cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 73 results. Next

A064604 Partial sums of A001159: Sum_{j=1..n} sigma_4(j).

Original entry on oeis.org

1, 18, 100, 373, 999, 2393, 4795, 9164, 15807, 26449, 41091, 63477, 92039, 132873, 184205, 254110, 337632, 450563, 580885, 751783, 948747, 1197661, 1477503, 1835761, 2227012, 2712566, 3250650, 3906396, 4613678, 5486322, 6409844
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

In general, Sum_{k=1..n} sigma_j(k) = Sum_{k=1..n} (Bernoulli(j+1, floor(1 + n/k)) - Bernoulli(j+1, 0))/(j+1), where Bernoulli(n,x) are the Bernoulli polynomials, for any positive integer j. - Daniel Suteu, Nov 07 2018

Crossrefs

Programs

  • Magma
    [(&+[DivisorSigma(4,j): j in [1..n]]): n in [1..50]]; // G. C. Greubel, Nov 07 2018
    
  • Maple
    ListTools:-PartialSums(map(numtheory:-sigma[4],[$1..100])); # Robert Israel, Jun 29 2018
  • Mathematica
    Accumulate[DivisorSigma[4, Range[50]]] (* Vaclav Kotesovec, Mar 30 2018 *)
  • PARI
    vector(50, n, sum(j=1, n, sigma(j,4))) \\ G. C. Greubel, Nov 07 2018
    
  • Python
    from math import isqrt
    def A064604(n): return (-(s:=isqrt(n))**2*(s**2*(s*(6*s+15)+10)-1) + sum((q:=n//k)*(30*k**4+q**2*(q*(6*q+15)+10)-1) for k in range(1,s+1)))//30 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = a(n-1) + A001159(n) = Sum_{j=1..n} sigma_4(j), where sigma_4(j) = A001159(j).
G.f.: (1/(1 - x))*Sum_{k>=1} k^4*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 23 2017
a(n) ~ zeta(5) * n^5 / 5. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..n} Bernoulli(5, floor(1 + n/k))/5, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 07 2018
a(n) = Sum_{k=1..n} k^4 * floor(n/k). - Daniel Suteu, Nov 08 2018

A053826 Dirichlet inverse of sigma_4 function (A001159).

Original entry on oeis.org

1, -17, -82, 16, -626, 1394, -2402, 0, 81, 10642, -14642, -1312, -28562, 40834, 51332, 0, -83522, -1377, -130322, -10016, 196964, 248914, -279842, 0, 625, 485554, 0, -38432, -707282, -872644, -923522, 0, 1200644, 1419874, 1503652, 1296, -1874162
Offset: 1

Views

Author

N. J. A. Sloane, Apr 08 2000

Keywords

Comments

sigma_4(n) is the sum of the 4th powers of the divisors of n (A001159).

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 39.

Crossrefs

Dirichlet inverse of sigma_k(n): A007427 (k = 0), A046692 (k = 1), A053822(k = 2), A053825 (k = 3), A178448 (k = 5).
Cf. A001159, A046099 (where a(n) = 0).

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#]*MoebiusMu[#]*#^4  &], {n, 1, 50}] (* G. C. Greubel, Nov 07 2018 *)
    f[p_, e_] := If[e == 1, -p^4 - 1, If[e == 2, p^4, 0]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*moebius(d)*d^4); \\ Michel Marcus, Nov 06 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)*(1 - p^4*X))[n], ", ")) \\ Vaclav Kotesovec, Sep 16 2020

Formula

Dirichlet g.f.: 1/(zeta(s)*zeta(s-4)).
Multiplicative with a(p^1) = -1 - p^4, a(p^2) = p^4, a(p^e) = 0 for e>=3. - Mitch Harris, Jun 27 2005
a(n) = Sum_{d|n} mu(n/d)*mu(d)*d^4. - Ilya Gutkovskiy, Nov 06 2018
From Peter Bala, Jan 17 2024: (Start)
a(n) = Sum_{d divides n} d * A053825(d) * phi(n/d), where the totient function phi(n) = A000010(n).
a(n) = Sum_{d divides n} d^2 * (sigma_2(d))^(-1) * J_2(n/d),
a(n) = Sum_{d divides n} d^3 * (sigma_1(d))^(-1) * J_3(n/d), and for k >= 0,
a(n) = Sum_{d divides n} d^4 * (sigma_k(d))^(-1) * J_(k+4)(n/d), where (sigma_k(n))^(-1) denotes the Dirichlet inverse of the divisor sum function sigma_k(n) and J_k(n) denotes the Jordan totient function. (End)

A066103 Smallest m such that A001221(A001159(m)) = n.

