cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 90 results. Next

A010050 a(n) = (2n)!.

Original entry on oeis.org

1, 2, 24, 720, 40320, 3628800, 479001600, 87178291200, 20922789888000, 6402373705728000, 2432902008176640000, 1124000727777607680000, 620448401733239439360000, 403291461126605635584000000, 304888344611713860501504000000, 265252859812191058636308480000000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Denominators in the expansion of cos(x): cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - ...
Contribution from Peter Bala, Feb 21 2011: (Start)
We may compare the representation a(n) = Product_{k = 0..n-1} (n*(n+1)-k*(k+1)) with n! = Product_{k = 0..n-1} (n-k). Thus we may view a(n) as a generalized factorial function associated with the oblong numbers A002378. Cf. A000680.
The associated generalized binomial coefficients a(n)/(a(k)*a(n-k)) are triangle A086645, cf. A186432. (End)
Also, this sequence is the denominator of cosh(x) = (e^x + e^(-x))/2 = 1 + x^2/2! + x^4/4! + x^6/6! + ... - Mohammad K. Azarian, Jan 19 2012
Also (2n+1)-th derivative of arccoth(x) at x = 0. - Michel Lagneau, Aug 18 2012
Product of the partition parts of 2n+1 into exactly two positive integer parts, n > 0. Example: a(3) = 720, since 2(3)+1 = 7 has 3 partitions with exactly two positive integer parts: (6,1), (5,2), (4,3). Multiplying the parts in these partitions gives: 6! = 720. - Wesley Ivan Hurt, Jun 03 2013

Examples

			G.f. = 1 + 2*x + 24*x^2 + 720*x^3 + 40320*x^4 + 3628800*x^5 + ...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 110.
  • H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, p. 88.
  • Isaac Newton, De analysi, 1669; reprinted in D. Whiteside, ed., The Mathematical Works of Isaac Newton, vol. 1, Johnson Reprint Co., 1964; see p. 20.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 32 and 33, equations 32:6:1 and 33:6:1 at pages 300 and 314.

Crossrefs

Programs

Formula

a(n) = 2^n*A000680(n).
E.g.f.: arctanh(x) = Sum_{k>=0} a(k) * x^(2*k+1)/ (2*k+1)!.
E.g.f.: 1/(1-x^2) = Sum_{k>=0} a(k) * x^(2*k) / (2*k)!. - Paul Barry, Sep 14 2004
D-finite with recurrence: a(n+1) = a(n)*(2*n+1)*(2*n+2) = a(n)*A002939(n-1). - Lekraj Beedassy, Apr 29 2005
a(n) = Product_{k = 1..n} (2*k*n-k*(k-1)). - Peter Bala, Feb 21 2011
G.f.: G(0) where G(k) = 1 + 2*x*(2*k+1)*(4*k+1)/(1 - 4*x*(k+1)*(4*k+3)/(4*x*(k+1)*(4*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2012
a(n) = 2*A002674(n), n > 0. - Wesley Ivan Hurt, Jun 05 2013
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ 2*sqrt(Pi)*4^n*n^(2*n+1/2)/exp(2*n).
Sum_{n>=0} 1/a(n) = cosh(1) = A073743. (End)

Extensions

Third line of data from M. F. Hasler, Apr 22 2015

A001107 10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).

Original entry on oeis.org

0, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, 637, 742, 855, 976, 1105, 1242, 1387, 1540, 1701, 1870, 2047, 2232, 2425, 2626, 2835, 3052, 3277, 3510, 3751, 4000, 4257, 4522, 4795, 5076, 5365, 5662, 5967, 6280, 6601, 6930, 7267, 7612, 7965, 8326
Offset: 0

Views

Author

Keywords

Comments

Write 0, 1, 2, ... in a square spiral, with 0 at the origin and 1 immediately below it; sequence gives numbers on the negative y-axis (see Example section).
Number of divisors of 48^(n-1) for n > 0. - J. Lowell, Aug 30 2008
a(n) is the Wiener index of the graph obtained by connecting two copies of the complete graph K_n by an edge (for n = 3, approximately: |>-<|). The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph. - Emeric Deutsch, Sep 20 2010
This sequence does not contain any squares other than 0 and 1. See A188896. - T. D. Noe, Apr 13 2011
For n > 0: right edge of the triangle A033293. - Reinhard Zumkeller, Jan 18 2012
Sequence found by reading the line from 0, in the direction 0, 10, ... and the parallel line from 1, in the direction 1, 27, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Jul 18 2012
Partial sums give A007585. - Omar E. Pol, Jan 15 2013
This is also a star pentagonal number: a(n) = A000326(n) + 5*A000217(n-1). - Luciano Ancora, Mar 28 2015
Also the number of undirected paths in the n-sunlet graph. - Eric W. Weisstein, Sep 07 2017
After 0, a(n) is the sum of 2*n consecutive integers starting from n-1. - Bruno Berselli, Jan 16 2018
Number of corona of an H0 hexagon with a T(n) triangle. - Craig Knecht, Dec 13 2024

Examples

			On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step downward (i.e., in the negative y direction) and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along the negative y-axis, as seen in the example below:
  99  64--65--66--67--68--69--70--71--72
   |   |                               |
  98  63  36--37--38--39--40--41--42  73
   |   |   |                       |   |
  97  62  35  16--17--18--19--20  43  74
   |   |   |   |               |   |   |
  96  61  34  15   4---5---6  21  44  75
   |   |   |   |   |       |   |   |   |
  95  60  33  14   3  *0*  7  22  45  76
   |   |   |   |   |   |   |   |   |   |
  94  59  32  13   2--*1*  8  23  46  77
   |   |   |   |           |   |   |   |
  93  58  31  12--11-*10*--9  24  47  78
   |   |   |                   |   |   |
  92  57  30--29--28-*27*-26--25  48  79
   |   |                           |   |
  91  56--55--54--53-*52*-51--50--49  80
   |                                   |
  90--89--88--87--86-*85*-84--83--82--81
[Edited by _Jon E. Schoenfield_, Jan 02 2017]
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer; see p. 23.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093565 ((8, 1) Pascal, column m = 2). Partial sums of A017077.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. A003215.

