cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 103 results. Next

A115720 Triangle T(n,k) is the number of partitions of n with Durfee square k.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 4, 1, 0, 5, 2, 0, 6, 5, 0, 7, 8, 0, 8, 14, 0, 9, 20, 1, 0, 10, 30, 2, 0, 11, 40, 5, 0, 12, 55, 10, 0, 13, 70, 18, 0, 14, 91, 30, 0, 15, 112, 49, 0, 16, 140, 74, 1, 0, 17, 168, 110, 2, 0, 18, 204, 158, 5, 0, 19, 240, 221, 10, 0, 20, 285, 302, 20, 0, 21, 330, 407
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is number of partitions of n-k^2 into parts of 2 kinds with at most k of each kind.

Examples

			Triangle starts:
  1;
  0,  1;
  0,  2;
  0,  3;
  0,  4,  1;
  0,  5,  2;
  0,  6,  5;
  0,  7,  8;
  0,  8, 14;
  0,  9, 20,  1;
  0, 10, 30,  2;
From _Gus Wiseman_, Apr 12 2019: (Start)
Row n = 9 counts the following partitions:
  (9)          (54)       (333)
  (81)         (63)
  (711)        (72)
  (6111)       (432)
  (51111)      (441)
  (411111)     (522)
  (3111111)    (531)
  (21111111)   (621)
  (111111111)  (3222)
               (3321)
               (4221)
               (4311)
               (5211)
               (22221)
               (32211)
               (33111)
               (42111)
               (222111)
               (321111)
               (2211111)
(End)
		

Crossrefs

For a version without zeros see A115994. Row lengths are A003059. Row sums are A000041. Column k = 2 is A006918. Column k = 3 is A117485.
Related triangles are A096771, A325188, A325189, A325192, with Heinz-encoded versions A263297, A325169, A065770, A325178.

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    T:= (n, k)-> add(b(m, k)*b(n-k^2-m, k), m=0..n-k^2):
    seq(seq(T(n, k), k=0..floor(sqrt(n))), n=0..30); # Alois P. Heinz, Apr 09 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; T[n_, k_] := Sum[b[m, k]*b[n-k^2-m, k], {m, 0, n-k^2}]; Table[ T[n, k], {n, 0, 30}, {k, 0, Sqrt[n]}] // Flatten (* Jean-François Alcover, Dec 03 2015, after Alois P. Heinz *)
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    Table[Length[Select[IntegerPartitions[n],durf[#]==k&]],{n,0,10},{k,0,Sqrt[n]}] (* Gus Wiseman, Apr 12 2019 *)

Formula

T(n,k) = Sum_{i=0..n-k^2} P*(i,k)*P*(n-k^2-i), where P*(n,k) = P(n+k,k) is the number of partitions of n objects into at most k parts.

A005993 Expansion of (1+x^2)/((1-x)^2*(1-x^2)^2).

Original entry on oeis.org

1, 2, 6, 10, 19, 28, 44, 60, 85, 110, 146, 182, 231, 280, 344, 408, 489, 570, 670, 770, 891, 1012, 1156, 1300, 1469, 1638, 1834, 2030, 2255, 2480, 2736, 2992, 3281, 3570, 3894, 4218, 4579, 4940, 5340, 5740, 6181, 6622, 7106, 7590, 8119, 8648, 9224, 9800
Offset: 0

Views

Author

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

Alkane (or paraffin) numbers l(6,n).
Dimension of the space of homogeneous degree n polynomials in (x1, y1, x2, y2) invariant under permutation of variables x1<->y1, x2<->y2.
Also multidigraphs with loops on 2 nodes with n arcs (see A138107). - Vladeta Jovovic, Dec 27 1999
Euler transform of finite sequence [2,3,0,-1]. - Michael Somos, Mar 17 2004
a(n-2) is the number of plane partitions with trace 2. - Michael Somos, Mar 17 2004
With offset 4, a(n) is the number of bracelets with n beads, 3 of which are red, 1 of which is blue. For odd n, a(n) = C(n-1,3)/2. For even n, a(n) = C(n-1,3)/2 +(n-2)/4. For n >= 6, with K = (n-1)(n-2)/((n-5)(n-4)), for odd n, a(n) = K*a(n-2). For even n, a(n) = K*a(n-2) -(n-2)/(n-5). - Washington Bomfim, Aug 05 2008
Equals (1,2,3,4,...) convolved with (1,0,3,0,5,...). - Gary W. Adamson, Feb 16 2009
Equals row sums of triangle A177878.
Equals (1/2)*((1, 4, 10, 20, 35, 56, ...) + (1, 0, 2 0, 3, 0, 4, ...)).
From Ctibor O. Zizka, Nov 21 2014: (Start)
With offset 4, a(n) is the number of different patterns of the 2-color 4-partition of n.
P(n)_(k;t) gives the number of different patterns of the t-color, k-partition of n.
P(n;i;j) = Sum(r=1..m) c_(i,j)*v_r*F_r(X_1,...,X_i).
m partition number of i.
c_(i,j) number of different coloring patterns on the r-th form (X_1,...,X_i) of i-partition with j-colors.
v_r number of i-partitions of n of the r-th form (X_1,...,X_i).
F_r(X_1,...,X_i) number of different patterns of the r-th form i-partition of n.
Some simple results:
P(1)(k;t)=1, P(2)(k;t)=2, P(3)(k;t)=4, P(4)(k;t)=11, etc.
P(n;1;1) = P(n;n;n) = 1 for all n;
P(n;2;2) = floor(n/2) (A004526);
P(n;3;2) = (n*n - 2*n + n mod 2)/4 (A002620).
This sequence is a(n) = P(n;4;2).
2-coloring of 4-partition is (A,B,A,B) or (B,A,B,A).
Each 4-partition of n has one of the form (X_1,X_1,X_1,X_1),(X_1,X_1,X_1,X_2), (X_1,X_1,X_2,X_2),(X_1,X_1,X_2,X_3),(X_1,X_2,X_3,X_4).
The number of forms is m=5 which is the partition number of k=4.
Partition form (X_1,X_1,X_1,X_1) gives 1 pattern ((X_1A,X_1B,X_1A,X_1B), (X_1,X_1,X_1,X_2) gives 2 patterns, (X_1,X_1,X_2,X_2) gives 4 patterns, (X_1,X_1,X_2,X_3) gives 6 patterns and (X_1,X_2,X_3,X_4) gives 12 patterns.
Thus a(n) = P(n;4;2) = 1*1*v_1 + 1*2*v_2 + 1*4*v_3 + 1*6*v_4 + 1*12*v_5 where v_r is the number of different 4-partitions of the r-th form (X_1,X_2,X_3,X_4) for a given n.
Example:
The 4-partitions of 8 are (2,2,2,2), (1,1,1,5), (1,1,3,3), (1,1,2,4), and (1,2,2,3):
(2,2,2,2) 1 pattern
(1,1,1,5), (1,1,5,1) 2 patterns
(1,1,3,3), (1,3,3,1), (3,1,1,3), (1,3,1,3) 4 patterns
(1,1,2,4), (1,1,4,2), (1,2,1,4), (1,2,4,1), (1,4,1,2), (2,1,1,4) 6 patterns
(2,2,1,3), (2,2,3,1), (2,1,2,3), (2,1,3,2), (2,3,2,1), (1,2,2,3) 6 patterns
Thus a(8) = P(8,4,2) = 1 + 2 + 4 + 6 + 6 = 19. (End)
a(n) = length of run n+2 of consecutive 1's in A254338. - Reinhard Zumkeller, Feb 27 2015
Take a chessboard of (n+2) X (n+2) unit squares in which the a1 square is black. a(n) is the number of composite squares having black unit squares on their vertices. - Ivan N. Ianakiev, Jul 19 2018
a(n) is the number of 1423-avoiding odd Grassmannian permutations of size n+2. Avoiding any of the patterns 2314 or 3412 gives the same sequence. - Juan B. Gil, Mar 09 2023

