cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 107 results. Next

A223516 Triangle T(n,k) represents the coefficients of (x^14*d/dx)^n, where n=1,2,3,...; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.

Original entry on oeis.org

1, 14, 1, 378, 42, 1, 15120, 2100, 84, 1, 801360, 128520, 6720, 140, 1, 52889760, 9412200, 585480, 16380, 210, 1, 4178291040, 805865760, 56836080, 1928640, 33810, 294, 1, 384402775680, 79123806720, 6148457280, 240056880, 5174400, 62328, 392, 1
Offset: 1

Views

Author

Udita Katugampola, Mar 23 2013

Keywords

Examples

			1;
14,1;
378,42,1;
15120,2100,84,1;
801360,128520,6720,140,1;
52889760,9412200,585480,16380,210,1;
4178291040,805865760,56836080,1928640,33810,294,1;
384402775680,79123806720,6148457280,240056880,5174400,62328,392,1;
		

Crossrefs

Programs

  • Maple
    b[0]:=f(x):
    for j from 1 to 10 do
    b[j]:=simplify(x^14*diff(b[j-1],x$1);
    end do;

A223517 Triangle T(n,k) represents the coefficients of (x^15*d/dx)^n, where n=1,2,3,...; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.

Original entry on oeis.org

1, 15, 1, 435, 45, 1, 18705, 2415, 90, 1, 1066185, 158775, 7725, 150, 1, 75699135, 12497985, 722700, 18825, 225, 1, 6434426475, 1150525845, 75372885, 2379300, 38850, 315, 1, 637008221025, 121487010975, 8763187230, 318061485, 6380850, 71610, 420, 1
Offset: 1

Views

Author

Udita Katugampola, Mar 23 2013

Keywords

Examples

			1;
15,1;
435,45,1;
18705,2415,90,1;
1066185,158775,7725,150,1;
75699135,12497985,722700,18825,225,1;
6434426475,1150525845,75372885,2379300,38850,315,1;
637008221025,121487010975,8763187230,318061485,6380850,71610,420,1;
		

Crossrefs

Programs

  • Maple
    b[0]:=f(x):
    for j from 1 to 10 do
    b[j]:=simplify(x^15*diff(b[j-1],x$1);
    end do;

A223518 Triangle T(n,k) represents the coefficients of (x^16*d/dx)^n, where n=1,2,3,...; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.

Original entry on oeis.org

1, 16, 1, 496, 48, 1, 22816, 2752, 96, 1, 1391776, 193440, 8800, 160, 1, 105774976, 16286656, 879840, 21440, 240, 1, 9625522816, 1604147328, 98111776, 2895200, 44240, 336, 1, 1020305418496, 181269286912, 12200219136, 413688576, 7761600, 81536, 448, 1
Offset: 1

Views

Author

Udita Katugampola, Mar 23 2013

Keywords

Examples

			1;
16,1;
496,48,1;
22816,2752,96,1;
1391776,193440,8800,160,1;
105774976,16286656,879840,21440,240,1;
9625522816,1604147328,98111776,2895200,44240,336,1;
1020305418496,181269286912,12200219136,413688576,7761600,81536,448,1
		

Crossrefs

Programs

  • Maple
    b[0]:=f(x):
    for j from 1 to 10 do
    b[j]:=simplify(x^16*diff(b[j-1],x$1);
    end do;

A000262 Number of "sets of lists": number of partitions of {1,...,n} into any number of lists, where a list means an ordered subset.