Programs

  • Magma
    [4*n^2-3*n : n in [0..50] ]; // Wesley Ivan Hurt, Jun 05 2014
    
  • Maple
    A001107:=-(1+7*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {0, 1, 10}, 60] (* Harvey P. Dale, May 08 2012 *)
    Table[PolygonalNumber[RegularPolygon[10], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    Table[4 n^2 - 3 n, {n, 0, 49}] (* Alonso del Arte, Jan 24 2017 *)
    PolygonalNumber[10, Range[0, 20]] (* Eric W. Weisstein, Sep 07 2017 *)
    LinearRecurrence[{3, -3, 1}, {1, 10, 27}, {0, 20}] (* Eric W. Weisstein, Sep 07 2017 *)
  • PARI
    a(n)=4*n^2-3*n
    
  • Python
    a=lambda n: 4*n**2-3*n # Indranil Ghosh, Jan 01 2017
    def aList(): # Intended to compute the initial segment of the sequence, not isolated terms.
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 8, y + 8
    A001107 = aList()
    print([next(A001107) for i in range(49)]) # Peter Luschny, Aug 04 2019

Formula

a(n) = A033954(-n) = A074377(2*n-1).
a(n) = n + 8*A000217(n-1). - Floor van Lamoen, Oct 14 2005
G.f.: x*(1 + 7*x)/(1 - x)^3.
Partial sums of odd numbers 1 mod 8, i.e., 1, 1 + 9, 1 + 9 + 17, ... . - Jon Perry, Dec 18 2004
1^3 + 3^3*(n-1)/(n+1) + 5^3*((n-1)*(n-2))/((n+1)*(n+2)) + 7^3*((n-1)*(n-2)*(n-3))/((n+1)*(n+2)*(n+3)) + ... = n*(4*n-3) [Ramanujan]. - Neven Juric, Apr 15 2008
Starting (1, 10, 27, 52, ...), this is the binomial transform of [1, 9, 8, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=1, a(2)=10. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 8*n + a(n-1) - 7 for n>0, a(0)=0. - Vincenzo Librandi, Jul 10 2010
a(n) = 8 + 2*a(n-1) - a(n-2). - Ant King, Sep 04 2011
a(n) = A118729(8*n). - Philippe Deléham, Mar 26 2013
a(8*a(n) + 29*n+1) = a(8*a(n) + 29*n) + a(8*n + 1). - Vladimir Shevelev, Jan 24 2014
Sum_{n >= 1} 1/a(n) = Pi/6 + log(2) = 1.216745956158244182494339352... = A244647. - Vaclav Kotesovec, Apr 27 2016
From Ilya Gutkovskiy, Aug 28 2016: (Start)
E.g.f.: x*(1 + 4*x)*exp(x).
Sum_{n >= 1} (-1)^(n+1)/a(n) = (sqrt(2)*Pi - 2*log(2) + 2*sqrt(2)*log(1 + sqrt(2)))/6 = 0.92491492293323294695... (End)
a(n) = A000217(3*n-2) - A000217(n-2). In general, if P(k,n) be the n-th k-gonal number and T(n) be the n-th triangular number, A000217(n), then P(T(k),n) = T((k-1)*n - (k-2)) - T(k-3)*T(n-2). - Charlie Marion, Sep 01 2020
Product_{n>=2} (1 - 1/a(n)) = 4/5. - Amiram Eldar, Jan 21 2021
a(n) = A003215(n-1) + A000290(n) - 1. - Leo Tavares, Jul 23 2022

A033996 8 times triangular numbers: a(n) = 4*n*(n+1).

Original entry on oeis.org

0, 8, 24, 48, 80, 120, 168, 224, 288, 360, 440, 528, 624, 728, 840, 960, 1088, 1224, 1368, 1520, 1680, 1848, 2024, 2208, 2400, 2600, 2808, 3024, 3248, 3480, 3720, 3968, 4224, 4488, 4760, 5040, 5328, 5624, 5928, 6240, 6560, 6888, 7224, 7568, 7920, 8280
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Write 0, 1, 2, ... in a clockwise spiral; sequence gives numbers on one of 4 diagonals.
Also, least m > n such that T(m)*T(n) is a square and more precisely that of A055112(n). {T(n) = A000217(n)}. - Lekraj Beedassy, May 14 2004
Also sequence found by reading the line from 0, in the direction 0, 8, ... and the same line from 0, in the direction 0, 24, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. Axis perpendicular to A195146 in the same spiral. - Omar E. Pol, Sep 18 2011
Number of diagonals with length sqrt(5) in an (n+1) X (n+1) square grid. Every 1 X 2 rectangle has two such diagonals. - Wesley Ivan Hurt, Mar 25 2015
Imagine a board made of squares (like a chessboard), one of whose squares is completely surrounded by square-shaped layers made of adjacent squares. a(n) is the total number of squares in the first to n-th layer. a(1) = 8 because there are 8 neighbors to the unit square; adding them gives a 3 X 3 square. a(2) = 24 = 8 + 16 because we need 16 more squares in the next layer to get a 5 X 5 square: a(n) = (2*n+1)^2 - 1 counting the (2n+1) X (2n+1) square minus the central square. - R. J. Cano, Sep 26 2015
The three platonic solids (the simplex, hypercube, and cross-polytope) with unit side length in n dimensions all have rational volume if and only if n appears in this sequence, after 0. - Brian T Kuhns, Feb 26 2016
The number of active (ON, black) cells in the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 645", based on the 5-celled von Neumann neighborhood. - Robert Price, May 19 2016
The square root of a(n), n>0, has continued fraction [2n; {1,4n}] with whole number part 2n and periodic part {1,4n}. - Ron Knott, May 11 2017
Numbers k such that k+1 is a square and k is a multiple of 4. - Bruno Berselli, Sep 28 2017
a(n) is the number of vertices of the octagonal network O(n,n); O(m,n) is defined by Fig. 1 of the Siddiqui et al. reference. - Emeric Deutsch, May 13 2018
a(n) is the number of vertices in conjoined n X n octagons which are arranged into a square array, a.k.a. truncated square tiling. - Donghwi Park, Dec 20 2020
a(n-2) is the number of ways to place 3 adjacent marks in a diagonal, horizontal, or vertical row on an n X n tic-tac-toe grid. - Matej Veselovac, May 28 2021