Examples

			a(2) = 6, since ( x1*y1, x2*y2, x1*x1+y1*y1, x2*x2+y2*y2, x1*x2+y1*y2, x1*y2+x2*y1 ) are a basis for homogeneous quadratic invariant polynomials.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • L. Smith, Polynomial Invariants of Finite Groups, A K Peters, 1995, p. 96.

Crossrefs

Cf. A177878.
Partial sums of A008794 (without 0). - Bruno Berselli, Aug 30 2013

Programs

  • Haskell
    Following Gary W. Adamson.
    import Data.List (inits, intersperse)
    a005993 n = a005994_list !! n
    a005993_list = map (sum . zipWith (*) (intersperse 0 [1, 3 ..]) . reverse) $
                       tail $ inits [1..]
    -- Reinhard Zumkeller, Feb 27 2015
    
  • Magma
    I:=[1,2,6,10,19,28]; [n le 6 select I[n] else 2*Self(n-1)+Self(n-2)-4*Self(n-3)+Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jul 19 2015
    
  • Maple
    g := proc(n) local i; add(floor(i/2)^2,i=1..n+1) end: # Joseph S. Riel (joer(AT)k-online.com), Mar 22 2002
    a:= n-> (Matrix([[1, 0$3, -1, -2]]).Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -4, 1, 2, -1][i] else 0 fi)^n)[1,1]; seq (a(n), n=0..44); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    CoefficientList[Series[(1+x^2)/((1-x)^2*(1-x^2)^2),{x,0,44}],x]  (* Jean-François Alcover, Apr 08 2011 *)
    LinearRecurrence[{2,1,-4,1,2,-1},{1,2,6,10,19,28},50] (* Harvey P. Dale, Feb 20 2012 *)
  • PARI
    a(n)=polcoeff((1+x^2)/(1-x)^2/(1-x^2)^2+x*O(x^n),n)
    
  • PARI
    a(n) = (binomial(n+3, n) + (1-n%2)*binomial((n+2)/2, n>>1))/2 \\ Washington Bomfim, Aug 05 2008
    
  • PARI
    a = vector(50); a[1]=1; a[2]=2;
    for(n=3, 50, a[n] = ((n+2)*a[n-2]+2*a[n-1]-n)/(n-2)); a \\ Gerry Martens, Jun 03 2018
    
  • Sage
    def A005993():
        a, b, to_be = 0, 0, True
        while True:
            yield (a*(a*(2*a+9)+13)+b*(b+1)*(2*b+1)+6)//6
            if to_be: b += 1
            else: a += 1
            to_be = not to_be
    a = A005993()
    [next(a) for  in range(48)] # _Peter Luschny, May 04 2016