Original entry on oeis.org

2, 3, 4, 16, 12, 60, 96, 294, 720, 1936, 3920, 9680, 33712, 83248, 303408, 1517040, 5207472, 26972352, 74469808, 255166128
Offset: 1

Views

Author

Labos Elemer, Dec 04 2001

Keywords

Comments

a(18) > 18000000. - Vaclav Kotesovec, Sep 06 2019

Crossrefs

Programs

  • Mathematica
    Do[m = 1; While[PrimeNu[DivisorSigma[4, m]] != n, m++]; Print[m], {n, 1, 16}] (* Vaclav Kotesovec, Sep 05 2019 *)
  • PARI
    { for (n=1, 100, m=1; while (omega(sigma(m, 4)) != n, m++); write("b066103.txt", n, " ", m) ) } \\ Harry J. Smith, Nov 14 2009

Formula

a(n) = Min(x : A001221(A001159(x)) = n) = Min(x; A066102(x) = n).

Extensions

a(13) from Harry J. Smith, Nov 14 2009
a(14)-a(17) from Vaclav Kotesovec, Sep 06 2019
a(18)-a(20) from Amiram Eldar, Jul 04 2024

A000203 a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144
Offset: 1

Views

Author

Keywords

Comments

Multiplicative: If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (this sequence) (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
A number n is abundant if sigma(n) > 2n (cf. A005101), perfect if sigma(n) = 2n (cf. A000396), deficient if sigma(n) < 2n (cf. A005100).
a(n) is the number of sublattices of index n in a generic 2-dimensional lattice. - Avi Peretz (njk(AT)netvision.net.il), Jan 29 2001 [In the language of group theory, a(n) is the number of index-n subgroups of Z x Z. - Jianing Song, Nov 05 2022]
The sublattices of index n are in one-to-one correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} d = sigma(n), which is a(n). A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * Product_{p|n} (1+1/p), which is A001615. [Cf. Grady reference.]
Sum of number of common divisors of n and m, where m runs from 1 to n. - Naohiro Nomoto, Jan 10 2004
a(n) is the cardinality of all extensions over Q_p with degree n in the algebraic closure of Q_p, where p>n. - Volker Schmitt (clamsi(AT)gmx.net), Nov 24 2004. Cf. A100976, A100977, A100978 (p-adic extensions).
Let s(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) + a(n-15) - a(n-22) - a(n-26) + ..., then a(n) = s(n) if n is not pentagonal, i.e., n != (3 j^2 +- j)/2 (cf. A001318), and a(n) is instead s(n) - ((-1)^j)*n if n is pentagonal. - Gary W. Adamson, Oct 05 2008 [corrected Apr 27 2012 by William J. Keith based on Ewell and by Andrey Zabolotskiy, Apr 08 2022]
Write n as 2^k * d, where d is odd. Then a(n) is odd if and only if d is a square. - Jon Perry, Nov 08 2012
Also total number of parts in the partitions of n into equal parts. - Omar E. Pol, Jan 16 2013
Note that sigma(3^4) = 11^2. On the other hand, Kanold (1947) shows that the equation sigma(q^(p-1)) = b^p has no solutions b > 2, q prime, p odd prime. - N. J. A. Sloane, Dec 21 2013, based on postings to the Number Theory Mailing List by Vladimir Letsko and Luis H. Gallardo
Limit_{m->infinity} (Sum_{n=1..prime(m)} a(n)) / prime(m)^2 = zeta(2)/2 = Pi^2/12 (A072691). See more at A244583. - Richard R. Forberg, Jan 04 2015
a(n) + A000005(n) is an odd number iff n = 2m^2, m>=1. - Richard R. Forberg, Jan 15 2015
a(n) = a(n+1) for n = 14, 206, 957, 1334, 1364 (A002961). - Zak Seidov, May 03 2016
Equivalent to the Riemann hypothesis: a(n) < H(n) + exp(H(n))*log(H(n)), for all n>1, where H(n) is the n-th harmonic number (Jeffrey Lagarias). See A057641 for more details. - Ilya Gutkovskiy, Jul 05 2016
a(n) is the total number of even parts in the partitions of 2*n into equal parts. More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 18 2019
From Jianing Song, Nov 05 2022: (Start)
a(n) is also the number of order-n subgroups of C_n X C_n, where C_n is the cyclic group of order n. Proof: by the correspondence theorem in the group theory, there is a one-to-one correspondence between the order-n subgroups of C_n X C_n = (Z x Z)/(nZ x nZ) and the index-n subgroups of Z x Z containing nZ x nZ. But an index-n normal subgroup of a (multiplicative) group G contains {g^n : n in G} automatically. The desired result follows from the comment from Naohiro Nomoto above.
The number of subgroups of C_n X C_n that are isomorphic to C_n is A001615(n). (End)