Examples

			Spiral with 0, 8, 24, 48, ... along lower right diagonal:
.
  36--37--38--39--40--41--42
   |                       |
  35  16--17--18--19--20  43
   |   |               |   |
  34  15   4---5---6  21  44
   |   |   |       |   |   |
  33  14   3   0   7  22  45
   |   |   |   | \ |   |   |
  32  13   2---1   8  23  46
   |   |           | \ |   |
  31  12--11--10---9  24  47
   |                   | \ |
  30--29--28--27--26--25  48
                            \
[Reformatted by _Jon E. Schoenfield_, Dec 25 2016]
		

References

  • Stuart M. Ellerstein, J. Recreational Math. 29 (3) 188, 1998.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
  • Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A000217, A016754, A002378, A024966, A027468, A028895, A028896, A045943, A046092, A049598, A088538, A124080, A008590 (first differences), A130809 (partial sums).
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

  • Magma
    [ 4*n*(n+1) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
  • Maple
    seq(8*binomial(n+1, 2), n=0..46); # Zerinvary Lajos, Nov 24 2006
    [seq((2*n+1)^2-1, n=0..46)];
  • Mathematica
    Table[(2n - 1)^2 - 1, {n, 50}] (* Alonso del Arte, Mar 31 2013 *)
  • PARI
    nsqm1(n) = { forstep(x=1,n,2, y = x*x-1; print1(y, ", ") ) }
    

Formula

a(n) = 4*n^2 + 4*n = (2*n+1)^2 - 1.
G.f.: 8*x/(1-x)^3.
a(n) = A016754(n) - 1 = 2*A046092(n) = 4*A002378(n). - Lekraj Beedassy, May 25 2004
a(n) = A049598(n) - A046092(n); a(n) = A124080(n) - A002378(n). - Zerinvary Lajos, Mar 06 2007
a(n) = 8*A000217(n). - Omar E. Pol, Dec 12 2008
a(n) = A005843(n) * A163300(n). - Juri-Stepan Gerasimov, Jul 26 2009
a(n) = a(n-1) + 8*n (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
For n > 0, a(n) = A058031(n+1) - A062938(n-1). - Charlie Marion, Apr 11 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Mar 25 2015
a(n) = A000578(n+1) - A152618(n). - Bui Quang Tuan, Apr 01 2015
a(n) - a(n-1) = A008590(n), n > 0. - Altug Alkan, Sep 26 2015
From Ilya Gutkovskiy, May 19 2016: (Start)
E.g.f.: 4*x*(2 + x)*exp(x).
Sum_{n>=1} 1/a(n) = 1/4. (End)
Product_{n>=1} a(n)/A016754(n) = Pi/4. - Daniel Suteu, Dec 25 2016
a(n) = A056220(n) + A056220(n+1). - Bruce J. Nicholson, May 29 2017
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^2. - Seiichi Manyama, Dec 23 2018
a(n)*a(n+k) + 4*k^2 = m^2 where m = (a(n) + a(n+k))/2 - 2*k^2; for k=1, m = 4*n^2 + 8*n + 2 = A060626(n). - Ezhilarasu Velayutham, May 22 2019
Sum_{n>=1} (-1)^n/a(n) = 1/4 - log(2)/2. - Vaclav Kotesovec, Dec 21 2020
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(4/Pi)*cos(Pi/sqrt(2)).
Product_{n>=1} (1 + 1/a(n)) = 4/Pi (A088538). (End)

A174344 List of x-coordinates of point moving in clockwise square spiral.

Original entry on oeis.org

0, 1, 1, 0, -1, -1, -1, 0, 1, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 3, 3, 3, 3, 3, 3, 2, 1, 0, -1, -2, -3, -3, -3, -3, -3, -3, -3, -2, -1, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1, 0, -1, -2, -3, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -2
Offset: 1

Views

Author

Nikolas Garofil (nikolas(AT)garofil.be), Mar 16 2010

Keywords

Comments

Also, list of x-coordinates of point moving in counterclockwise square spiral.
This spiral, in either direction, is sometimes called the "Ulam spiral", but "square spiral" is a better name. (Ulam looked at the positions of the primes, but of course the spiral itself must be much older.) - N. J. A. Sloane, Jul 17 2018
Graham, Knuth and Patashnik give an exercise and answer on mapping n to square spiral x,y coordinates, and back x,y to n. They start 0 at the origin and first segment North so their y(n) is a(n+1). In their table of sides, it can be convenient to take n-4*k^2 so the ranges split at -m, 0, m. - Kevin Ryde, Sep 16 2019

Examples

			Here is the beginning of the clockwise square spiral. Sequence gives x-coordinate of the n-th point.
.
  20--21--22--23--24--25
   |                   |
  19   6---7---8---9  26
   |   |           |   |
  18   5   0---1  10  27
   |   |       |   |   |
  17   4---3---2  11  28
   |               |   |
  16--15--14--13--12  29
                       |
  35--34--33--32--32--30
.
Given the offset equal to 1, a(n) gives the x-coordinate of the point labeled n-1 in the above drawing. - _M. F. Hasler_, Nov 03 2019
		

References

  • Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, Addison-Wesley, 1989, chapter 3, Integer Functions, exercise 40 page 99 and answer page 498.