Formula

l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
G.f.: (1+x^2)/((1-x)^2*(1-x^2)^2) = (1+x^2)/((1+x)^2*(x-1)^4) = (1/(1-x)^4 +1/(1-x^2)^2)/2.
a(2n) = (n+1)(2n^2+4n+3)/3, a(2n+1) = (n+1)(n+2)(2n+3)/3. a(-4-n) = -a(n).
From Yosu Yurramendi, Sep 12 2008: (Start)
a(n+1) = a(n) + A008794(n+3) with a(1)=1.
a(n) = A027656(n) + 2*A006918(n).
a(n+2) = a(n) + A000982(n+2) with a(1)=1, a(2)=2. (End)
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6). - Jaume Oliver Lafont, Dec 05 2008
a(n) = (n^3 + 6*n^2 + 11*n + 6)/12 + ((n+2)/4)[n even] (the bracket means that the second term is added if and only if n is even). - Benoit Jubin, Mar 31 2012
a(n) = (1/12)*n*(n+1)*(n+2) + (1/4)*(n+1)*(1/2)*(1-(-1)^n), with offset 1. - Yosu Yurramendi, Jun 20 2013
a(n) = Sum_{i=0..n+1} ceiling(i/2) * round(i/2) = Sum_{i=0..n+2} floor(i/2)^2. - Bruno Berselli, Aug 30 2013
a(n) = (n + 2)*(3*(-1)^n + 2*n^2 + 8*n + 9)/24. - Ilya Gutkovskiy, May 04 2016
Recurrence formula: a(n) = ((n+2)*a(n-2)+2*a(n-1)-n)/(n-2), a(1)=1, a(2)=2. - Gerry Martens, Jun 10 2018
E.g.f.: exp(-x)*(6 - 3*x + exp(2*x)*(18 + 39*x + 18*x^2 + 2*x^3))/24. - Stefano Spezia, Feb 23 2020
a(n) = Sum_{j=0..n/2} binomial(c+2*j-1,2*j)*binomial(c+n-2*j-1,n-2*j) where c=2. For other values of c we have: A008619 (c=1), A005995 (c=3), A018211 (c=4), A018213 (c=5), A062136 (c=6). - Miquel A. Fiol, Sep 24 2024

A114088 Triangle read by rows: T(n,k) is number of partitions of n whose tail below its Durfee square has k parts (n >= 1; 0 <= k <= n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 5, 5, 3, 2, 1, 1, 1, 5, 6, 6, 5, 3, 2, 1, 1, 1, 6, 8, 8, 7, 5, 3, 2, 1, 1, 1, 7, 10, 10, 9, 7, 5, 3, 2, 1, 1, 1, 9, 13, 13, 12, 10, 7, 5, 3, 2, 1, 1, 1, 10, 16, 17, 15, 13, 10, 7, 5, 3, 2, 1, 1, 1, 12, 20, 22, 20, 17
Offset: 1

Views

Author

Emeric Deutsch, Feb 12 2006

Keywords

Comments

From Gus Wiseman, May 21 2022: (Start)
Also the number of integer partitions of n with k parts below the diagonal. For example, the partition (3,2,2,1) has two parts (at positions 3 and 4) below the diagonal (1,2,3,4). Row n = 8 counts the following partitions:
8 71 611 5111 41111 311111 2111111 11111111
44 332 2222 22211 221111
53 422 3221 32111
62 431 3311
521 4211
Indices of parts below the diagonal are also called strong nonexcedances.
(End)

Examples

			T(7,2)=3 because we have [5,1,1], [3,2,1,1] and [2,2,2,1] (the bottom tails are [1,1], [1,1] and [2,1], respectively).
Triangle starts:
  1;
  1, 1;
  1, 1, 1;
  2, 1, 1, 1;
  2, 2, 1, 1, 1;
  3, 3, 2, 1, 1, 1;
  3, 4, 3, 2, 1, 1, 1;
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).

Crossrefs

Row sums: A000041.
Column k = 0: A003114.
Weak opposite: A115994.
Permutations: A173018, weak A123125.
Ordered: A352521, rank stat A352514, weak A352522.
Opposite ordered: A352524, first col A008930, rank stat A352516.
Weak opposite ordered: A352525, first col A177510, rank stat A352517.
Weak: A353315.
Opposite: A353318.
A000700 counts self-conjugate partitions, ranked by A088902.
A115720 counts partitions by Durfee square, rank stat A257990.
A352490 gives the (strong) nonexcedance set of A122111, counted by A000701.

Programs

  • Maple
    g:=sum(z^(k^2)/product((1-z^j)*(1-t*z^j),j=1..k),k=1..20): gserz:=simplify(series(g,z=0,30)): for n from 1 to 14 do P[n]:=coeff(gserz,z^n) od: for n from 1 to 14 do seq(coeff(t*P[n],t^j),j=1..n) od; # yields sequence in triangular form
  • Mathematica
    subdiags[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],subdiags[#]==k&]],{n,1,15},{k,0,n-1}] (* Gus Wiseman, May 21 2022 *)
  • PARI
    T_qt(max_row) = {my(N=max_row+1, q='q+O('q^N), h = sum(k=1,N, q^(k^2)/prod(j=1,k, (1-q^j)*(1-t*q^j))) ); for(i=1, N-1, print(Vecrev(polcoef(h, i))))}
    T_qt(10) \\ John Tyler Rascoe, Oct 24 2024

Formula

G.f. = Sum_{k>=1} q^(k^2) / Product_{j=1..k} (1 - q^j)*(1 - t*q^j).
Sum_{k=0..n-1} k*T(n,k) = A114089(n).

A159797 Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n-1.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 3, 5, 7, 9, 4, 7, 10, 13, 16, 5, 9, 13, 17, 21, 25, 6, 11, 16, 21, 26, 31, 36, 7, 13, 19, 25, 31, 37, 43, 49, 8, 15, 22, 29, 36, 43, 50, 57, 64, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101
Offset: 0

Views

Author

Omar E. Pol, Jul 09 2009

Keywords

Comments

Note that the last term of the n-th row is the n-th square A000290(n).
See also A162611, A162614 and A162622.
The triangle sums, see A180662 for their definitions, link the triangle A159797 with eleven sequences, see the crossrefs. - Johannes W. Meijer, May 20 2011
T(n,k) is the number of distinct sums in the direct sum of {1, 2, ... n} with itself k times for 1 <= k <= n+1, e.g., T(5,3) = the number of distinct sums in the direct sum {1,2,3,4,5} + {1,2,3,4,5} + {1,2,3,4,5}. The sums range from 1+1+1=3 to 5+5+5=15. So there are 13 distinct sums. - Derek Orr, Nov 26 2014

Examples

			Triangle begins:
0;
1, 1;
2, 3, 4;
3, 5, 7, 9;
4, 7,10,13,16;
5, 9,13,17,21,25;
6,11,16,21,26,31,36;
		