Original entry on oeis.org

1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, 58941091, 824073141, 12470162233, 202976401213, 3535017524403, 65573803186921, 1290434218669921, 26846616451246353, 588633468315403843, 13564373693588558173, 327697927886085654441, 8281153039765859726341
Offset: 0

Views

Author

Keywords

Comments

Determinant of n X n matrix M=[m(i,j)] where m(i,i)=i, m(i,j)=1 if i > j, m(i,j)=i-j if j > i. - Vladeta Jovovic, Jan 19 2003
With p(n) = the number of integer partitions of n, d(i) = the number of different parts of the i-th partition of n, m(i,j) = multiplicity of the j-th part of the i-th partition of n, Sum_{i=1..p(n)} = sum over i and Product_{j=1..d(i)} = product over j, one has: a(n) = Sum_{i=1..p(n)} n!/(Product_{j=1..d(i)} m(i,j)!). - Thomas Wieder, May 18 2005
Consider all n! permutations of the integer sequence [n] = 1,2,3,...,n. The i-th permutation, i=1,2,...,n!, consists of Z(i) permutation cycles. Such a cycle has the length lc(i,j), j=1,...,Z(i). For a given permutation we form the product of all its cycle lengths Product_{j=1..Z(i)} lc(i,j). Furthermore, we sum up all such products for all permutations of [n] which gives Sum_{i=1..n!} Product_{j=1..Z(i)} lc(i,j) = A000262(n). For n=4 we have Sum_{i=1..n!} Product_{j=1..Z(i)} lc(i,j) = 1*1*1*1 + 2*1*1 + 3*1 + 2*1*1 + 3*1 + 2*1 + 3*1 + 4 + 3*1 + 4 + 2*2 + 2*1*1 + 3*1 + 4 + 3*1 + 2*1*1 + 2*2 + 4 + 2*2 + 4 + 3*1 + 2*1*1 + 3*1 + 4 = 73 = A000262(4). - Thomas Wieder, Oct 06 2006
For a finite set S of size n, a chain gang G of S is a partially ordered set (S,<=) consisting only of chains. The number of chain gangs of S is a(n). For example, with S={a, b}and n=2, there are a(2)=3 chain gangs of S, namely, {(a,a),(b,b)}, {(a,a),(a,b),(b,b)} and {(a,a),(b,a),(b,b)}. - Dennis P. Walsh, Feb 22 2007
(-1)*A000262 with the first term set to 1 and A084358 form a reciprocal pair under the list partition transform and associated operations described in A133314. Cf. A133289. - Tom Copeland, Oct 21 2007
Consider the distribution of n unlabeled elements "1" onto n levels where empty levels are allowed. In addition, the empty levels are labeled. Their names are 0_1, 0_2, 0_3, etc. This sequence gives the total number of such distributions. If the empty levels are unlabeled ("0"), then the answer is A001700. Let the colon ":" separate two levels. Then, for example, for n=3 we have a(3)=13 arrangements: 111:0_1:0_2, 0_1:111:0_2, 0_1:0_2:111, 111:0_2:0_1, 0_2:111:0_1, 0_2:0_1:111, 11:1:0, 11:0:1, 0:11:1, 1:11:0, 1:0:11, 0:1:11, 1:1:1. - Thomas Wieder, May 25 2008
Row sums of exponential Riordan array [1,x/(1-x)]. - Paul Barry, Jul 24 2008
a(n) is the number of partitions of [n] (A000110) into lists of noncrossing sets. For example, a(3)=3 counts 12, 1-2, 2-1 and a(4) = 73 counts the 75 partitions of [n] into lists of sets (A000670) except for 13-24, 24-13 which fail to be noncrossing. - David Callan, Jul 25 2008
a(i-j)/(i-j)! gives the value of the non-null element (i, j) of the lower triangular matrix exp(S)/exp(1), where S is the lower triangular matrix - of whatever dimension - having all its (non-null) elements equal to one. - Giuliano Cabrele, Aug 11 2008, Sep 07 2008
a(n) is also the number of nilpotent partial one-one bijections (of an n-element set). Equivalently, it is the number of nilpotents in the symmetric inverse semigroup (monoid). - Abdullahi Umar, Sep 14 2008
A000262 is the exp transform of the factorial numbers A000142. - Thomas Wieder, Sep 10 2008
If n is a positive integer then the infinite continued fraction (1+n)/(1+(2+n)/(2+(3+n)/(3+...))) converges to the rational number A052852(n)/A000262(n). - David Angell (angell(AT)maths.unsw.edu.au), Dec 18 2008