Crossrefs

Cf. A180714. A268038 (or A274923) gives sequence of y-coordinates.
The (x,y) coordinates for a point sweeping a quadrant by antidiagonals are (A025581, A002262). - N. J. A. Sloane, Jul 17 2018
See A296030 for the pairs (A174344(n), A274923(n)). - M. F. Hasler, Oct 20 2019
The diagonal rays are: A002939 (2*n*(2*n-1): 0, 2, 12, 30, ...), A016742 = (4n^2: 0, 4, 16, 36, ...), A002943 (2n(2n+1): 0, 6, 20, 42, ...), A033996 = (4n(n+1): 0, 8, 24, 48, ...). - M. F. Hasler, Oct 31 2019

Programs

  • Julia
    function SquareSpiral(len)
        x, y, i, j, N, n, c = 0, 0, 0, 0, 0, 0, 0
        for k in 0:len-1
            print("$x, ") # or print("$y, ") for A268038.
            if n == 0
                c += 1; c > 3 && (c =  0)
                c == 0 && (i = 0; j =  1)
                c == 1 && (i = 1; j =  0)
                c == 2 && (i = 0; j = -1)
                c == 3 && (i = -1; j = 0)
                c in [1, 3] && (N += 1)
                n = N
            end
            n -= 1
            x, y = x + i, y + j
    end end
    SquareSpiral(75) # Peter Luschny, May 05 2019
    
  • Maple
    fx:=proc(n) option remember; local k; if n=1 then 0 else
    k:=floor(sqrt(4*(n-2)+1)) mod 4;
    fx(n-1) + sin(k*Pi/2); fi; end;
    [seq(fx(n),n=1..120)]; # Based on Seppo Mustonen's formula. - N. J. A. Sloane, Jul 11 2016
  • Mathematica
    a[n_]:=a[n]=If[n==0,0,a[n-1]+Sin[Mod[Floor[Sqrt[4*(n-1)+1]],4]*Pi/2]]; Table[a[n],{n,0,50}] (* Seppo Mustonen, Aug 21 2010 *)
  • PARI
    L=0; d=1;
    for(r=1,9,d=-d;k=floor(r/2)*d;for(j=1,L++,print1(k,", "));forstep(j=k-d,-floor((r+1)/2)*d+d,-d,print1(j,", "))) \\ Hugo Pfoertner, Jul 28 2018
    
  • PARI
    a(n) = n--; my(m=sqrtint(n),k=ceil(m/2)); n -= 4*k^2; if(n<0, if(n<-m, k, -k-n), if(nKevin Ryde, Sep 16 2019
    
  • PARI
    apply( A174344(n)={my(m=sqrtint(n-=1), k=m\/2); if(n < 4*k^2-m, k, 0 > n -= 4*k^2, -k-n, n < m, -k, n-3*k)}, [1..99]) \\ M. F. Hasler, Oct 20 2019
    
  • Python
    # Based on Kevin Ryde's PARI script
    import math
    def A174344(n):
        n -= 1
        m = math.isqrt(n)
        k = math.ceil(m/2)
        n -= 4*k*k
        if n < 0: return k if n < -m else -k-n
        return -k if n < m else n-3*k # David Radcliffe, Aug 04 2025

Formula

a(1) = 0, a(n) = a(n-1) + sin(floor(sqrt(4n-7))*Pi/2). For a corresponding formula for the y-coordinate, replace sin with cos. - Seppo Mustonen, Aug 21 2010 with correction by Peter Kagey, Jan 24 2016
a(n) = A010751(A037458(n-1)) for n>1. - William McCarty, Jul 29 2021

Extensions

Link corrected by Seppo Mustonen, Sep 05 2010
Definition clarified by N. J. A. Sloane, Dec 20 2012

A002943 a(n) = 2*n*(2*n+1).

Original entry on oeis.org

0, 6, 20, 42, 72, 110, 156, 210, 272, 342, 420, 506, 600, 702, 812, 930, 1056, 1190, 1332, 1482, 1640, 1806, 1980, 2162, 2352, 2550, 2756, 2970, 3192, 3422, 3660, 3906, 4160, 4422, 4692, 4970, 5256, 5550, 5852, 6162, 6480, 6806, 7140, 7482, 7832, 8190, 8556, 8930
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of edges in (n+1) X (n+1) square grid with all horizontal, vertical and diagonal segments filled in. - Asher Auel, Jan 12 2000
In other words, the edge count of the (n+1) X (n+1) king graph. - Eric W. Weisstein, Jun 20 2017
Write 0,1,2,... in clockwise spiral; sequence gives numbers on one of 4 diagonals. (See Example section.)
The identity (4*n+1)^2 - (4*n^2+2*n)*(2)^2 = 1 can be written as A016813(n)^2 - a(n)*2^2 = 1. - Vincenzo Librandi, Jul 20 2010 - Nov 25 2012
Starting with "6" = binomial transform of [6, 14, 8, 0, 0, 0, ...]. - Gary W. Adamson, Aug 27 2010
The hyper-Wiener index of the crown graph G(n) (n>=3). The crown graph G(n) is the graph with vertex set {x(1), x(2), ..., x(n), y(1), y(2), ..., y(n)} and edge set {(x(i), y(j)): 1 <= i,j <= n, i != j} (= the complete bipartite graph K(n,n) with horizontal edges removed). The Hosoya-Wiener polynomial of G(n) is n(n-1)(t+t^2)+nt^3. - Emeric Deutsch, Aug 29 2013
Sum of the numbers from n to 3n. - Wesley Ivan Hurt, Oct 27 2014

Examples

			64--65--66--67--68--69--70--71--72
|
63  36--37--38--39--40--41--42
|   |                       |
62  35  16--17--18--19--20  43
|   |   |               |   |
61  34  15   4---5---6  21  44
|   |   |    |       |  |   |
60  33  14   3   0   7  22  45
|   |   |    |   |   |  |   |
59  32  13   2---1   8  23  46
|   |   |            |  |   |
58  31  12--11--10---9  24  47
|   |                   |   |
57  30--29--28--27--26--25  48
|                           |
56--55--54--53--52--51--50--49
		