Crossrefs

Cf.: A006002 (row sums). - R. J. Mathar, Jul 17 2009
Cf. A163282, A163283, A163284, A163285. - Omar E. Pol, Nov 18 2009
From Johannes W. Meijer, May 20 2011: (Start)
Triangle sums (see the comments): A006002 (Row1), A050187 (Row2), A058187 (Related to Kn11, Kn12, Kn13, Fi1 and Ze1), A006918 (Related to Kn21, Kn22, Kn23, Fi2 and Ze2), A000330 (Kn3), A016061 (Kn4), A190717 (Related to Ca1 and Ze3), A144677 (Related to Ca2 and Ze4), A000292 (Related to Ca3, Ca4, Gi3 and Gi4) A190718 (Related to Gi1) and A144678 (Related to Gi2). (End)

Programs

Formula

Given m = floor( (sqrt(8*n+1)-1)/2 ), then a(n) = m + (n - m*(m+1)/2)*(m-1). - Carl R. White, Jul 24 2010

Extensions

Edited by Omar E. Pol, Jul 18 2009
More terms from Omar E. Pol, Nov 18 2009
More terms from Carl R. White, Jul 24 2010

A058187 Expansion of (1+x)/(1-x^2)^4: duplicated tetrahedral numbers.

Original entry on oeis.org

1, 1, 4, 4, 10, 10, 20, 20, 35, 35, 56, 56, 84, 84, 120, 120, 165, 165, 220, 220, 286, 286, 364, 364, 455, 455, 560, 560, 680, 680, 816, 816, 969, 969, 1140, 1140, 1330, 1330, 1540, 1540, 1771, 1771, 2024, 2024, 2300, 2300, 2600, 2600, 2925, 2925, 3276, 3276
Offset: 0

Views

Author

Henry Bottomley, Nov 20 2000

Keywords

Comments

For n >= i, i = 6,7, a(n - i) is the number of incongruent two-color bracelets of n beads, i of which are black (cf. A005513, A032280), having a diameter of symmetry. The latter means the following: if we imagine (0,1)-beads as points (with the corresponding labels) dividing a circumference of a bracelet into n identical parts, then a diameter of symmetry is a diameter (connecting two beads or not) such that a 180-degree turn of one of two sets of points around it (obtained by splitting the circumference by this diameter) leads to the coincidence of the two sets (including their labels). - Vladimir Shevelev, May 03 2011
From Johannes W. Meijer, May 20 2011: (Start)
The Kn11, Kn12, Kn13, Fi1 and Ze1 triangle sums, see A180662 for their definitions, of the Connell-Pol triangle A159797 are linear sums of shifted versions of the duplicated tetrahedral numbers, e.g., Fi1(n) = a(n-1) + 5*a(n-2) + a(n-3) + 5*a(n-4).
The Kn11, Kn12, Kn13, Kn21, Kn22, Kn23, Fi1, Fi2, Ze1 and Ze2 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above. (End)
The number of quadruples of integers [x, u, v, w] that satisfy x > u > v > w >= 0, n + 5 = x + u. - Michael Somos, Feb 09 2015
Also, this sequence is the fourth column in the triangle of the coefficients of the sum of two consecutive Fibonacci polynomials F(n+1, x) and F(n, x) (n>=0) in ascending powers of x. - Mohammad K. Azarian, Jul 18 2018

Crossrefs

Cf. A057884. Sum of 2 consecutive terms gives A006918, whose sum of 2 consecutive terms gives A002623, whose sum of 2 consecutive terms gives A000292, which is this sequence without the duplication. Continuing to sum 2 consecutive terms gives A000330, A005900, A001845, A008412 successively.

Programs

  • Haskell
    a058187 n = a058187_list !! n
    a058187_list = 1 : f 1 1 [1] where
       f x y zs = z : f (x + y) (1 - y) (z:zs) where
         z = sum $ zipWith (*) [1..x] [x,x-1..1]
    -- Reinhard Zumkeller, Dec 21 2011
    
  • Maple
    A058187:= proc(n) option remember; A058187(n):= binomial(floor(n/2)+3, 3) end: seq(A058187(n), n=0..51); # Johannes W. Meijer, May 20 2011
  • Mathematica
    a[n_]:= Length @ FindInstance[{x>u, u>v, v>w, w>=0, x+u==n+5}, {x, u, v, w}, Integers, 10^9]; (* Michael Somos, Feb 09 2015 *)
    With[{tetra=Binomial[Range[30]+2,3]},Riffle[tetra,tetra]] (* Harvey P. Dale, Mar 22 2015 *)
  • PARI
    {a(n) = binomial(n\2+3, 3)}; /* Michael Somos, Jun 07 2005 */
    
  • Sage
    [binomial((n//2)+3, 3) for n in (0..60)] # G. C. Greubel, Feb 18 2022

Formula

a(n) = A006918(n+1) - a(n-1).
a(2*n) = a(2*n+1) = A000292(n) = (n+1)*(n+2)*(n+3)/6.
a(n) = (2*n^3 + 21*n^2 + 67*n + 63)/96 + (n^2 + 7*n + 11)(-1)^n/32. - Paul Barry, Aug 19 2003
a(n) = A108299(n-3,n)*(-1)^floor(n/2) for n > 2. - Reinhard Zumkeller, Jun 01 2005
Euler transform of finite sequence [1, 3]. - Michael Somos, Jun 07 2005
G.f.: 1 / ((1 - x) * (1 - x^2)^3) = 1 / ((1 + x)^3 * (1 - x)^4). a(n) = -a(-7-n) for all n in Z.
a(n) = binomial(floor(n/2) + 3, 3). - Vladimir Shevelev, May 03 2011
a(-n) = -a(n-7); a(n) = A000292(A008619(n)). - Guenther Schrack, Sep 13 2018
Sum_{n>=0} 1/a(n) = 3. - Amiram Eldar, Aug 18 2022