Examples

			For example, 6 is divisible by 1, 2, 3 and 6, so sigma(6) = 1 + 2 + 3 + 6 = 12.
Let L = <V,W> be a 2-dimensional lattice. The 7 sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V,2W>, <2V+W,2W>, <2V,2W+V>. Compare A001615.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 116ff.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 2nd formula.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 141, 166.
  • H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
  • Ross Honsberger, "Mathematical Gems, Number One," The Dolciani Mathematical Expositions, Published and Distributed by The Mathematical Association of America, page 116.
  • Kanold, Hans Joachim, Kreisteilungspolynome und ungerade vollkommene Zahlen. (German), Ber. Math.-Tagung Tübingen 1946, (1947). pp. 84-87.
  • M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
  • A. Lubotzky, Counting subgroups of finite index, Proceedings of the St. Andrews/Galway 93 group theory meeting, Th. 2.1. LMS Lecture Notes Series no. 212 Cambridge University Press 1995.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.1, page 77.
  • G. Pólya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ Press 1954, page 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 91, 395.
  • Robert M. Young, Excursions in Calculus, The Mathematical Association of America, 1992 p. 361.

Crossrefs

See A034885, A002093 for records. Bisections give A008438, A062731. Values taken are listed in A007609. A054973 is an inverse function.
For partial sums see A024916.
Row sums of A127093.
Cf. A009194, A082062 (gcd(a(n),n) and its largest prime factor), A179931, A192795 (gcd(a(n),A001157(n)) and largest prime factor).
Cf. also A034448 (sum of unitary divisors).
Cf. A007955 (products of divisors).
A001227, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016

Programs

  • GAP
    A000203:=List([1..10^2],n->Sigma(n)); # Muniru A Asiru, Oct 01 2017
    
  • Haskell
    a000203 n = product $ zipWith (\p e -> (p^(e+1)-1) `div` (p-1)) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    [SumOfDivisors(n): n in [1..70]];
    
  • Magma
    [DivisorSigma(1,n): n in [1..70]]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    with(numtheory): A000203 := n->sigma(n); seq(A000203(n), n=1..100);
  • Mathematica
    Table[ DivisorSigma[1, n], {n, 100}]
    a[ n_] := SeriesCoefficient[ QPolyGamma[ 1, 1, q] / Log[q]^2, {q, 0, n}]; (* Michael Somos, Apr 25 2013 *)
  • Maxima
    makelist(divsum(n),n,1,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • MuPAD
    numlib::sigma(n)$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n<1, 0, sigma(n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) /(1 - p*X))[n])};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k)^2, x * O(x^n)), n))}; /* Michael Somos, Jan 29 2005 */
    
  • PARI
    max_n = 30; ser = - sum(k=1,max_n,log(1-x^k)); a(n) = polcoeff(ser,n)*n \\ Gottfried Helms, Aug 10 2009
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 1)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jan 03 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
    (APL, Dyalog dialect) A000203 ← +/{ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð} ⍝ Antti Karttunen, Feb 20 2024
  • SageMath
    [sigma(n, 1) for n in range(1, 71)]  # Zerinvary Lajos, Jun 04 2009
    
  • Scheme
    (definec (A000203 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (- (expt p (+ 1 e)) 1) (- p 1)) (A000203 (A028234 n)))))) ;; Uses macro definec from http://oeis.org/wiki/Memoization#Scheme - Antti Karttunen, Nov 25 2017
    
  • Scheme
    (define (A000203 n) (let ((r (sqrt n))) (let loop ((i (inexact->exact (floor r))) (s (if (integer? r) (- r) 0))) (cond ((zero? i) s) ((zero? (modulo n i)) (loop (- i 1) (+ s i (/ n i)))) (else (loop (- i 1) s)))))) ;; (Stand-alone program) - Antti Karttunen, Feb 20 2024
    