References

  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Same as A033951 except start at 0.
Sequences from spirals: A001107, A002939, A007742, A033951, A033952, A033953, A033954, A033989, A033990, A033991, this sequence, A033996, A033988.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, this sequence = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 4*n^2 + 2*n.
a(n) = 2*A014105(n). - Omar E. Pol, May 21 2008
a(n) = floor((2*n + 1/2)^2). - Reinhard Zumkeller, Feb 20 2010
a(n) = A007494(n) + A173511(n) = A007742(n) + n. - Reinhard Zumkeller, Feb 20 2010
a(n) = 8*n+a(n-1) - 2 with a(0)=0. - Vincenzo Librandi, Jul 20 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Aug 11 2011
a(n+1) = A045896(2*n+1). - Reinhard Zumkeller, Dec 12 2011
G.f.: 2*x*(3+x)/(1-x)^3. - Colin Barker, Jan 14 2012
From R. J. Mathar, Jan 15 2013: (Start)
Sum_{n>=1} 1/a(n) = 1 - log(2).
Sum_{n>=1} 1/a(n)^2 = 2*log(2) + Pi^2/6 - 3. (End)
a(n) = A118729(8*n+5). - Philippe Deléham, Mar 26 2013
a(n) = 1*A001477(n) + 2*A000217(n) + 3*A000290(n). - J. M. Bergot, Apr 23 2014
a(n) = 2 * A000217(2*n) = 2 * A014105(n). - Jon Perry, Oct 27 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 + log(2)/2 - 1. - Amiram Eldar, Feb 22 2022
a(n) = A003154(n+1) - A056220(n+1). - Leo Tavares, Mar 31 2022
E.g.f.: 2*exp(x)*x*(3 + 2*x). - Stefano Spezia, Apr 24 2024
a(n) = A002939(-n) for all n in Z. - Charles Kusniec, Aug 12 2025

Extensions

Formula fixed by Reinhard Zumkeller, Apr 09 2010

A007742 a(n) = n*(4*n+1).

Original entry on oeis.org

0, 5, 18, 39, 68, 105, 150, 203, 264, 333, 410, 495, 588, 689, 798, 915, 1040, 1173, 1314, 1463, 1620, 1785, 1958, 2139, 2328, 2525, 2730, 2943, 3164, 3393, 3630, 3875, 4128, 4389, 4658, 4935, 5220, 5513, 5814, 6123, 6440, 6765, 7098, 7439, 7788, 8145
Offset: 0

Views

Author

Keywords

Comments

Write 0,1,2,... in a clockwise spiral; sequence gives the numbers that fall on the positive y-axis. (See Example section.)
Central terms of the triangle in A126890. - Reinhard Zumkeller, Dec 30 2006
a(n)*Pi is the total length of 4 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A004770. The spiral length ratio rounded down [floor(L(n)/L(1))] is A047497. See illustration in links. - Kival Ngaokrajang, Dec 27 2013
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [2n; {4, 4n}]. For n=1, this collapses to [2, {4}]. - Magus K. Chu, Sep 15 2022

Examples

			Part of the spiral:
.
  64--65--66--67--68
   |
  63  36--37--38--39--40--41--42
   |   |                       |
  62  35  16--17--18--19--20  43
   |   |   |               |   |
  61  34  15   4---5---6  21  44
   |   |   |   |       |   |   |
  60  33  14   3   0   7  22  45
   |   |   |   |   |   |   |   |
  59  32  13   2---1   8  23  46
   |   |   |           |   |   |
  58  31  12--11--10---9  24  47
   |   |                   |   |
  57  30--29--28--27--26--25  48
   |                           |
  56--55--54--53--52--51--50--49
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. index to sequences with numbers of the form n*(d*n+10-d)/2 in A140090.
Cf. A081266.

Programs

  • Magma
    I:=[0, 5, 18]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
  • Mathematica
    LinearRecurrence[{3,-3,1},{0,5,18},50] (* Vincenzo Librandi, Jan 29 2012 *)
    Table[n(4n+1),{n,0,50}] (* Harvey P. Dale, Aug 10 2017 *)
  • PARI
    a(n)=4*n^2+n
    

Formula

G.f.: x*(5+3*x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = A033991(-n) = A074378(2*n).
a(n) = floor((n + 1/4)^2). - Reinhard Zumkeller, Feb 20 2010
a(n) = A110654(n) + A173511(n) = A002943(n) - n. - Reinhard Zumkeller, Feb 20 2010
a(n) = 8*n + a(n-1) - 3. - Vincenzo Librandi, Nov 21 2010
Sum_{n>=1} 1/a(n) = Sum_{k>=0} (-1)^k*zeta(2+k)/4^(k+1) = 0.349762131... . - R. J. Mathar, Jul 10 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=5, a(2)=18. - Philippe Deléham, Mar 26 2013
a(n) = A118729(8n+4). - Philippe Deléham, Mar 26 2013
a(n) = A000217(3*n) - A000217(n). - Bruno Berselli, Sep 21 2016
E.g.f.: (4*x^2 + 5*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=1} 1/a(n) = 4 - Pi/2 - 3*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(2) + log(2) + sqrt(2)*log(1 + sqrt(2)) - 4. (End)
a(n) = A081266(n) - A000217(n). - Leo Tavares, Mar 25 2022

A053755 a(n) = 4*n^2 + 1.

Original entry on oeis.org

1, 5, 17, 37, 65, 101, 145, 197, 257, 325, 401, 485, 577, 677, 785, 901, 1025, 1157, 1297, 1445, 1601, 1765, 1937, 2117, 2305, 2501, 2705, 2917, 3137, 3365, 3601, 3845, 4097, 4357, 4625, 4901, 5185, 5477, 5777, 6085, 6401, 6725, 7057
Offset: 0

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), Apr 06 2000

Keywords

Comments

Subsequence of A004613: all numbers in this sequence have all prime factors of the form 4k+1. E.g., 40001 = 13*17*181, 13 = 4*3 + 1, 17 = 4*4 + 1, 181 = 4*45 + 1. - Cino Hilliard, Aug 26 2006, corrected by Franklin T. Adams-Watters, Mar 22 2011
A000466(n), A008586(n) and a(n) are Pythagorean triples. - Zak Seidov, Jan 16 2007
Solutions x of the Mordell equation y^2 = x^3 - 3a^2 - 1 for a = 0, 1, 2, ... - Michel Lagneau, Feb 12 2010
Ulam's spiral (NW spoke). - Robert G. Wilson v, Oct 31 2011
For n >= 1, a(n) is numerator of radius r(n) of circle with sagitta = n and cord length = 1. The denominator is A008590(n). - Kival Ngaokrajang, Jun 13 2014
a(n)+6 is prime for n = 0..6 and for n = 15..20. - Altug Alkan, Sep 28 2015

References

  • Donald E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, 1997, Vol. 1, exercise 1.2.1 Nr. 11, p. 19.