A188674 Stack polyominoes with square core.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 3, 4, 5, 7, 9, 13, 17, 24, 31, 42, 54, 71, 90, 117, 147, 188, 236, 298, 371, 466, 576, 716, 882, 1088, 1331, 1633, 1987, 2422, 2935, 3557, 4290, 5177, 6216, 7465, 8932, 10682, 12731, 15169, 18016, 21387, 25321, 29955, 35353, 41696, 49063, 57689, 67698, 79375, 92896, 108633, 126817, 147922, 172272
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Comments

a(n) is the number of stack polyominoes of area n with square core.
The core of stack is the set of all maximal columns.
The core is a square when the number of columns is equal to their height.
Equivalently, a(n) is the number of unimodal compositions of n, where the number of the parts of maximum value equal the maximum value itself. For instance, for n = 10, we have the following stacks:
(1,3,3,3), (3,3,3,1), (1,1,1,1,1,1,2,2), (1,1,1,1,1,2,2,1), (1,1,1,1,2,2,1,1), (1,1,1,2,2,1,1,1), (1,1,2,2,1,1,1,1), (1,2,2,1,1,1,1,1), (2,2,1,1,1,1,1,1).
From Gus Wiseman, Apr 06 2019 and May 21 2022: (Start)
Also the number of integer partitions of n with final part in their inner lining partition equal to 1, where the k-th part of the inner lining partition of a partition is the number of squares in its Young diagram that are k diagonal steps from the lower-right boundary. For example, the a(4) = 1 through a(10) = 9 partitions are:
(22) (32) (42) (52) (62) (72) (82)
(221) (321) (421) (521) (333) (433)
(2211) (3211) (4211) (621) (721)
(22111) (32111) (5211) (3331)
(221111) (42111) (6211)
(321111) (52111)
(2211111) (421111)
(3211111)
(22111111)
Also partitions that have a fixed point and a conjugate fixed point, ranked by A353317. The strict case is A352829. For example, the a(0) = 0 through a(9) = 7 partitions are:
() . . (21) (31) (41) (51) (61) (71)
(211) (311) (411) (511) (332)
(2111) (3111) (4111) (611)
(21111) (31111) (5111)
(211111) (41111)
(311111)
(2111111)
Also partitions of n + 1 without a fixed point or conjugate fixed point.
(End)

Crossrefs

Cf. A001523 (stacks).
Positive crank: A001522, ranked by A352874.
Zero crank: A064410, ranked by A342192.
Nonnegative crank: A064428, ranked by A352873.
Fixed point but no conjugate fixed point: A118199, ranked by A353316.
A000041 counts partitions, strict A000009.
A002467 counts permutations with a fixed point, complement A000166.
A115720/A115994 count partitions by Durfee square, rank statistic A257990.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    a[n_]:=CoefficientList[Series[1+Sum[x^((k+1)^2)/Product[(1-x^i)^2,{i,1,k}],{k,0,n}],{x,0,n}],x]
    (* second program *)
    pml[ptn_]:=If[ptn=={},{},FixedPointList[If[#=={},{},DeleteCases[Rest[#]-1,0]]&,ptn][[-3]]];
    Table[Length[Select[IntegerPartitions[n],pml[#]=={1}&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)

Formula

G.f.: 1 + sum(k>=0, x^((k+1)^2)/((1-x)^2*(1-x^2)^2*...*(1-x^k)^2)).

A117485 Expansion of x^9/((1-x)*(1-x^2)*(1-x^3))^2.

Original entry on oeis.org

1, 2, 5, 10, 18, 30, 49, 74, 110, 158, 221, 302, 407, 536, 698, 896, 1136, 1424, 1770, 2176, 2656, 3216, 3866, 4616, 5481, 6466, 7591, 8866, 10306, 11926, 13747, 15778, 18046, 20566, 23359, 26446, 29855, 33600, 37716, 42224, 47152, 52528, 58388, 64752, 71664
Offset: 9

Views

Author

Alford Arnold, Mar 22 2006

Keywords

Comments

Molien series for S_3 X S_3, cf. A001399.
From Gus Wiseman, Apr 06 2019: (Start)
Also the number of integer partitions of n with Durfee square of length 3. The Heinz numbers of these partitions are given by A307386. For example, the a(9) = 1 through a(13) = 18 partitions are:
(333) (433) (443) (444) (544)
(3331) (533) (543) (553)
(3332) (633) (643)
(4331) (3333) (733)
(33311) (4332) (4333)
(4431) (4432)
(5331) (4441)
(33321) (5332)
(43311) (5431)
(333111) (6331)
(33322)
(33331)
(43321)
(44311)
(53311)
(333211)
(433111)
(3331111)
(End)

Examples

			As a cross-check, row sixteen of A115994 yields p(16) = 16 + 140 + 74 + 1.
		

Crossrefs

Column k=3 of A115994.
Cf. A000027 (for k=1), A006918 (for k=2), A117488, A117489, A001399, A117486.

Programs

  • Magma
    n:=3; G:=SymmetricGroup(n); H:=DirectProduct(G,G); MolienSeries(H); // N. J. A. Sloane, Mar 10 2007
    
  • Maple
    with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=3, stack): seq(count(subs(r=3, ZL), size=m), m=6..50) ; # Zerinvary Lajos, Jan 02 2008
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^2)(1-x^3))^2,{x,0,50}],x] (* Harvey P. Dale, Oct 09 2011 *)
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    Table[Length[Select[IntegerPartitions[n],durf[#]==3&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)
  • PARI
    Vec(x^9 / ((1 - x)^6*(1 + x)^2*(1 + x + x^2)^2) + O(x^60)) \\ Colin Barker, Dec 12 2019
    
  • PARI
    a(n) = floor((3*n^5 - 45*n^4 + 200*n^3 - 180*n^2 - 363*n + 1600)/12960 + n/27*(n%3==0) - n/32*(n%2==0)) \\ Hoang Xuan Thanh, Jul 17 2025

Formula

a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - 3*a(n-4) + 6*a(n-6) - 3*a(n-8) - 2*a(n-9) + a(n-10) + 2*a(n-11) - a(n-12) for n>20. - Colin Barker, Dec 12 2019
From Hoang Xuan Thanh, May 17 2025: (Start)
a(n+3) = Sum_{x+2*y+3*z=n} x*y*z.
a(n+3) = n*(n^2-1)*(3*n^2-67)/12960 - floor((n+1)/3)/27 + [n mod 2 = 0]*n/32 + [n mod 3 = 0]*n/27 where [] is the Iverson bracket. (End)

Extensions

Entry revised by N. J. A. Sloane, Mar 10 2007

A100157 Structured rhombic dodecahedral numbers (vertex structure 9).