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1). - David W. Wilson, Aug 01 2001
For the following bounds and many others, see Mitrinovic et al. - N. J. A. Sloane, Oct 02 2017
If n is composite, a(n) > n + sqrt(n).
a(n) < n*sqrt(n) for all n.
a(n) < (6/Pi^2)*n^(3/2) for n > 12.
G.f.: -x*deriv(eta(x))/eta(x) where eta(x) = Product_{n>=1} (1-x^n). - Joerg Arndt, Mar 14 2010
L.g.f.: -log(Product_{j>=1} (1-x^j)) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Dirichlet convolution of phi(n) and tau(n), i.e., a(n) = sum_{d|n} phi(n/d)*tau(d), cf. A000010, A000005.
a(n) is odd iff n is a square or twice a square. - Robert G. Wilson v, Oct 03 2001
a(n) = a(n*prime(n)) - prime(n)*a(n). - Labos Elemer, Aug 14 2003 (Clarified by Omar E. Pol, Apr 27 2016)
a(n) = n*A000041(n) - Sum_{i=1..n-1} a(i)*A000041(n-i). - Jon Perry, Sep 11 2003
a(n) = -A010815(n)*n - Sum_{k=1..n-1} A010815(k)*a(n-k). - Reinhard Zumkeller, Nov 30 2003
a(n) = f(n, 1, 1, 1), where f(n, i, x, s) = if n = 1 then s*x else if p(i)|n then f(n/p(i), i, 1+p(i)*x, s) else f(n, i+1, 1, s*x) with p(i) = i-th prime (A000040). - Reinhard Zumkeller, Nov 17 2004
Recurrence: n^2*(n-1)*a(n) = 12*Sum_{k=1..n-1} (5*k*(n-k) - n^2)*a(k)*a(n-k), if n>1. - Dominique Giard (dominique.giard(AT)gmail.com), Jan 11 2005
G.f.: Sum_{k>0} k * x^k / (1 - x^k) = Sum_{k>0} x^k / (1 - x^k)^2. Dirichlet g.f.: zeta(s)*zeta(s-1). - Michael Somos, Apr 05 2003. See the Hardy-Wright reference, p. 312. first equation, and p. 250, Theorem 290. - Wolfdieter Lang, Dec 09 2016
For odd n, a(n) = A000593(n). For even n, a(n) = A000593(n) + A074400(n/2). - Jonathan Vos Post, Mar 26 2006
Equals the inverse Moebius transform of the natural numbers. Equals row sums of A127093. - Gary W. Adamson, May 20 2007
A127093 * [1/1, 1/2, 1/3, ...] = [1/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, ...]. Row sums of triangle A135539. - Gary W. Adamson, Oct 31 2007
a(n) = A054785(2*n) - A000593(2*n). - Reinhard Zumkeller, Apr 23 2008
a(n) = n*Sum_{k=1..n} A060642(n,k)/k*(-1)^(k+1). - Vladimir Kruchinin, Aug 10 2010
Dirichlet convolution of A037213 and A034448. - R. J. Mathar, Apr 13 2011
G.f.: A(x) = x/(1-x)*(1 - 2*x*(1-x)/(G(0) - 2*x^2 + 2*x)); G(k) = -2*x - 1 - (1+x)*k + (2*k+3)*(x^(k+2)) - x*(k+1)*(k+3)*((-1 + (x^(k+2)))^2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2011
a(n) = A001065(n) + n. - Mats Granvik, May 20 2012
a(n) = A006128(n) - A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A196020(n,k). - conjectured by Omar E. Pol, Feb 02 2013, and proved by Max Alekseyev, Nov 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A000330(k)*A000716(n-A000217(k)). - Mircea Merca, Mar 05 2014
a(n) = A240698(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
a(n) = Sum_{d^2|n} A001615(n/d^2) = Sum_{d^3|n} A254981(n/d^3). - Álvar Ibeas, Mar 06 2015
a(3*n) = A144613(n). a(3*n + 1) = A144614(n). a(3*n + 2) = A144615(n). - Michael Somos, Jul 19 2015
a(n) = Sum{i=1..n} Sum{j=1..i} cos((2*Pi*n*j)/i). - Michel Lagneau, Oct 14 2015
a(n) = A000593(n) + A146076(n). - Omar E. Pol, Apr 05 2016
a(n) = A065475(n) + A048050(n). - Omar E. Pol, Nov 28 2016
a(n) = (Pi^2*n/6)*Sum_{q>=1} c_q(n)/q^2, with the Ramanujan sums c_q(n) given in A054533 as a c_n(k) table. See the Hardy reference, p. 141, or Hardy-Wright, Theorem 293, p. 251. - Wolfdieter Lang, Jan 06 2017
G.f. also (1 - E_2(q))/24, with the g.f. E_2 of A006352. See e.g., Hardy, p. 166, eq. (10.5.5). - Wolfdieter Lang, Jan 31 2017
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(n) + A162296(n).
a(n) = A092261(n) * A295294(n). [This can be further expanded, see comment in A291750.] (End)
a(n) = A000593(n) * A038712(n). - Ivan N. Ianakiev and Omar E. Pol, Nov 26 2017
a(n) = Sum_{q=1..n} c_q(n) * floor(n/q), where c_q(n) is the Ramanujan's sum function given in A054533. - Daniel Suteu, Jun 14 2018
a(n) = Sum_{k=1..n} gcd(n, k) / phi(n / gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 21 2018
a(n) = (2^(1 + (A000005(n) - A001227(n))/(A000005(n) - A183063(n))) - 1)*A000593(n) = (2^(1 + (A183063(n)/A001227(n))) - 1)*A000593(n). - Omar E. Pol, Nov 03 2018
a(n) = Sum_{i=1..n} tau(gcd(n, i)). - Ridouane Oudra, Oct 15 2019
From Peter Bala, Jan 19 2021: (Start)
G.f.: A(x) = Sum_{n >= 1} x^(n^2)*(x^n + n*(1 - x^(2*n)))/(1 - x^n)^2 - differentiate equation 5 in Arndt w.r.t. x, and set x = 1.
A(x) = F(x) + G(x), where F(x) is the g.f. of A079667 and G(x) is the g.f. of A117004. (End)
a(n) = Sum_{k=1..n} tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
With the convention that a(n) = 0 for n <= 0 we have the recurrence a(n) = t(n) + Sum_{k >= 1} (-1)^(k+1)*(2*k + 1)*a(n - k*(k + 1)/2), where t(n) = (-1)^(m+1)*(2*m+1)*n/3 if n = m*(m + 1)/2, with m positive, is a triangular number else t(n) = 0. For example, n = 10 = (4*5)/2 is a triangular number, t(10) = -30, and so a(10) = -30 + 3*a(9) - 5*a(7) + 7*a(4) = -30 + 39 - 40 + 49 = 18. - Peter Bala, Apr 06 2022
Recurrence: a(p^x) = p*a(p^(x-1)) + 1, if p is prime and for any integer x. E.g., a(5^3) = 5*a(5^2) + 1 = 5*31 + 1 = 156. - Jules Beauchamp, Nov 11 2022
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24 - 1/(8*Pi) = A319462. - Vaclav Kotesovec, May 07 2023
a(n) < (7n*A001221(n) + 10*n)/6 [Duncan, 1961] (see Duncan and Tattersall). - Stefano Spezia, Jul 13 2025