Vladeta Jovovic's formula dated Sep 20 2006 can be restated as follows: a(n) is the n-th ascending factorial moment of the Poisson distribution with parameter (mean) 1. - Shai Covo (green355(AT)netvision.net.il), Jan 25 2010
The umbral exponential generating function for a(n) is (1-x)^{-B}. In other words, write (1-x)^{-B} as a power series in x whose coefficients are polynomials in B, and then replace B^k with the Bell number B_k. We obtain a(0) + a(1)x + a(2)x^2/2! + ... . - Richard Stanley, Jun 07 2010
a(n) is the number of Dyck n-paths (A000108) with its peaks labeled 1,2,...,k in some order, where k is the number of peaks. For example a(2)=3 counts U(1)DU(2)D, U(2)DU(1)D, UU(1)DD where the label at each peak is in parentheses. This is easy to prove using generating functions. - David Callan, Aug 23 2011
a(n) = number of permutations of the multiset {1,1,2,2,...,n,n} such that for 1 <= i <= n, all entries between the two i's exceed i and if any such entries are present, they include n. There are (2n-1)!! permutations satisfying the first condition, and for example: a(3)=13 counts all 5!!=15 of them except 331221 and 122133 which fail the second condition. - David Callan, Aug 27 2014
a(n) is the number of acyclic, injective functions from subsets of [n] to [n]. Let subset D of [n] have size k. The number of acyclic, injective functions from D to [n] is (n-1)!/(n-k-1)! and hence a(n) = Sum_{k=0..n-1} binomial(n,k)*(n-1)!/(n-k-1)!. - Dennis P. Walsh, Nov 05 2015
a(n) is the number of acyclic, injective, labeled directed graphs on n vertices with each vertex having outdegree at most one. - Dennis P. Walsh, Nov 05 2015
For n > 0, a(n) is the number of labeled-rooted skinny-tree forests on n nodes. A skinny tree is a tree in which each vertex has at most one child. Let k denote the number of trees. There are binomial(n,k) ways to choose the roots, binomial(n-1,k-1) ways to choose the number of descendants for each root, and (n-k)! ways to permute those descendants. Summing over k, we obtain a(n) = Sum_{k=1..n} C(n,k)*C(n-1,k-1)*(n-k)!. - Dennis P. Walsh, Nov 10 2015
This is the Sheffer transform of the Bell numbers A000110 with the Sheffer matrix S = |Stirling1| = (1, -log(1-x)) = A132393. See the e.g.f. formula, a Feb 21 2017 comment on A048993, and R. Stanley's Jun 07 2010 comment above. - Wolfdieter Lang, Feb 21 2017
All terms = {1, 3} mod 10. - Muniru A Asiru, Oct 01 2017
We conjecture that for k = 2,3,4,..., the difference a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k is periodic with period dividing k. - Peter Bala, Nov 14 2017
The above conjecture is true - see the Bala link. - Peter Bala, Jan 20 2018
The terms of this sequence can be derived from the numerators of the fractions, produced by the recursion: b(0) = 1, b(n) = 1 + ((n-1) * b(n-1)) / (n-1 + b(n-1)) for n > 0. The denominators give A002720. - Dimitris Valianatos, Aug 01 2018
a(n) is the number of rooted labeled forests on n nodes that avoid the patterns 213, 312, and 123. It is also the number of rooted labeled forests that avoid 312, 213, and 132, as well as the number of rooted labeled forests that avoid 132, 213, and 321. - Kassie Archer, Aug 30 2018
For n > 0, a(n) is the number of partitions of [2n-1] whose nontrivial blocks are of type {a,b}, with a <= n and b > n. In fact, for n > 0, a(n) = A056953(2n-1). - Francesca Aicardi, Nov 03 2022
For n > 0, a(n) is the number of ways to split n people into nonempty groups, have each group sit around a circular table, and select one person from each table (where two seating arrangements are considered identical if each person has the same left neighbors in both of them). - Enrique Navarrete, Oct 01 2023