Original entry on oeis.org

1, 14, 55, 140, 285, 506, 819, 1240, 1785, 2470, 3311, 4324, 5525, 6930, 8555, 10416, 12529, 14910, 17575, 20540, 23821, 27434, 31395, 35720, 40425, 45526, 51039, 56980, 63365, 70210, 77531, 85344, 93665, 102510, 111895, 121836, 132349, 143450, 155155, 167480
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

Also structured triakis octahedral numbers (vertex structure 9) (Cf. A100171 = alternate vertex); and structured heptagonal anti-prism numbers (Cf. A100185 = structured anti-prisms).
If Y is a 2-subset of a 2n-set X then, for n>=2, a(n-1) is the number of 4-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
Let M(2n-1) be a (2n-1)x(2n-1) matrix whose (i,j)-entry equals i^2/(i^2+sqrt(-1)) if i=j and equals 1 otherwise. Then a(n) equals (-1)^(n+1) times the real part of prod(k^2+sqrt(-1),k=1...2n-1) times the determinant of M(2n-1). - John M. Campbell, Sep 07 2011
Principal diagonal of the convolution array A213752. - Clark Kimberling, Jun 20 2012
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Whieldon and Schuetz link). a(n)= Cat(n,4), so enumerates the number of (n+1)-gon partitions of a (4*(n-1)+2)-gon. Analogous series are A000326 (k=3) and A234043 (k=5). Also, a(n)= A006918(4n+1) = A008610(4n+1) = A053307(4n+1) with offset=0. - Tom Copeland, Oct 05 2014

Examples

			For n=4, sum( (4+i)^2, i=-3..3 ) = (4-3)^2+(4-2)^2+(4-1)^2+(4-0)^2+(4+1)^2+(4+2)^2+(4+3)^2 = 140 = a(4). - _Bruno Berselli_, Jul 24 2014
		

References

  • Jolley, Summation of Series, Dover (1961).

Crossrefs

Cf. A005915 = alternate vertex; A100145 for more on structured polyhedral numbers.

Programs

  • Magma
    [(1/6)*(16*n^3-12*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
    
  • Maple
    with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*4), m=1..32) ; # Zerinvary Lajos, Jan 02 2008
  • PARI
    a(n)=(16*n^3-12*n^2+2*n)/6 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = (16*n^3 - 12*n^2 + 2*n)/6.
a(n) = n*(2*n-1)*(4*n-1)/3 = A000330(2*n-1). - Reinhard Zumkeller, Jul 06 2009
Sum_{n>=1} 1/(24*a(n)) = Pi/8-log(2)/2 = 0.046125491418751... [Jolley eq. 251]
G.f.: x*(1+10*x+5*x^2)/(x-1)^4. - R. J. Mathar, Oct 03 2011
a(n) = binomial(2*n+1,3) + binomial(2*n,3). - John Molokach, Jul 10 2013
a(n) = Sum_{i=-(n-1)..(n-1)} (n+i)^2. - Bruno Berselli, Jul 24 2014
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*x*(8*x^2 + 18*x + 3)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4. (End)

A005232 Expansion of (1-x+x^2)/((1-x)^2*(1-x^2)*(1-x^4)).

Original entry on oeis.org

1, 1, 3, 4, 8, 10, 16, 20, 29, 35, 47, 56, 72, 84, 104, 120, 145, 165, 195, 220, 256, 286, 328, 364, 413, 455, 511, 560, 624, 680, 752, 816, 897, 969, 1059, 1140, 1240, 1330, 1440, 1540, 1661, 1771, 1903, 2024, 2168, 2300, 2456, 2600, 2769, 2925, 3107, 3276
Offset: 0

Views

Author

Keywords

Comments

Also number of n X 2 binary matrices under row and column permutations and column complementations (if offset is 0).
Also Molien series for certain 4-D representation of dihedral group of order 8.
With offset 4, number of bracelets (turnover necklaces) of n-bead of 2 colors with 4 red beads. - Washington Bomfim, Aug 27 2008
From Vladimir Shevelev, Apr 23 2011: (Start)
Also number of non-equivalent necklaces of 4 beads each of them painted by one of n colors.
The sequence solves the so-called Reis problem about convex k-gons in case k=4 (see our comment to A032279). (End)
Number of 2 X 2 matrices with nonnegative integer values totaling n under row and column permutations. - Gabriel Burns, Nov 08 2016
From Petros Hadjicostas, Jan 12 2019: (Start)
By "necklace", Vladimir Shevelev (above) means "turnover necklace", i.e., a bracelet. Zagaglia Salvi (1999) also uses this terminology: she calls a bracelet "necklace" and a necklace "cycle".
According to Cyvin et al. (1997), the sequence (a(n): n >= 0) consists of "the total numbers of isomers of polycyclic conjugated hydrocarbons with q + 1 rings and q internal carbons in one ring (class Q_q)", where q = 4 and n is the hydrogen content (i.e., we count certain isomers of C_{n+2*q} H_n with q = 4 and n >= 0). (End)

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 8*x^4 + 10*x^5 + 16*x^6 + 20*x^7 + 29*x^8 + ...
There are 8 4 X 2 matrices up to row and column permutations and column complementations:
  [1 1] [1 0] [1 0] [0 1] [0 1] [0 1] [0 1] [0 0]
  [1 1] [1 1] [1 0] [1 0] [1 0] [1 0] [0 1] [0 1]
  [1 1] [1 1] [1 1] [1 1] [1 0] [1 0] [1 0] [1 0]
  [1 1] [1 1] [1 1] [1 1] [1 1] [1 0] [1 0] [1 1].
There are 8 2 X 2 matrices of nonnegative integers totaling 4 up to row and column permutations:
  [4 0] [3 1] [2 2] [2 1] [2 1] [3 0] [2 0] [1 1]
  [0 0] [0 0] [0 0] [0 1] [1 0] [1 0] [2 0] [1 1].
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

Crossrefs

Row n=2 of A343875.
Column k=4 of A052307.