A001157 a(n) = sigma_2(n): sum of squares of divisors of n.

Original entry on oeis.org

1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122, 210, 170, 250, 260, 341, 290, 455, 362, 546, 500, 610, 530, 850, 651, 850, 820, 1050, 842, 1300, 962, 1365, 1220, 1450, 1300, 1911, 1370, 1810, 1700, 2210, 1682, 2500, 1850, 2562, 2366, 2650, 2210, 3410, 2451, 3255
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
sigma_2(n) is the sum of the squares of the divisors of n.
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001.
Row sums of triangles A134575 and A134559. - Gary W. Adamson, Nov 02 2007
Also sum of square divisors of n^2. - Michel Marcus, Jan 14 2014
Conjecture: For each k = 2,3,..., all the rational numbers sigma_k(n)/n^k = Sum_{d|n} 1/d^k (n = 1,2,3,...) have pairwise distinct fractional parts. - Zhi-Wei Sun, Oct 15 2015
5 is the only prime entry in the sequence. - Drake Thomas, Dec 18 2016
4*a(n) = sum of squares of even divisors of 2*n. - Wolfdieter Lang, Jan 07 2017

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 827.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 11.
  • P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table I. The entry 53 should be 50. - N. J. A. Sloane, May 21 2014
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. also A192794, A082063 (gcd(a(n),n) and its largest prime factor); A179931, A192795 (gcd(a(n),A000203(n)) and largest prime factor).
Main diagonal of the array in A242639.
Cf. A333972 (Dgf at s=4).

Programs

  • Haskell
    a001157 n = s n 1 1 a000040_list where
       s 1 1 y _          = y
       s m x y ps'@(p:ps)
         | m `mod` p == 0 = s (m `div` p) (x * p^2) y ps'
         | x > 1          = s m 1 (y * (x * p^2 - 1) `div` (p^2 - 1)) ps
         | otherwise      = s m 1 y ps
    -- Reinhard Zumkeller, Jul 10 2011
    
  • Magma
    [DivisorSigma(2,n): n in [1..50]]; // Bruno Berselli, Apr 10 2013
    
  • Maple
    with(numtheory); A001157 := n->sigma[2](n); [seq(sigma[2](n), n=1..100)];
  • Mathematica
    Table[DivisorSigma[2, n], {n, 1, 50}] (* Stefan Steinerberger, Mar 24 2006 *)
    DivisorSigma[2,Range[50]] (* Harvey P. Dale, Aug 22 2016 *)
  • Maxima
    makelist(divsum(n,2),n,1,20); /* Emanuele Munarini, Mar 26 2011 */
    
  • PARI
    a(n)=if(n<1,0,sigma(n,2))
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X)/(1-p^2*X))[n])
    