Examples

			Illustration of first terms as sets of ordered lists of the first n integers:
  a(1) = 1  : (1)
  a(2) = 3  : (12), (21), (1)(2).
  a(3) = 13 : (123) (6 ways), (12)(3) (2*3 ways) (1)(2)(3) (1 way)
  a(4) = 73 : (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (2*2*3 ways), (12)(3)(4) (2*6 ways), (1)(2)(3)(4) (1 way).
G.f. = 1 + x + 3*x^2 + 13*x^3 + 73*x^4 + 501*x^4 + 4051*x^5 + 37633*x^6 + 394353*x^7 + ...
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 194.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A271703 and for n >= 1 of A008297. Unsigned row sums of A111596.
A002868 is maximal element of the n-th row of A271703 and for n >= 1 of A008297.
Main diagonal of A257740 and of A319501.

Programs

  • GAP
    a:=[1,1];; for n in [3..10^2] do a[n]:=(2*n-3)*a[n-1]-(n-2)*(n-3)*a[n-2]; od; A000262:=a;  # Muniru A Asiru, Oct 01 2017
    
  • Haskell
    a000262 n = a000262_list !! n
    a000262_list = 1 : 1 : zipWith (-)
                   (tail $ zipWith (*) a005408_list a000262_list)
                          (zipWith (*) a002378_list a000262_list)
    -- Reinhard Zumkeller, Mar 06 2014
    
  • Magma
    I:=[1,3]; [1] cat [n le 2 select I[n]  else (2*n-1)*Self(n-1) - (n-1)*(n-2)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 14 2019
    
  • Magma
    [Factorial(n)*Evaluate(LaguerrePolynomial(n, -1), -1): n in [0..30]]; // G. C. Greubel, Feb 23 2021
    
  • Maple
    A000262 := proc(n) option remember: if n=0 then RETURN(1) fi: if n=1 then RETURN(1) fi: (2*n-1)*procname(n-1) - (n-1)*(n-2)*procname(n-2) end proc:
    for n from 0 to 20 do printf(`%d,`,a(n)) od:
    spec := [S, {S = Set(Prod(Z,Sequence(Z)))}, labeled]; [seq(combstruct[count](spec, size=n), n=0..40)];
    with(combinat):seq(sum(abs(stirling1(n, k))*bell(k), k=0..n), n=0..18); # Zerinvary Lajos, Nov 26 2006
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=13)},labelled]: seq(combstruct[count](B, size=n), n=0..19);# Zerinvary Lajos, Mar 21 2009
    a := n -> `if`(n=0, 1, n!*hypergeom([1 - n], [2], -1)): seq(simplify(a(n)), n=0..19); # Peter Luschny, Jun 05 2014
  • Mathematica
    Range[0, 19]! CoefficientList[ Series[E^(x/(1-x)), {x, 0, 19}], x] (* Robert G. Wilson v, Apr 04 2005 *)
    a[ n_]:= If[ n<0, 0, n! SeriesCoefficient[ Exp[x/(1-x)], {x, 0, n}]]; (* Michael Somos, Jul 19 2005 *)
    a[n_]:=If[n==0, 1, n! Sum[Binomial[n-1, j]/(j+1)!, {j, 0, n-1}]]; Table[a[n], {n, 0, 30}] (* Wilf *)
    a[0] = 1; a[n_]:= n!*Hypergeometric1F1[n+1, 2, 1]/E; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jun 18 2012, after Shai Covo *)
    Table[Sum[BellY[n, k, Range[n]!], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
    a[ n_]:= If[ n<0, 0, n! SeriesCoefficient[ Product[ QPochhammer[x^k]^(-MoebiusMu[k]/k), {k, n}], {x, 0, n}]]; (* Michael Somos, Jun 02 2019 *)
    Table[n!*LaguerreL[n, -1, -1], {n, 0, 30}] (* G. C. Greubel, Feb 23 2021 *)
    RecurrenceTable[{a[n] == (2*n - 1)*a[n-1] - (n-1)*(n-2)*a[n-2], a[0] == 1, a[1] == 1}, a, {n, 0, 30}] (* Vaclav Kotesovec, Jul 21 2022 *)
  • Maxima
    makelist(sum(abs(stirling1(n,k))*belln(k),k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */
    