Crossrefs

Column 2 of array A188647.
Cf. A016742, A256970 (smallest prime factors), A214345.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

  • GAP
    List([0..45],n->4*n^2+1); # Muniru A Asiru, Nov 01 2018
  • Haskell
    a053755 = (+ 1) . (* 4) . (^ 2)  -- Reinhard Zumkeller, Apr 20 2015
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+5*x^2)/((1-x)^3))); /* or */ I:=[1,5]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+8: n in [1..50]]; // Vincenzo Librandi, Jun 26 2013
    
  • Maple
    with (combinat):seq(fibonacci(3,2*n), n=0..42); # Zerinvary Lajos, Apr 21 2008
  • Mathematica
    f[n_] := 4n^2 +1; Array[f, 40] (* Vladimir Joseph Stephan Orlovsky, Sep 02 2008 *)
    CoefficientList[Series[(1 + 2 x + 5 x^2) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 26 2013 *)
    LinearRecurrence[{3,-3,1},{1,5,17},50] (* Harvey P. Dale, Dec 28 2021 *)
  • PARI
    for(x=0,100,print1(4*x^2+1",")) \\ Cino Hilliard, Aug 26 2006
    
  • Python
    for n in range(0,50): print(4*n**2+1, end=', ') # Stefano Spezia, Nov 01 2018
    

Formula

a(n) = A000466(n) + 2. - Zak Seidov, Jan 16 2007
From R. J. Mathar, Apr 28 2008: (Start)
O.g.f.: (1 + 2*x + 5*x^2)/(1-x)^3.
a(n) = 3a(n-1) - 3a(n-2) + a(n-3). (End)
Equals binomial transform of [1, 4, 8, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
a(n) = A156701(n)/A087475(n). - Reinhard Zumkeller, Feb 13 2009
For n>0: a(n) = A176271(2*n,n+1); cf. A016754, A000466. - Reinhard Zumkeller, Apr 13 2010
a(n+1) = denominator of Sum_{k=0..n} (-1)^n*(2*n + 1)^3/((2*n + 1)^4 + 4), see Knuth reference. - Reinhard Zumkeller, Apr 11 2010
a(n) = 8*n + a(n-1) - 4. with a(0)=1. - Vincenzo Librandi, Aug 06 2010
a(n) = ((2*n - 1)^2 + (2*n + 1)^2)/2. - J. M. Bergot, May 31 2012
a(n) = 2*a(n-1) - a(n-2) + 8 with a(0)=1, a(1)=5. - Vincenzo Librandi, Jun 26 2013
a(n+1) = a(n) + A017113(n), a(0) = 1. - Altug Alkan, Sep 26 2015
a(n) = A001844(n) + A046092(n-1) = A001844(n-1) + A046092(n). - Bruce J. Nicholson, Aug 07 2017
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/2)*coth(Pi/2))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/2)*csch(Pi/2))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/2)*sinh(Pi/sqrt(2)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/2)*csch(Pi/2). (End)
E.g.f.: exp(x)*(1 + 2*x)^2. - Stefano Spezia, Jun 10 2021

Extensions

Equation corrected, and examples that were based on a different offset removed, by R. J. Mathar, Mar 18 2010

A001542 a(n) = 6*a(n-1) - a(n-2) for n > 1, a(0)=0 and a(1)=2.

Original entry on oeis.org

0, 2, 12, 70, 408, 2378, 13860, 80782, 470832, 2744210, 15994428, 93222358, 543339720, 3166815962, 18457556052, 107578520350, 627013566048, 3654502875938, 21300003689580, 124145519261542, 723573111879672
Offset: 0

Views

Author

Keywords

Comments

Consider the equation core(x) = core(2x+1) where core(x) is the smallest number such that x*core(x) is a square: solutions are given by a(n)^2, n > 0. - Benoit Cloitre, Apr 06 2002
Terms > 0 give numbers k which are solutions to the inequality |round(sqrt(2)*k)/k - sqrt(2)| < 1/(2*sqrt(2)*k^2). - Benoit Cloitre, Feb 06 2006
Also numbers m such that A125650(6*m^2) is an even perfect square, where A124650(m) is a numerator of m*(m+3)/(4*(m+1)*(m+2)) = Sum_{k=1..m} 1/(k*(k+1)*(k+2)). Sequence A033581 is a bisection of A125651. - Alexander Adamchuk, Nov 30 2006
The upper principal convergents to 2^(1/2), beginning with 3/2, 17/12, 99/70, 577/408, comprise a strictly decreasing sequence; essentially, numerators = A001541 and denominators = {a(n)}. - Clark Kimberling, Aug 26 2008
Even Pell numbers. - Omar E. Pol, Dec 10 2008
Numbers k such that 2*k^2+1 is a square. - Vladimir Joseph Stephan Orlovsky, Feb 19 2010
These are the integer square roots of the Half-Squares, A007590(k), which occur at values of k given by A001541. Also the numbers produced by adding m + sqrt(floor(m^2/2) + 1) when m is in A002315. See array in A227972. - Richard R. Forberg, Aug 31 2013
A001541(n)/a(n) is the closest rational approximation of sqrt(2) with a denominator not larger than a(n), and 2*a(n)/A001541(n) is the closest rational approximation of sqrt(2) with a numerator not larger than 2*a(n). These rational approximations together with those obtained from the sequences A001653 and A002315 give a complete set of closest rational approximations of sqrt(2) with restricted numerator as well as denominator. - A.H.M. Smeets, May 28 2017
Conjecture: Numbers k such that c/m < k for all natural a^2 + b^2 = c^2 (Pythagorean triples), a < b < c and a+b+c = m. Numbers which correspondingly minimize c/m are A002939. - Lorraine Lee, Jan 31 2020
All of the positive integer solutions of a*b + 1 = x^2, a*c + 1 = y^2, b*c + 1 = z^2, x + z = 2*y, 0 < a < b < c are given by a=a(n), b=A005319(n), c=a(n+1), x=A001541(n), y=A001653(n+1), z=A002315(n) with 0 < n. - Michael Somos, Jun 26 2022

Examples

			G.f. = 2*x + 12*x^2 + 70*x^3 + 408*x^4 + 2378*x^5 + 13860*x^6 + ...
		

