A308495 a(n) is the position of the first occurrence of prime(n) in A027748.
2, 3, 5, 8, 13, 16, 22, 25, 32, 41, 45, 55, 62, 66, 73, 83, 94, 98, 109, 117, 120, 132, 138, 150, 166, 173, 177, 185, 188, 196, 224, 231, 243, 247, 267, 271, 284, 295, 303, 315, 327, 331, 353, 356, 364, 368, 394, 419, 426, 430, 439, 452, 456, 475, 487, 500
Offset: 1
Keywords
Examples
For n = 5: a(5) = 13, A027748(13) = A000040(5) = 11.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
-- expected to be part of A027748 a027748_list = concat (map a027748_row [1..]) minIdx [] _ = [] minIdx _ [] = [] minIdx (a:as) (b:bs) | a == b = 1 : (map succ (minIdx as bs)) | otherwise = map succ (minIdx as (b:bs)) a308495_list = minIdx a027748_list a000040_list a308495 n = a308495_list !! (n-1)
-
Maple
b:= proc(n) option remember; `if`(n=1, 1, b(n-1) +nops(ifactors(n)[2])) end: a:= n-> b(ithprime(n)): seq(a(n), n=1..60); # Alois P. Heinz, Jun 06 2019
-
Mathematica
b[n_] := b[n] = If[n == 1, 1, b[n-1] + PrimeNu[n]]; a[n_] := b[Prime[n]]; Array[a, 60] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
-
PARI
a(n) = 1 + sum(k=1, prime(n), omega(k)); \\ Michel Marcus, Jun 05 2019
Formula
a(n) = 1 + Sum_{k=1..n} floor(prime(n)/prime(k)). - Benoit Cloitre, Jan 11 2025
Comments