n) is the number of degrees of freedom in a triangular cell for a Raviart-Thomas or Nédélec first kind finite element space of order n. - Matthew Scroggs, Apr 22 2020
From Muge Olucoglu, Jan 19 2021: (Start)
For n > 1, a(n-2) is the maximum number of elements in the second stage of the Quine-McCluskey algorithm whose minterms are not covered by the functions of n bits. At n=3, we have a(3-2) = a(1) = 1*(1+2) = 3 and f(A,B,C) = sigma(0,1,2,5,6,7).
.
0 1 2 5 6 7
+---------------
*(0,1)| X X
(0,2)| X X
(1,5)| X X
*(2,6)| X X
*(5,7)| X X
(6,7)| X X
.
*: represents the elements that are covered. (End)
1/a(n) is the ratio of the sum of the first k odd numbers and the sum of the next n*k odd numbers. - Melvin Peralta, Jul 15 2021
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {1, 2n}]. - Magus K. Chu, Sep 09 2022
Number of diagonals parallel to an edge in a regular (2*n+4)-gon (cf. A367204). - Paolo Xausa, Nov 21 2023
For n >= 1, also the number of minimum cyclic edge cuts in the (n+2)-trapezohedron graph. - Eric W. Weisstein, Nov 21 2024
For n >= 1, a(n) is the sum of the interior angles of a polygon with n+2 sides, in radians, multiplied by (n+2)/Pi. - Stuart E Anderson, Aug 06 2025

Examples

			G.f. = 3*x + 8*x^2 + 15*x^3 + 24*x^4 + 35*x^5 + 48*x^6 + 63*x^7 + 80*x^8 + ...
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see index under Toads and Frogs Puzzle.
  • Martin Gardner, Perplexing Puzzles and Tantalizing Teasers, p. 21 (for "The Dime and Penny Switcheroo").
  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section D25.
  • Derek Holton, Math in School, 37 #1 (Jan 2008) 20-22.
  • Edouard Lucas, Récréations Mathématiques, Gauthier-Villars, Vol. 2 (1883) 141-143.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

Formula

G.f.: x*(3-x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = A000290(n+1) - 1.
A002378(a(n)) = A002378(n)*A002378(n+1); e.g., A002378(15)=240=12*20. - Charlie Marion, Dec 29 2003
a(n) = A067725(n)/3. - Zerinvary Lajos, Mar 06 2007
a(n) = Sum_{k=1..n} A144396(k). - Zerinvary Lajos, May 11 2007
a(n) = A134582(n+1)/4. - Zerinvary Lajos, Feb 01 2008
A143053(a(n)) = A000290(n+1), for n > 0. - Reinhard Zumkeller, Jul 20 2008
a(n) = Real((n+1+i)^2). - Gerald Hillier, Oct 12 2008
A053186(a(n)) = 2*n. - Reinhard Zumkeller, May 20 2009
a(n) = (n! + (n+1)!)/(n-1)!, n > 0. - Gary Detlefs, Aug 10 2009
a(n) = floor(n^5/(n^3+1)) with offset 1 (a(1)=0). - Gary Detlefs, Feb 11 2010
a(n) = a(n-1) + 2*n + 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
Sum_{n>=1} 1/a(n) = 3/4. - Mohammad K. Azarian, Dec 29 2010
a(n) = 2/(Integral_{x=0..Pi/2} (sin(x))^(n-1)*(cos(x))^3), for n > 0. - Francesco Daddi, Aug 02 2011
a(n) = A002378(n) + floor(sqrt(A002378(n))); pronic number + its root. - Fred Daniel Kline, Sep 16 2011
a(n-1) = A008833(n) * A068310(n) for n > 1. - Reinhard Zumkeller, Nov 26 2011
G.f.: U(0) where U(k) = -1 + (k+1)^2/(1 - x/(x + (k+1)^2/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 19 2012
a(n) = 15*C(n+4,3)*C(n+4,5)/(C(n+4,2)*C(n+4,4)). - Gary Detlefs, Aug 05 2013
a(n) = (n+2)!/((n-1)! + n!), n > 0. - Ivan N. Ianakiev, Nov 11 2013
a(n) = 3*C(n+1,2) - C(n,2) for n >= 0. - Felix P. Muga II, Mar 11 2014
a(n) = (A016742(n+1) - 4)/4 for n >= 0. - Felix P. Muga II, Mar 11 2014
a(-2 - n) = a(n) for all n in Z. - Michael Somos, Aug 07 2014
A253607(a(n)) = 1. - Reinhard Zumkeller, Jan 05 2015
E.g.f.: x*(x + 3)*exp(x). - Ilya Gutkovskiy, Jun 03 2016
For n >= 1, a(n^2 + n - 2) = a(n-1) * a(n). - Miko Labalan, Oct 15 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/4. - Amiram Eldar, Nov 04 2020
From Amiram Eldar, Feb 17 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = 2.
Product_{n>=1} (1 - 1/a(n)) = -sqrt(2)*sin(sqrt(2)*Pi)/Pi. (End)
a(n) = A000290(n+2) - n*2. See Bounded Squares illustration. - Leo Tavares, Oct 05 2021
From Leo Tavares, Oct 10 2021: (Start)
a(n) = A008585(n) + 2*A000217(n-1). See Trapezoids illustration.
2*A005563 = A054000(n+1). See Trapagons illustration.
a(n) = 2*A000217(n) + n. (End)
a(n) = (n+2)!!/(n-2)!! for n > 1. - Jacob Szlachetka, Jan 02 2022