  • PARI
    a(n)=if(n<1,0,n*polcoeff(sum(k=1,n,x^k/(x^k-1)^2/k,x*O(x^n)),n)) /* Michael Somos, Jan 29 2005 */
    
  • PARI
    N=99; q='q+O('q^N); Vec(sum(n=1,N,n^2*q^n/(1-q^n)))  /* Joerg Arndt, Feb 04 2011 */
    
  • PARI
    a(n) = sumdiv(n^2, d, issquare(d)*d); \\ Michel Marcus, Jan 14 2014
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 2)
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Jan 05 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p**(2*e+2)-1)//(p**2-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
  • Sage
    [sigma(n,2)for n in range(1,51)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>0} k^2 x^k/(1-x^k). Dirichlet g.f.: zeta(s)*zeta(s-2). - Michael Somos, Apr 05 2003
Multiplicative with a(p^e) = (p^(2e+2)-1)/(p^2-1). - David W. Wilson, Aug 01 2001
G.f. for sigma_k(n): Sum_{m>0} m^k*x^m/(1-x^m). - Vladeta Jovovic, Oct 18 2002
L.g.f.: -log(Product_{j>=1} (1-x^j)^j) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Equals A127093 * [1, 2, 3, ...]. - Gary W. Adamson, May 10 2007
Equals A051731 * [1, 4, 9, 16, 25, ...]. A051731 * [1/1, 1/2, 1/3, 1/4, ...] = [1/1, 5/4, 10/9, 21/16, 26/25, ...]. - Gary W. Adamson, Nov 02 2007
Row sums of triangle A134841. - Gary W. Adamson, Nov 12 2007
a(n) = A035316(n^2). - Michel Marcus, Jan 14 2014
Conjecture: a(n) = sigma(n^2*rad(n))/sigma(rad(n)), where sigma = A000203 and rad = A007947. - Velin Yanev, Aug 20 2017
G.f.: Sum_{k>=1} x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, Oct 24 2018
a(n) = a(n/4) + A050461(n) + A076577(n/2) + A050465(n) where A(.) are zero for non-integer arguments. - R. J. Mathar, May 25 2020
Sum_{k>=1} 1/a(k) = A109694 = 1.53781289182725616253866100273826833091936004947322354929617689659426330445... - Vaclav Kotesovec, Sep 26 2020
G.f.: Sum_{n >= 1} q^(n^2)*(n^2 - ((n-1)^2 - 2)*q^n - ((n+1)^2 - 2)*q^(2*n) + n^2*q^(3*n))/(1 - q^n)^3 - apply the operator x*d/dx twice to equation 5 in Arndt and set x = 1. - Peter Bala, Jan 21 2021
From Vaclav Kotesovec, Aug 07 2022: (Start)
Sum_{k=1..n} a(k) = A064602(n) ~ zeta(3) * n^3 / 3.
Sum_{k=1..n} (-1)^k * a(k) ~ zeta(3) * n^3 / 24. (End)
a(n) = Sum_{1 <= i, j <= n} tau(gcd(i, j, n)) = Sum_{d divides n} tau(d) * J_2(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_2(n) = A007434(n). - Peter Bala, Jan 22 2024

A001160 sigma_5(n), the sum of the 5th powers of the divisors of n.

Original entry on oeis.org

1, 33, 244, 1057, 3126, 8052, 16808, 33825, 59293, 103158, 161052, 257908, 371294, 554664, 762744, 1082401, 1419858, 1956669, 2476100, 3304182, 4101152, 5314716, 6436344, 8253300, 9768751, 12252702, 14408200, 17766056, 20511150
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/504. - Simon Plouffe, Mar 01 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 166.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Zagier, Don. "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 17, G_6(z).

Crossrefs

Cf. A000005, A000203, A001157, A001158, A001159, A013973, A000584 (Mobius transform), A178448 (Dirichlet inverse)

Programs

Formula

Multiplicative with a(p^e) = (p^(5e+5)-1)/(p^5-1). - David W. Wilson, Aug 01 2001
G.f.: sum(k>=1, k^5*x^k/(1-x^k)). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s)*zeta(s-5). - R. J. Mathar, Mar 06 2011
G.f. also (1 - E_6(q))/540, with the g.f. E_6 of A013973. See Hardy p. 166, (10.5.7) with R = E_6. - Wolfdieter Lang, Jan 31 2017
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^4)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
a(n) = Sum_{1 <= i, j, k, l, m <= n} tau(gcd(i, j, k, l, m, n)) = Sum_{d divides n} tau(d) * J_5(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_5(n) = A059378(n). - Peter Bala, Jan 22 2024