  • Maxima
    makelist(hypergeometric([-n+1,-n],[],1),n,0,12); /* Emanuele Munarini, Sep 27 2016 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x / (1 - x) + x * O(x^n)), n))}; /* Michael Somos, Feb 10 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( prod( k=1, n, eta(x^k + x * O(x^n))^( -moebius(k) / k)), n))}; /* Michael Somos, Feb 10 2005 */
    
  • PARI
    {a(n) = s = 1; for(k = 1, n-1, s = 1 + k * s / (k + s)); return( numerator(s))}; /* Dimitris Valianatos, Aug 03 2018 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n))^(-eulerphi(k) / k)), n))}; /* Michael Somos, Jun 02 2019 */
    
  • PARI
    a(n) = if (n==0, 1, (n-1)!*pollaguerre(n-1,1,-1)); \\ Michel Marcus, Feb 23 2021; Jul 13 2024
    
  • Python
    from sympy import hyper, hyperexpand
    def A000262(n): return hyperexpand(hyper((-n+1, -n), [], 1)) # Chai Wah Wu, Jan 14 2022
  • Sage
    A000262 = lambda n: hypergeometric([-n+1, -n], [], 1)
    [simplify(A000262(n)) for n in (0..19)] # Peter Luschny, Apr 08 2015
    