Extensions

Partially edited by Joerg Arndt, Mar 11 2010
More terms from N. J. A. Sloane, Aug 01 2010

A014105 Second hexagonal numbers: a(n) = n*(2*n + 1).

Original entry on oeis.org

0, 3, 10, 21, 36, 55, 78, 105, 136, 171, 210, 253, 300, 351, 406, 465, 528, 595, 666, 741, 820, 903, 990, 1081, 1176, 1275, 1378, 1485, 1596, 1711, 1830, 1953, 2080, 2211, 2346, 2485, 2628, 2775, 2926, 3081, 3240, 3403, 3570, 3741, 3916, 4095, 4278
Offset: 0

Author

N. J. A. Sloane, Jun 14 1998

Keywords

Comments

Note that when starting from a(n)^2, equality holds between series of first n+1 and next n consecutive squares: a(n)^2 + (a(n) + 1)^2 + ... + (a(n) + n)^2 = (a(n) + n + 1)^2 + (a(n) + n + 2)^2 + ... + (a(n) + 2*n)^2; e.g., 10^2 + 11^2 + 12^2 = 13^2 + 14^2. - Henry Bottomley, Jan 22 2001; with typos fixed by Zak Seidov, Sep 10 2015
a(n) = sum of second set of n consecutive even numbers - sum of the first set of n consecutive odd numbers: a(1) = 4-1, a(3) = (8+10+12) - (1+3+5) = 21. - Amarnath Murthy, Nov 07 2002
Partial sums of odd numbers 3 mod 4, that is, 3, 3+7, 3+7+11, ... See A001107. - Jon Perry, Dec 18 2004
If Y is a fixed 3-subset of a (2n+1)-set X then a(n) is the number of (2n-1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007
More generally (see the first comment), for n > 0, let b(n,k) = a(n) + k*(4*n + 1). Then b(n,k)^2 + (b(n,k) + 1)^2 + ... + (b(n,k) + n)^2 = (b(n,k) + n + 1 + 2*k)^2 + ... + (b(n,k) + 2*n + 2*k)^2 + k^2; e.g., if n = 3 and k = 2, then b(n,k) = 47 and 47^2 + ... + 50^2 = 55^2 + ... + 57^2 + 2^2. - Charlie Marion, Jan 01 2011
Sequence found by reading the line from 0, in the direction 0, 10, ..., and the line from 3, in the direction 3, 21, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Nov 09 2011
a(n) is the number of positions of a domino in a pyramidal board with base 2n+1. - César Eliud Lozada, Sep 26 2012
Differences of row sums of two consecutive rows of triangle A120070, i.e., first differences of A016061. - J. M. Bergot, Jun 14 2013 [In other words, the partial sums of this sequence give A016061. - Leo Tavares, Nov 23 2021]
a(n)*Pi is the total length of half circle spiral after n rotations. See illustration in links. - Kival Ngaokrajang, Nov 05 2013
For corresponding sums in first comment by Henry Bottomley, see A059255. - Zak Seidov, Sep 10 2015
a(n) also gives the dimension of the simple Lie algebras B_n (n >= 2) and C_n (n >= 3). - Wolfdieter Lang, Oct 21 2015
With T_(i+1,i)=a(i+1) and all other elements of the lower triangular matrix T zero, T is the infinitesimal generator for unsigned A130757, analogous to A132440 for the Pascal matrix. - Tom Copeland, Dec 13 2015
Partial sums of squares with alternating signs, ending in an even term: a(n) = 0^2 - 1^2 +- ... + (2*n)^2, cf. Example & Formula from Berselli, 2013. - M. F. Hasler, Jul 03 2018
Also numbers k with the property that in the symmetric representation of sigma(k) the smallest Dyck path has a central peak and the largest Dyck path has a central valley, n > 0. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
a(n) is the area of a triangle with vertices at (0,0), (2*n+1, 2*n), and ((2*n+1)^2, 4*n^2). - Art Baker, Dec 12 2018
This sequence is the largest subsequence of A000217 such that gcd(a(n), 2*n) = a(n) mod (2*n) = n, n > 0 up to a given value of n. It is the interleave of A033585 (a(n) is even) and A033567 (a(n) is odd). - Torlach Rush, Sep 09 2019
A generalization of Hasler's Comment (Jul 03 2018) follows. Let P(k,n) be the n-th k-gonal number. Then for k > 1, partial sums of {P(k,n)} with alternating signs, ending in an even term, = n*((k-2)*n + 1). - Charlie Marion, Mar 02 2021
Let U_n(H) = {A in M_n(H): A*A^H = I_n} be the group of n X n unitary matrices over the quaternions (A^H is the conjugate transpose of A. Note that over the quaternions we still have A*A^H = I_n <=> A^H*A = I_n by mapping A and A^H to (2n) X (2n) complex matrices), then a(n) is the dimension of its Lie algebra u_n(H) = {A in M_n(H): A + A^H = 0} as a real vector space. A basis is given by {(E_{st}-E_{ts}), i*(E_{st}+E_{ts}), j*(E_{st}+E_{ts}), k*(E_{st}+E_{ts}): 1 <= s < t <= n} U {i*E_{tt}, j*E_{tt}, k*E_{tt}: t = 1..n}, where E_{st} is the matrix with all entries zero except that its (st)-entry is 1. - Jianing Song, Apr 05 2021