Programs

  • Maple
    A005232:=-(-1-z-2*z**3+2*z**2+z**7-2*z**6+2*z**4)/(z**2+1)/(1+z)**2/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence apart from an initial 1
  • Mathematica
    k = 4; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
    CoefficientList[ Series[(1 - x + x^2)/((1 - x)^2(1 - x^2)(1 - x^4)), {x, 0, 51}], x] (* Robert G. Wilson v, Mar 29 2006 *)
    LinearRecurrence[{2,0,-2,2,-2,0,2,-1},{1,1,3,4,8,10,16,20},60] (* Harvey P. Dale, Oct 24 2012 *)
    k=4 (* Number of red beads in bracelet problem *); CoefficientList[Series[(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)
  • PARI
    {a(n) = (n^3 + 9*n^2 + (32-9*(n%2))*n + [48, 15, 36, 15][n%4+1]) / 48}; \\ Michael Somos, Feb 01 2007
    
  • PARI
    {a(n) = my(s=1); if( n<-5, n = -6-n; s=-1); if( n<0, 0, s * polcoeff( (1 - x + x^2) / ((1 - x)^2 * (1 - x^2) * (1 - x^4)) + x * O(x^n), n))}; \\ Michael Somos, Feb 01 2007
    
  • PARI
    a(n) = round((n^3 +9*n^2 +(32-9*(n%2))*n)/48 +0.6) \\ Washington Bomfim, Jul 17 2008
    
  • PARI
    a(n) = ceil((n+1)*(2*n^2+16*n+39+9*(-1)^n)/96) \\ Tani Akinari, Aug 23 2013
    
  • Python
    a=lambda n: sum((k//2+1)*((n-k)//2+1) for k in range((n-1)//2+1))+(n+1)%2*(((n//4+1)*(n//4+2))//2)  # Gabriel Burns, Nov 08 2016

Formula

G.f.: (1+x^3)/((1-x)*(1-x^2)^2*(1-x^4)).
G.f.: (1/8)*(1/(1-x)^4+3/(1-x^2)^2+2/(1-x)^2/(1-x^2)+2/(1-x^4)). - Vladeta Jovovic, Aug 05 2000
Euler transform of length 6 sequence [ 1, 2, 1, 1, 0, -1 ]. - Michael Somos, Feb 01 2007
a(2n+1) = A006918(2n+2)/2;
a(2n) = (A006918(2n+1) + A008619(n))/2.
a(n) = -a(-6 - n) for all n in Z. - Michael Somos, Feb 05 2011
From Vladimir Shevelev, Apr 22 2011: (Start)
if n == 0 (mod 4), then a(n) = n*(n^2-3*n+8)/48;
if n == 1, 3 (mod 4), then a(n) = (n^2-1)*(n-3)/48;
if n == 2 (mod 4), then a(n) = (n-2)*(n^2-n+6)/48. (End)
a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-4) - 2*a(n-5) + 2*a(n-7) - a(n-8) with a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 4, a(4) = 8, a(5) = 10, a(6) = 16, a(7) = 20. - Harvey P. Dale, Oct 24 2012
a(n) = ((n+3)*(2*n^2+12*n+19+9*(-1)^n) + 6*(-1)^((2*n-1+(-1)^n)/4)*(1+(-1)^n))/96. - Luce ETIENNE, Mar 16 2015
a(n) = |A128498(n)| + |A128498(n-3)|. - R. J. Mathar, Jun 11 2019

Extensions

Sequence extended by Christian G. Bower

A028723 a(n) = (1/4)*floor(n/2)*floor((n-1)/2)*floor((n-2)/2)*floor((n-3)/2).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 9, 18, 36, 60, 100, 150, 225, 315, 441, 588, 784, 1008, 1296, 1620, 2025, 2475, 3025, 3630, 4356, 5148, 6084, 7098, 8281, 9555, 11025, 12600, 14400, 16320, 18496, 20808, 23409, 26163, 29241, 32490, 36100, 39900, 44100, 48510, 53361, 58443
Offset: 0

Views

Author

Keywords

Comments

It is not known whether A000241 and this sequence agree.
Conjectured to be crossing number of complete graph K_n, see A000241.
a(n+1) is the maximum number of rectangles that can be formed from n lines. - Erich Friedman
Number of symmetric Dyck paths of semilength n and having five peaks. E.g., a(6)=3 because we have U*DU*DUU*DDU*DU*D, U*DUU*DU*DU*DDU*D and UU*DU*DU*DU*DU*DD, where U=(1,1), D=(1,-1) and * indicates a peak. - Emeric Deutsch, Jan 12 2004
a(n-5) is the number of length n words, w(1), w(2), ..., w(n) on alphabet {0,1,2} such that w(i) >= w(i+2) for all i. - Geoffrey Critzer, Mar 15 2014
a(n-1) is the number of length n binary strings beginning with a 1 that have exactly two pairs of consecutive 0's and two pairs of consecutive 1's. - Jeremy Dover, Jul 04 2016
Consider the partitions of n into two parts (p,q). Then 2*a(n+2) represents the total volume of all rectangular prisms with dimensions p, q and |q - p|. - Wesley Ivan Hurt, Apr 12 2018
a(n+1) is the number of subsets of {1, 2, ..., n} that contain 2 odd and 2 even numbers. For example, for n = 6, a(7) = 9 and the 9 subsets are {1,2,3,4}, {1,2,3,6}, {1,2,4,5}, {1,2,5,6}, {1,3,4,6}, {1,4,5,6}, {2,3,4,5}, {2,3,5,6}, {3,4,5,6}. - Enrique Navarrete, Dec 22 2019
a(n+1) is the maximum number of induced 4-cycles in an n-node graph (Pippenger and Golumbic 1975). - Pontus von Brömssen, Mar 27 2022