A109974 Array read by downwards antidiagonals: sigma_k(n) for n >= 1, k >= 0.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 2, 7, 10, 9, 1, 4, 6, 21, 28, 17, 1, 2, 12, 26, 73, 82, 33, 1, 4, 8, 50, 126, 273, 244, 65, 1, 3, 15, 50, 252, 626, 1057, 730, 129, 1, 4, 13, 85, 344, 1394, 3126, 4161, 2188, 257, 1, 2, 18, 91, 585, 2402, 8052, 15626, 16513, 6562, 513, 1
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Rows sums are A108639. Antidiagonal sums are A109976. Matrix inverse is A109977.
From Wolfdieter Lang, Jan 29 2016: (Start)
The sum of the (k-1)th power of the divisors of n, sigma_(k-1)(n), appears also as eigenvalue lambda(k, n) of the Hecke operators T_n, n a positive integer, acting on the normalized Eisenstein series E_k(q) = ((2*Pi*i)^k/((k-1)!*Zeta(k))*G_k(q) with even k >= 4 and q = 2*Pi*i*z, where z is from the upper half of the complex plane: T_n E_k = sigma_(k-1)(n)*E_k. These Eisenstein series are entire modular forms of weight k, and each E_k(q) is a simultaneous eigenform of the Hecke operators T_n, for every n >= 1.
This results from the Fourier coefficients of E_k(q) = Sum_{m>=0} E(k, m)*q^m, with E(k, 0) =1 and E(k, m) = ((2*Pi*i)^k / ((k-1)!*Zeta(k))* sigma_(k-1)(m) for m >= 1, together with the Fourier coefficients of T_n E_k. The eigenvalues lambda(n, k) = (Sum_{d | gcd(n,m)} d^{k-1}*E(k, m*n/d^2)) / E(k, m) for each m >= 0. For m=0 this becomes lambda(n, k) = sigma_(k-1)(n).
For Hecke operators, Fourier coefficients and simultaneous eigenforms see, e.g., the Koecher - Krieg reference, p. 207, eqs. (5) and (6) and p. 211, section 4, or the Apostol reference, p. 120, eq. (13), pp. 129 - 134. (End)

Examples

			Start of array:
  1,  2,  2,   3,   2,    4, ...
  1,  3,  4,   7,   6,   12, ...
  1,  5, 10,  21,  26,   50, ...
  1,  9, 28,  73, 126,  252, ...
  1, 17, 82, 273, 626, 1394, ...
  ...
The triangle T(m, k) with row offset 1 starts:
  m\k 0  1  2   3    4    5    6    7   8  9 ...
  1:  1
  2:  2  1
  3:  2  3  1
  4:  3  4  5   1
  5:  2  7 10   9    1
  6:  4  6 21  28   17    1
  7:  2 12 26  73   82   33    1
  8:  4  8 50 126  273  244   65    1
  9:  3 15 50 252  626 1057  730  129   1
  10: 4 13 85 344 1394 3126 4161 2188 257  1
  ... - _Wolfdieter Lang_, Jan 14 2016
		

References

  • Tom M. Apostol, Modular functions and Dirichlet series in number theory, second Edition, Springer, 1990, pp. 120, 129 - 134.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 207, 211.

Crossrefs

Programs

  • Magma
    A109974:= func< n,k | DivisorSigma(k-1, n-k+1) >;
    [A109974(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 18 2023
    
  • Maple
    with(numtheory):
    seq(seq(sigma[k](1+d-k), k=0..d), d=0..12);  # Alois P. Heinz, Feb 06 2013
  • Mathematica
    rows=12; Flatten[Table[DivisorSigma[k-n, n], {k,1,rows}, {n,k,1,-1}]] (* Jean-François Alcover, Nov 15 2011 *)
  • SageMath
    def A109974(n,k): return sigma(n-k+1, k-1)
    flatten([[A109974(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 18 2023

Formula

Regarded as a triangle, T(n, k) = if(k<=n, sigma(k-1, n-k+1), 0). - Franklin T. Adams-Watters, Jul 17 2006
If the row index (the index of the antidiagonal of the array) is taken as m with offset 1 the triangle is T(m, k) = sigma_k(m-k), 1 <= k+1 <= m, otherwise 0. - Wolfdieter Lang, Jan 14 2016
G.f. for the triangle with offset 1: G(x,y) = Sum_{j>=1} x^j/((1-x^j)*(1-j*x*y)). - Robert Israel, Jan 14 2016