References

  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002; pp. 480-481.
  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications, 2001, Wiley, pp. 77-79.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.
  • P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022

Crossrefs

Bisection of Pell numbers A000129: {a(n)} and A001653(n+1), n >= 0.

Programs

  • GAP
    a:=[0,2];; for n in [3..20] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Haskell
    a001542 n = a001542_list !! n
    a001542_list =
       0 : 2 : zipWith (-) (map (6 *) $ tail a001542_list) a001542_list
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Magma
    I:=[0,2]; [n le 2 select I[n] else 6*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 23 2019
    
  • Maple
    A001542:=2*z/(1-6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
    seq(combinat:-fibonacci(2*n, 2), n = 0..20); # Peter Luschny, Jun 28 2018
  • Mathematica
    LinearRecurrence[{6, -1}, {0, 2}, 30] (* Harvey P. Dale, Jun 11 2011 *)
    Fibonacci[2*Range[0,20], 2] (* G. C. Greubel, Dec 23 2019 *)
    Table[2 ChebyshevU[-1 + n, 3], {n, 0, 20}] (* Herbert Kociemba, Jun 05 2022 *)
  • Maxima
    a[0]:0$
    a[1]:2$
    a[n]:=6*a[n-1]-a[n-2]$
    A001542(n):=a[n]$
    makelist(A001542(x),x,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    {a(n) = imag( (3 + 2*quadgen(8))^n )}; /* Michael Somos, Jan 20 2017 */
    
  • PARI
    vector(21, n, 2*polchebyshev(n-1, 2, 33) ) \\ G. C. Greubel, Dec 23 2019
    
  • Python
    l=[0, 2]
    for n in range(2, 51): l+=[6*l[n - 1] - l[n - 2], ]
    print(l) # Indranil Ghosh, Jun 06 2017
    
  • Sage
    [2*chebyshev_U(n-1,3) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = 2*A001109(n).
a(n) = ((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) / (2*sqrt(2)).
G.f.: 2*x/(1-6*x+x^2).
a(n) = sqrt(2*(A001541(n))^2 - 2)/2. - Barry E. Williams, May 07 2000
a(n) = (C^(2n) - C^(-2n))/sqrt(8) where C = sqrt(2) + 1. - Gary W. Adamson, May 11 2003
For all terms x of the sequence, 2*x^2 + 1 is a square. Limit_{n->oo} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 10 2002
For n > 0: a(n) = A001652(n) + A046090(n) - A001653(n); e.g., 70 = 119 + 120 - 169. Also a(n) = A001652(n - 1) + A046090(n - 1) + A001653(n - 1); e.g., 70 = 20 + 21 + 29. Also a(n)^2 + 1 = A001653(n - 1)*A001653(n); e.g., 12^2 + 1 = 145 = 5*29. Also a(n + 1)^2 = A084703(n + 1) = A001652(n)*A001652(n + 1) + A046090(n)*A046090(n + 1). - Charlie Marion, Jul 01 2003
a(n) = ((1+sqrt(2))^(2*n) - (1-sqrt(2))^(2*n))/(2*sqrt(2)). - Antonio Alberto Olivares, Dec 24 2003
2*A001541(k)*A001653(n)*A001653(n+k) = A001653(n)^2 + A001653(n+k)^2 + a(k)^2; e.g., 2*3*5*29 = 5^2 + 29^2 + 2^2; 2*99*29*5741 = 29^2 + 5741^2 + 70^2. - Charlie Marion, Oct 12 2007
a(n) = sinh(2*n*arcsinh(1))/sqrt(2). - Herbert Kociemba, Apr 24 2008
For n > 0, a(n) = A001653(n) + A002315(n-1). - Richard R. Forberg, Aug 31 2013
a(n) = 3*a(n-1) + 2*A001541(n-1); e.g., a(4) = 70 = 3*12 + 2*17. - Zak Seidov, Dec 19 2013
a(n)^2 + 1^2 = A115598(n)^2 + (A115598(n)+1)^2. - Hermann Stamm-Wilbrandt, Jul 27 2014
E.g.f.: exp(3*x)*sinh(2*sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Dec 07 2016
A007814(a(n)) = A001511(n). See Mathematical Reflections link. - Michel Marcus, Jan 06 2017
a(n) = -a(-n) for all n in Z. - Michael Somos, Jan 20 2017
From A.H.M. Smeets, May 28 2017: (Start)
A051009(n) = a(2^(n-2)).
a(2n) = 2*a(2)*A001541(n).
A001541(n)/a(n) > sqrt(2) > 2*a(n)/A001541(n). (End)
a(A298210(n)) = A002349(2*n^2). - A.H.M. Smeets, Jan 25 2018
a(n) = A000129(n)*A002203(n). - Adam Mohamed, Jul 20 2024

A033991 a(n) = n*(4*n-1).

Original entry on oeis.org

0, 3, 14, 33, 60, 95, 138, 189, 248, 315, 390, 473, 564, 663, 770, 885, 1008, 1139, 1278, 1425, 1580, 1743, 1914, 2093, 2280, 2475, 2678, 2889, 3108, 3335, 3570, 3813, 4064, 4323, 4590, 4865, 5148, 5439, 5738, 6045, 6360, 6683, 7014, 7353, 7700, 8055, 8418
Offset: 0