Examples

			G.f. = x^5 + 3*x^6 + 9*x^7 + 18*x^8 + 36*x^9 + 60*x^10 + 100*x^11 + ...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.18, p. 533.
  • Martin Gardner, Knotted Doughnuts and Other Mathematical Entertainments, W. H. Freeman & Company, 1986, Chapter 11, pages 133-144.
  • Carsten Thomassen, Embeddings and Minors, in: R. L. Graham, M. Grötschel, and L. Lovász, Handbook of Combinatorics, Vol. 1, Elsevier, 1995, p. 314.

Crossrefs

Programs

  • Magma
    [(n^4-8*n^3+18*n^2-12*n+2*n*(n-2)*((1+(-1)^n)/2)+(2*n-3)^2*((1-(-1)^n)/2))/64: n in [0..50]]; // Vincenzo Librandi, Mar 23 2014
    
  • Maple
    A028723:=n->(1/4)*floor(n/2)*floor((n-1)/2)*floor((n-2)/2)*floor((n-3)/2); seq(A028723(n), n=0..100); # Wesley Ivan Hurt, Nov 01 2013
  • Mathematica
    Table[If[EvenQ[n], n(n-2)^2(n-4)/64, (n-1)^2(n-3)^2/64], {n, 0, 50}]
    Table[(n^4 -8n^3 +18n^2 -12n + 2n(n-2)((1+(-1)^n)/2) +(2n-3)^2((1-(-1)^n)/2))/64, {n, 0, 50}] (* Vincenzo Librandi, Mar 23 2014 *)
    LinearRecurrence[{2, 2,-6,0,6,-2,-2,1}, {0,0,0,0,0,1,3,9}, 50] (* Harvey P. Dale, Sep 13 2018 *)
    Times@@@Table[Floor[(n-k)/2], {n,0,60}, {k,0,3}]/4 (* Eric W. Weisstein, Apr 29 2019 *)
  • PARI
    a(n) = if (n % 2, (n-1)^2 *(n-3)^2/64, n*(n-2)^2 *(n-4)/64); \\ Michel Marcus, Nov 02 2013
    
  • PARI
    {a(n) = prod(k=0, 3, (n - k) \ 2) / 4}; /* Michael Somos, Nov 02 2014 */
    
  • SageMath
    [(n*(-12 +18*n -8*n^2 +n^3) +2*n*(n-2)*((n+1)%2) +(2*n-3)^2*(n%2))/64 for n in (0..60)] # G. C. Greubel, Apr 08 2022

Formula

If n even, n*(n-2)^2*(n-4)/64; if n odd, (n-1)^2*(n-3)^2/64.
G.f.: x^5*(1+x+x^2)/((1-x)^5*(1+x)^3). - Emeric Deutsch, Jan 12 2004
For n>2, a(n) = A007590(n-3)*A007590(n-1)/16. - Richard R. Forberg, Dec 03 2013
a(n) = (n^4 -8*n^3 +18*n^2 -12*n +2*n*(n-2)*((1+(-1)^n)/2) + (2*n-3)^2*((1-(-1)^n)/2))/64. - Luce ETIENNE, Mar 22 2014
Euler transform of length 3 sequence [3, 3, -1]. - Michael Somos, Nov 02 2014
a(n) = a(4-n) for all n in Z. - Michael Somos, Nov 02 2014
0 = -3 + a(n) - a(n+1) - 3*a(n+2) + 3*a(n+3) + 3*a(n+4) - 3*a(n+5) - a(n+6) + a(n+7) for all n in Z. - Michael Somos, Nov 02 2014
0 = a(n)*(+a(n+2) + a(n+3)) + a(n+1)*(-3*a(n+2) +a(n+3)) for all n in Z. - Michael Somos, Nov 02 2014
a(n+1)^2 - a(n)*a(n+2) = binomial(n/2, 2)^3 for all even n in Z ( = 0 if n odd). - Michael Somos, Nov 02 2014
a(n)*(a(n+1) + a(n+2)) +a(n+1)*(-3*a(n+1) + a(n+2)) = 0 for all even n in Z ( = k^4 * (k^2 - 1) / 4 if n = 2*k + 1). - Michael Somos, Nov 02 2014
a(n) = binomial(n/2,2)^2, n even; a(n) = binomial((n-1)/2,2)*binomial((n+1)/2,2), n odd. - Enrique Navarrete, Dec 22 2019
E.g.f.: (1/128)*exp(-x)*(exp(2*x)*(9 - 12*x + 8*x^2 - 4*x^3 + 2*x^4) - 9 - 6*x - 2*x^2). - Stefano Spezia, Dec 27 2019
a(n) = A002620(n-1)*A002620(n-3)/4. - R. J. Mathar, Mar 23 2021
a(n)= A096338(n-6)+A096338(n-5)+A096338(n-4). - R. J. Mathar, Mar 23 2021
From Amiram Eldar, Mar 20 2022: (Start)
Sum_{n>=5} 1/a(n) = 2*Pi^2/3 - 5.
Sum_{n>=5} (-1)^(n+1)/a(n) = 2*Pi^2 - 19. (End)
Previous Showing 11-20 of 103 results. Next