A051001 Sum of 4th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 82, 1, 626, 82, 2402, 1, 6643, 626, 14642, 82, 28562, 2402, 51332, 1, 83522, 6643, 130322, 626, 196964, 14642, 279842, 82, 391251, 28562, 538084, 2402, 707282, 51332, 923522, 1, 1200644, 83522, 1503652, 6643, 1874162, 130322, 2342084, 626, 2825762, 196964
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) add(x^4, x = numtheory:-divisors(n/2^padic:-ordp(n,2))) end proc:
    map(f, [$1..100]); # Robert Israel, Jan 05 2017
  • Mathematica
    Table[Total[Select[Divisors[n],OddQ]^4],{n,40}] (* Harvey P. Dale, Oct 02 2014 *)
    f[2, e_] := 1; f[p_, e_] := (p^(4*e + 4) - 1)/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n) = sumdiv(n , d, (d%2)*d^4); \\ Michel Marcus, Jan 14 2014
    
  • Python
    from sympy import divisor_sigma
    def A051001(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),4)) # Chai Wah Wu, Jul 16 2022

Formula

Dirichlet g.f. (1-2^(4-s))*zeta(s)*zeta(s-4). - R. J. Mathar, Apr 06 2011
G.f.: Sum_{k>=1} (2*k - 1)^4*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Jan 04 2017
a(n) = A001159(A000265(n)). - Robert Israel, Jan 05 2017
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(4*e+4)-1)/(p^4-1) for p > 2. - Amiram Eldar, Sep 14 2020
Sum_{k=1..n} a(k) ~ zeta(5)*n^5/10. - Vaclav Kotesovec, Sep 24 2020
G.f.: Sum_{n >= 1} x^n*(1 + 76*x^(2*n) + 230*x^(4*n) + 76*x^(6*n) + x^(8*n))/(1 - x^(2*n))^5. See row 5 of A060187. - Peter Bala, Dec 20 2021

A134375 a(n) = (n!)^4.

Original entry on oeis.org

1, 1, 16, 1296, 331776, 207360000, 268738560000, 645241282560000, 2642908293365760000, 17340121312772751360000, 173401213127727513600000000, 2538767161403058526617600000000, 52643875858853821607942553600000000, 1503561738404723998944447273369600000000
Offset: 0

Views

Author

Artur Jasinski, Oct 22 2007

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = sigma_4(gcd(i,j)) for 1 <= i,j <= n, and n>0, where sigma_4 is A001159. - Enrique Pérez Herrero, Aug 13 2011

Crossrefs

Programs

  • Maple
    a:= n-> (n!)^4:
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 15 2013
  • Mathematica
    Table[((n)!)^(4), {n, 0, 10}]

Formula

a(n) = det(S(i+4,j), 1 <= i,j <= n), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013

A084218 a(n) = sigma_4(n^2)/sigma_2(n^2).

Original entry on oeis.org

1, 13, 73, 205, 601, 949, 2353, 3277, 5905, 7813, 14521, 14965, 28393, 30589, 43873, 52429, 83233, 76765, 129961, 123205, 171769, 188773, 279313, 239221, 375601, 369109, 478297, 482365, 706441, 570349, 922561, 838861, 1060033, 1082029
Offset: 1

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=n->sigma[4](n^2)/sigma[2](n^2): seq(a(n),n=1..40); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    Table[DivisorSigma[4, n^2]/DivisorSigma[2, n^2], {n, 1, 50}] (* G. C. Greubel, Oct 08 2018 *)
    f[p_, e_] := (p^(4*e + 2) + 1)/(p^2 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 35] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    a(n)=sumdiv(n^2,d,d^4)/sumdiv(n^2,d,d^2)
    
  • PARI
    a(n) = sigma(n^2, 4)/sigma(n^2, 2); \\ Michel Marcus, Oct 09 2018

Formula

Multiplicative with a(p^e) = (p^(4*e + 2) + 1)/(p^2 + 1). - Amiram Eldar, Sep 13 2020
Sum_{k>=1} 1/a(k) = 1.09957644430375183822287768590764825667080036406680891521221069625517483696... - Vaclav Kotesovec, Sep 24 2020
Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(5)/(5*zeta(3)) = 0.172525... . - Amiram Eldar, Oct 30 2022
From Peter Bala, Jan 18 2024: (Start)
a(n) = Sum_{d divides n} J_2(d^2) = Sum_{d divides n} d^2 * J_2(d), where the Jordan totient function J_2(n) = A007434(n).
a(n) = Sum_{1 <= j, k <= n} ( n/gcd(j, k, n) )^2.
Dirichlet g.f.: zeta(s) * zeta(s-4) / zeta(s-2) [Corrected by Michael Shamos, May 18 2025]. (End)
a(n) = Sum_{d|n} mu(n/d) * (n/d)^2 * sigma_4(d). - Seiichi Manyama, May 18 2024
Showing 1-10 of 73 results. Next