Formula

D-finite with recurrence: a(n) = (2*n-1)*a(n-1) - (n-1)*(n-2)*a(n-2).
E.g.f.: exp( x/(1-x) ).
a(n) = Sum_{k=0..n} |A008275(n,k)| * A000110(k). - Vladeta Jovovic, Feb 01 2003
a(n) = (n-1)!*LaguerreL(n-1,1,-1) for n >= 1. - Vladeta Jovovic, May 10 2003
Representation as n-th moment of a positive function on positive half-axis: a(n) = Integral_{x=0..oo} x^n*exp(-x-1)*BesselI(1, 2*x^(1/2))/x^(1/2) dx, n >= 1. - Karol A. Penson, Dec 04 2003
a(n) = Sum_{k=0..n} A001263(n, k)*k!. - Philippe Deléham, Dec 10 2003
a(n) = n! Sum_{j=0..n-1} binomial(n-1, j)/(j+1)!, for n > 0. - Herbert S. Wilf, Jun 14 2005
Asymptotic expansion for large n: a(n) -> (0.4289*n^(-1/4) + 0.3574*n^(-3/4) - 0.2531*n^(-5/4) + O(n^(-7/4)))*(n^n)*exp(-n + 2*sqrt(n)). - Karol A. Penson, Aug 28 2002
Minor part of this asymptotic expansion is wrong! Right is (in closed form): a(n) ~ n^(n-1/4)*exp(-1/2+2*sqrt(n)-n)/sqrt(2) * (1 - 5/(48*sqrt(n)) - 95/(4608*n)), numerically a(n) ~ (0.42888194248*n^(-1/4) - 0.0446752023417*n^(-3/4) - 0.00884196713*n^(-5/4) + O(n^(-7/4))) *(n^n)*exp(-n+2*sqrt(n)). - Vaclav Kotesovec, Jun 02 2013
a(n) = exp(-1)*Sum_{m>=0} [m]^n/m!, where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial. - Vladeta Jovovic, Sep 20 2006
Recurrence: D(n,k) = D(n-1,k-1) + (n-1+k) * D(n-1,k) n >= k >= 0; D(n,0)=0. From this, D(n,1) = n! and D(n,n)=1; a(n) = Sum_{i=0..n} D(n,i). - Stephen Dalton (StephenMDalton(AT)gmail.com), Jan 05 2007
Proof: Notice two distinct subsets of the lists for [n]: 1) n is in its own list, then there are D(n-1,k-1); 2) n is in a list with other numbers. Denoting the separation of lists by |, it is not hard to see n has (n-1+k) possible positions, so (n-1+k) * D(n-1,k). - Stephen Dalton (StephenMDalton(AT)gmail.com), Jan 05 2007
Define f_1(x), f_2(x), ... such that f_1(x) = exp(x), f_{n+1}(x) = (d/dx)(x^2*f_n(x)), for n >= 2. Then a(n-1) = exp(-1)*f_n(1). - Milan Janjic, May 30 2008
a(n) = (n-1)! * Sum_{k=1..n} (a(n-k)*k!)/((n-k)!*(k-1)!), where a(0)=1. - Thomas Wieder, Sep 10 2008
a(n) = exp(-1)*n!*M(n+1,2,1), n >= 1, where M (=1F1) is the confluent hypergeometric function of the first kind. - Shai Covo (green355(AT)netvision.net.il), Jan 20 2010
a(n) = n!* A067764(n) / A067653(n). - Gary Detlefs, May 15 2010
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x)^2*d/dx. Cf. A000110, A049118, A049119 and A049120. - Peter Bala, Nov 25 2011
From Sergei N. Gladkovskii, Nov 17 2011, Aug 02 2012, Dec 11 2012, Jan 27 2013, Jul 31 2013, Dec 25 2013: (Start)
Continued fractions:
E.g.f.: Q(0) where Q(k) = 1+x/((1-x)*(2k+1)-x*(1-x)*(2k+1)/(x+(1-x)*(2k+2)/Q(k+1))).
E.g.f.: 1 + x/(G(0)-x) where G(k) = (1-x)*k + 1 - x*(1-x)*(k+1)/G(k+1).
E.g.f.: exp(x/(1-x)) = 4/(2-(x/(1-x))*G(0))-1 where G(k) = 1 - x^2/(x^2 + 4*(1-x)^2*(2*k+1)*(2*k+3)/G(k+1) ).
E.g.f.: 1 + x*(E(0)-1)/(x+1) where E(k) = 1 + 1/(k+1)/(1-x)/(1-x/(x+1/E(k+1) )).
E.g.f.: E(0)/2, where E(k) = 1 + 1/(1 - x/(x + (k+1)*(1-x)/E(k+1) )).
E.g.f.: E(0)-1, where E(k) = 2 + x/( (2*k+1)*(1-x) - x/E(k+1) ).
(End)
E.g.f.: Product {n >= 1} ( (1 + x^n)/(1 - x^n) )^( phi(2*n)/(2*n) ), where phi(n) = A000010(n) is the Euler totient function. Cf. A088009. - Peter Bala, Jan 01 2014
a(n) = n!*hypergeom([1-n],[2],-1) for n >= 1. - Peter Luschny, Jun 05 2014
a(n) = (-1)^(n-1)*KummerU(1-n,2,-1). - Peter Luschny, Sep 17 2014
a(n) = hypergeom([-n+1, -n], [], 1) for n >= 0. - Peter Luschny, Apr 08 2015
E.g.f.: Product_{k>0} exp(x^k). - Franklin T. Adams-Watters, May 11 2016
0 = a(n)*(18*a(n+2) - 93*a(n+3) + 77*a(n+4) - 17*a(n+5) + a(n+6)) + a(n+1)*(9*a(n+2) - 80*a(n+3) + 51*a(n+4) - 6*a(n+5)) + a(n+2)*(3*a(n+2) - 34*a(n+3) + 15*a(n+4)) + a(n+3)*(-10*a(n+3)) if n >= 0. - Michael Somos, Feb 27 2017
G.f. G(x)=y satisfies a differential equation: (1-x)*y-2*(1-x)*x^2*y'+x^4*y''=1. - Bradley Klee, Aug 13 2018
a(n) = n! * LaguerreL(n, -1, -1) = c_{n}(n-1; -1) where c_{n}(x; a) are the Poisson - Charlier polynomials. - G. C. Greubel, Feb 23 2021
3 divides a(3*n-1); 9 divides a(9*n-1); 11 divides a(11*n-1). - Peter Bala, Mar 26 2022
For n > 0, a(n) = Sum_{k=0..n-1}*k!*C(n-1,k)*C(n,k). - Francesca Aicardi, Nov 03 2022
For n > 0, a(n) = (n-1)! * (Sum_{i=0..n-1} A002720(i) / i!). - Werner Schulte, Mar 29 2024
a(n+1) = numerator of (1 + n/(1 + n/(1 + (n-1)/(1 + (n-1)/(1 + ... + 1/(1 + 1/(1))))))). See A002720 for the denominators. - Peter Bala, Feb 11 2025