Examples

			For n=6, a(6) = 0^2 - 1^2 + 2^2 - 3^2 + 4^2 - 5^2 + 6^2 - 7^2 + 8^2 - 9^2 + 10^2 - 11^2 + 12^2 = 78. - _Bruno Berselli_, Aug 29 2013
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)

Crossrefs

Second column of array A094416.
Equals A033586(n) divided by 4.
See Comments of A132124.
Second n-gonal numbers: A005449, A147875, A045944, A179986, A033954, A062728, A135705.
Row sums in triangle A253580.

Programs

Formula

a(n) = 3*Sum_{k=1..n} tan^2(k*Pi/(2*(n + 1))). - Ignacio Larrosa Cañestro, Apr 17 2001
a(n)^2 = n*(a(n) + 1 + a(n) + 2 + ... + a(n) + 2*n); e.g., 10^2 = 2*(11 + 12 + 13 + 14). - Charlie Marion, Jun 15 2003
From N. J. A. Sloane, Sep 13 2003: (Start)
G.f.: x*(3 + x)/(1 - x)^3.
E.g.f.: exp(x)*(3*x + 2*x^2).
a(n) = A000217(2*n) = A000384(-n). (End)
a(n) = A084849(n) - 1; A100035(a(n) + 1) = 1. - Reinhard Zumkeller, Oct 31 2004
a(n) = A126890(n, k) + A126890(n, n-k), 0 <= k <= n. - Reinhard Zumkeller, Dec 30 2006
a(2*n) = A033585(n); a(3*n) = A144314(n). - Reinhard Zumkeller, Sep 17 2008
a(n) = a(n-1) + 4*n - 1 (with a(0) = 0). - Vincenzo Librandi, Dec 24 2010
a(n) = Sum_{k=0.2*n} (-1)^k*k^2. - Bruno Berselli, Aug 29 2013
a(n) = A242342(2*n + 1). - Reinhard Zumkeller, May 11 2014
a(n) = Sum_{k=0..2} C(n-2+k, n-2) * C(n+2-k, n), for n > 1. - J. M. Bergot, Jun 14 2014
a(n) = floor(Sum_{j=(n^2 + 1)..((n+1)^2 - 1)} sqrt(j)). Fractional portion of each sum converges to 1/6 as n -> infinity. See A247112 for a similar summation sequence on j^(3/2) and references to other such sequences. - Richard R. Forberg, Dec 02 2014
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3, with a(0) = 0, a(1) = 3, and a(2) = 10. - Harvey P. Dale, Feb 10 2015
Sum_{n >= 1} 1/a(n) = 2*(1 - log(2)) = 0.61370563888010938... (A188859). - Vaclav Kotesovec, Apr 27 2016
From Wolfdieter Lang, Apr 27 2018: (Start)
a(n) = trinomial(2*n, 2) = trinomial(2*n, 2*(2*n-1)), for n >= 1, with the trinomial irregular triangle A027907; i.e., trinomial(n,k) = A027907(n,k).
a(n) = (1/Pi) * Integral_{x=0..2} (1/sqrt(4 - x^2)) * (x^2 - 1)^(2*n) * R(4*(n-1), x), for n >= 0, with the R polynomial coefficients given in A127672, and R(-m, x) = R(m, x). [See Comtet, p. 77, the integral formula for q = 3, n -> 2*n, k = 2, rewritten with x = 2*cos(phi).] (End)
a(n) = A002943(n)/2. - Ralf Steiner, Jul 23 2019
a(n) = A000290(n) + A002378(n). - Torlach Rush, Nov 02 2020
a(n) = A003215(n) - A000290(n+1). See Squared Hexagons illustration. Leo Tavares, Nov 23 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/2 + log(2) - 2. - Amiram Eldar, Nov 28 2021