Views

Author

Keywords

Comments

Write 0,1,2,... in a clockwise spiral; sequence gives numbers on negative x axis. (See illustration in Example.)
This sequence is the number of expressions x generated for a given modulus n in finite arithmetic. For example, n=1 (modulus 1) generates 3 expressions: 0+0=0(mod 1), 0-0=0(mod 1), 0*0=0(mod 1). By subtracting n from 4n^2, we eliminate the counting of those expressions that would include division by zero, which would be, of course, undefined. - David Quentin Dauthier, Nov 04 2007
From Emeric Deutsch, Sep 21 2010: (Start)
a(n) is also the Wiener index of the windmill graph D(3,n).
The windmill graph D(m,n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e., a bouquet of n pieces of K_m graphs). The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph.
Example: a(2)=14; indeed if the triangles are OAB and OCD, then, denoting distance by d, we have d(O,A)=d(O,B)=d(A,B)=d(O,C)=d(O,D)=d(C,D)=1 and d(A,C)=d(A,D)=d(B,C)=d(B,D)=2. The Wiener index of D(m,n) is (1/2)n(m-1)[(m-1)(2n-1)+1]. For the Wiener indices of D(4,n), D(5,n), and D(6,n) see A152743, A028994, and A180577, respectively. (End)
Even hexagonal numbers divided by 2. - Omar E. Pol, Aug 18 2011
For n > 0, a(n) equals the number of length 3*n binary words having exactly two 0's with the n first bits having at most one 0. For example a(2) = 14. Words are 010111, 011011, 011101, 011110, 100111, 101011, 101101, 101110, 110011, 110101, 110110, 111001, 111010, 111100. - Franck Maminirina Ramaharo, Mar 09 2018
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [2n-1; {1, 2, 1, 4n-2}]. For n=1, this collapses to [1; {1, 2}]. - Magus K. Chu, Sep 06 2022

Examples

			Clockwise spiral (with sequence terms parenthesized) begins
   16--17--18--19
    |
   15   4---5---6
    |   |       |
  (14) (3) (0)  7
    |   |   |   |
   13   2---1   8
    |           |
   12--11--10---9
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = A007742(-n) = A074378(2n-1) = A014848(2n).
G.f.: x*(3+5*x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = A014635(n)/2. - Zerinvary Lajos, Jan 16 2007
From Zerinvary Lajos, Jun 12 2007: (Start)
a(n) = A000326(n) + A005476(n).
a(n) = A049452(n) - A001105(n). (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Harvey P. Dale, Oct 10 2011
a(n) = A118729(8n+2). - Philippe Deléham, Mar 26 2013
From Ilya Gutkovskiy, Dec 04 2016: (Start)
E.g.f.: x*(3 + 4*x)*exp(x).
Sum_{n>=1} 1/a(n) = 3*log(2) - Pi/2 = 0.50864521488... (End)
a(n) = Sum_{i=n..3n-1} i. - Wesley Ivan Hurt, Dec 04 2016
From Franck Maminirina Ramaharo, Mar 09 2018: (Start)
a(n) = binomial(2*n, 2) + 2*n^2.
a(n) = A054556(n+1) - 1. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + log(3-2*sqrt(2)))/sqrt(2) - log(2). - Amiram Eldar, Mar 20 2022

Extensions

Two remarks combined into one by Emeric Deutsch, Oct 03 2010

A274923 List of y-coordinates of point moving in counterclockwise square spiral.

Original entry on oeis.org

0, 0, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -2, -1, 0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 2, 1, 0, -1, -2, -3, -3, -3, -3, -3, -3, -3, -3, -2, -1, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1, 0, -1, -2, -3, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -2, -1, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2016

Keywords

Comments

This spiral, in either direction, is sometimes called the "Ulam spiral, but "square spiral" is a better name. (Ulam looked at the positions of the primes, but of course the spiral itself must be much older.) - N. J. A. Sloane, Jul 17 2018
Graham, Knuth and Patashnik give an exercise and answer on mapping n to square spiral x,y coordinates, and back x,y to n. They start 0 at the origin and first segment North so a(n) is their -x(n-1). In their table of sides, it can be convenient to take n-4*k^2 so the ranges split at -m, 0, m. - Kevin Ryde, Sep 17 2019

References

  • Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, Addison-Wesley, 1989, chapter 3, Integer Functions, exercise 40 page 99 and answer page 498.

Crossrefs

Cf. A268038 (negated), A317186 (indices of 0's).
Cf. A174344 (x-coordinates).
The (x,y) coordinates for a point sweeping a quadrant by antidiagonals are (A025581, A002262). - N. J. A. Sloane, Jul 17 2018
A296030 gives pairs (x = A174344(n), y = a(n)). - M. F. Hasler, Oct 20 2019
The diagonal rays of the square spiral (coordinates (+-n,+-n)) are: A002939 (2n(2n-1): 0, 2, 12, 30, ...), A016742 = (4n^2: 0, 4, 16, 36, ...), A002943 (2n(2n+1): 0, 6, 20, 42, ...), A033996 = (4n(n+1): 0, 8, 24, 48, ...). - M. F. Hasler, Oct 31 2019

Programs

  • Maple
    fy:=proc(n) option remember; local k; if n=1 then 0 else
    k:=floor(sqrt(4*(n-2)+1)) mod 4;
    fy(n-1) - cos(k*Pi/2); fi; end;
    [seq(fy(n),n=1..120)]; # Based on Seppo Mustonen's formula in A174344.
  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, a[n-1] - Cos[Mod[Floor[Sqrt[4*(n-1)+1]], 4]* Pi/2]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 11 2018, after Seppo Mustonen *)
  • PARI
    L=1;d=1;
    for(r=1,9,d=-d;k=floor(r/2)*d;for(j=1,L++,print1(k,", "));forstep(j=k-d,-floor((r+1)/2)*d+d,-d,print1(j,", "))) \\ Hugo Pfoertner, Jul 28 2018
    
  • PARI
    a(n) = n--; my(m=sqrtint(n), k=ceil(m/2)); n -= 4*k^2; if(n<0, if(n<-m, 3*k+n, k), if(nKevin Ryde, Sep 17 2019
    
  • PARI
    apply( A274923(n)={my(m=sqrtint(n-=1), k=m\/2); if(m <= n -= 4*k^2, -k, n >= 0, k-n, n >= -m, k, 3*k+n)}, [1..99]) \\ M. F. Hasler, Oct 20 2019
    
  • Python
    # Based on Kevin Ryde's PARI script
    import math
    def A274923(n):
        n -= 1
        m = math.isqrt(n)
        k = math.ceil(m/2)
        n -= 4*k*k
        if n < 0: return 3*k+n if n < -m else k
        return k-n if n < m else -k # David Radcliffe, Aug 04 2025
Previous Showing 11-20 of 90 results. Next