A001286 Lah numbers: a(n) = (n-1)*n!/2.

Original entry on oeis.org

1, 6, 36, 240, 1800, 15120, 141120, 1451520, 16329600, 199584000, 2634508800, 37362124800, 566658892800, 9153720576000, 156920924160000, 2845499424768000, 54420176498688000, 1094805903679488000, 23112569077678080000, 510909421717094400000
Offset: 2

Views

Author

Keywords

Comments

Number of surjections from {1,...,n} to {1,...,n-1}. - Benoit Cloitre, Dec 05 2003
First Eulerian transform of 0,1,2,3,4,... . - Ross La Haye, Mar 05 2005
With offset 0 : determinant of the n X n matrix m(i,j)=(i+j+1)!/i!/j!. - Benoit Cloitre, Apr 11 2005
These numbers arise when expressing n(n+1)(n+2)...(n+k)[n+(n+1)+(n+2)+...+(n+k)] as sums of squares: n(n+1)[n+(n+1)] = 6(1+4+9+16+ ... + n^2), n(n+1)(n+2)(n+(n+1)+(n+2)) = 36(1+(1+4)+(1+4+9)+...+(1+4+9+16+ ... + n^2)), n(n+1)(n+2)(n+3)(n+(n+1)+(n+2)+(n+3)) = 240(...), ... . - Alexander R. Povolotsky, Oct 16 2006
a(n) is the number of edges in the Hasse diagram for the weak Bruhat order on the symmetric group S_n. For permutations p,q in S_n, q covers p in the weak Bruhat order if p,q differ by an adjacent transposition and q has one more inversion than p. Thus 23514 covers 23154 due to the transposition that interchanges the third and fourth entries. Cf. A002538 for the strong Bruhat order. - David Callan, Nov 29 2007
a(n) is also the number of excedances in all permutations of {1,2,...,n} (an excedance of a permutation p is a value j such p(j)>j). Proof: j is exceeded (n-1)! times by each of the numbers j+1, j+2, ..., n; now, Sum_{j=1..n} (n-j)(n-1)! = n!(n-1)/2. Example: a(3)=6 because the number of excedances of the permutations 123, 132, 312, 213, 231, 321 are 0, 1, 1, 1, 2, 1, respectively. - Emeric Deutsch, Dec 15 2008
(-1)^(n+1)*a(n) is the determinant of the n X n matrix whose (i,j)-th element is 0 for i = j, is j-1 for j>i, and j for j < i. - Michel Lagneau, May 04 2010
Row sums of the triangle in A030298. - Reinhard Zumkeller, Mar 29 2012
a(n) is the total number of ascents (descents) over all n-permutations. a(n) = Sum_{k=1..n} A008292(n,k)*k. - Geoffrey Critzer, Jan 06 2013
For m>=4, a(m-2) is the number of Hamiltonian cycles in a simple graph with m vertices which is complete, except for one edge. Proof: think of distinct round-table seatings of m persons such that persons "1" and "2" may not be neighbors; the count is (m-3)(m-2)!/2. See also A001710. - Stanislav Sykora, Jun 17 2014
Popularity of left (right) children in treeshelves. Treeshelves are ordered binary (0-1-2) increasing trees where every child is connected to its parent by a left or a right link. Popularity is the sum of a certain statistic (number of left children, in this case) over all objects of size n. See A278677, A278678 or A278679 for more definitions and examples. See A008292 for the distribution of the left (right) children in treeshelves. - Sergey Kirgizov, Dec 24 2016