Extensions

Link added and minor errors corrected by Johannes W. Meijer, Feb 04 2010

A028347 a(n) = n^2 - 4.

Original entry on oeis.org

0, 5, 12, 21, 32, 45, 60, 77, 96, 117, 140, 165, 192, 221, 252, 285, 320, 357, 396, 437, 480, 525, 572, 621, 672, 725, 780, 837, 896, 957, 1020, 1085, 1152, 1221, 1292, 1365, 1440, 1517, 1596, 1677, 1760, 1845, 1932, 2021, 2112, 2205, 2300, 2397, 2496, 2597
Offset: 2

Keywords

Comments

Nonnegative X values of solutions to the equation X^3 + 4*X^2 = Y^2. The respective Y values are n*(n^2 - 4). - Mohamed Bouhamida, Nov 06 2007
Discriminants of binary forms x^2 + n*x*y + y^2 (for n > 1). - Artur Jasinski, Apr 28 2008
a(n)*a(n-1) + 4 = (a(n)-n)^2. This is the case d = 4 in the general (n^2-d)*((n-1)^2-d) + d = (n^2-n-d)^2. - Bruno Berselli, Dec 07 2011
Interleaving of A134582 and A078371. - Bruce J. Nicholson, Oct 14 2019

Examples

			G.f. = 5*x^3 + 12*x^4 + 21*x^5 + 32*x^6 + 45*x^7 + 60*x^8 + 77*x^9 + 96*x^10 + ...
		

References

  • Alain Connes, Noncommutative Geometry, Academic Press, 1994, p. 35.

Crossrefs

a(n), n>=3, second column (used for the Balmer series of the hydrogen atom) of triangle A120070.

Programs

Formula

Except for initial term, denominators of energies of hydrogen lines.
a(n+2) = n*(n+4). G.f.: x^3*(5-3*x)/(1-x)^3. - Barry E. Williams, Jun 16 2000, R. J. Mathar, Aug 06 2009
a(n) = 2*n + a(n-1) - 1. - Vincenzo Librandi, Aug 02 2010
Sum_{n >= 3} 1/a(n) = 25/48 = 0.52083333... = 100*A021196. - R. J. Mathar, Mar 22 2011
a(n) = x, the solution of k = (sqrt(x)+n)/2 and k + (1/k) = n (also valid for a(0) = -4 and a(1) = -3). - Charles L. Hohn, Apr 16 2011
E.g.f.: (x^2 + x - 4)*exp(x). - G. C. Greubel, Jul 17 2017
Sum_{n>=3} (-1)^(n+1)/a(n) = 7/48. - Amiram Eldar, Jul 03 2020
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=3} (1 - 1/a(n)) = 6*sin(sqrt(5)*Pi)/(sqrt(5)*Pi).
Product_{n>=3} (1 + 1/a(n)) = -4*sqrt(3)*sin(sqrt(3)*Pi)/Pi. (End)
Previous Showing 11-20 of 48 results. Next