Examples

			G.f. = x^2 + 6*x^3 + 36*x^4 + 240*x^5 + 1800*x^6 + 15120*x^7 + 141120*x^8 + ...
a(10) = (1+2+3+4+5+6+7+8+9)*(1*2*3*4*5*6*7*8*9) = 16329600. - _Reinhard Zumkeller_, May 15 2010
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 90, ex. 4.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A002868 is an essentially identical sequence.
Column 2 of |A008297|.
Third column (m=2) of triangle |A111596(n, m)|: matrix product of |S1|.S2 Stirling number matrices.
Cf. also A000110, A000111.

Programs

Formula

a(n) = Sum_{i=0..n-1} (-1)^(n-i-1) * i^n * binomial(n-1,i). - Yong Kong (ykong(AT)curagen.com), Dec 26 2000 [corrected by Amiram Eldar, May 02 2022]
E.g.f.: x^2/[2(1-x)^2]. - Ralf Stephan, Apr 02 2004
a(n+1) = (-1)^(n+1)*det(M_n) where M_n is the n X n matrix M_(i,j)=max(i*(i+1)/2,j*(j+1)/2). - Benoit Cloitre, Apr 03 2004
Row sums of table A051683. - Alford Arnold, Sep 29 2006
5th binomial transform of A135218: (1, 1, 1, 25, 25, 745, 3145, ...). - Gary W. Adamson, Nov 23 2007
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n)=(-1)^n*f(n,2,-2), (n>=2). - Milan Janjic, Mar 01 2009
a(n) = A000217(n-1)*A000142(n-1). - Reinhard Zumkeller, May 15 2010
a(n) = (n+1)!*Sum_{k=1..n-1} 1/(k^2+3*k+2). - Gary Detlefs, Sep 14 2011
Sum_{n>=2} 1/a(n) = 2*(2 - exp(1) - gamma + Ei(1)) = 1.19924064599..., where gamma = A001620 and Ei(1) = A091725. - Ilya Gutkovskiy, Nov 24 2016
a(n+1) = a(n)*n*(n+1)/(n-1). - Chai Wah Wu, Apr 11 2018
Sum_{n>=2} (-1)^n/a(n) = 2*(gamma - Ei(-1)) - 2/e, where e = A001113 and Ei(-1) = -A099285. - Amiram Eldar, May 02 2022

A035342 The convolution matrix of the double factorial of odd numbers (A001147).

Original entry on oeis.org

1, 3, 1, 15, 9, 1, 105, 87, 18, 1, 945, 975, 285, 30, 1, 10395, 12645, 4680, 705, 45, 1, 135135, 187425, 82845, 15960, 1470, 63, 1, 2027025, 3133935, 1595790, 370125, 43890, 2730, 84, 1, 34459425, 58437855, 33453945, 8998290
Offset: 1

Views

Author

Keywords

Comments

Previous name was: A triangle of numbers related to the triangle A035324; generalization of Stirling numbers of second kind A008277 and Lah numbers A008297.
If one replaces in the recurrence the '2' by '0', resp. '1', one obtains the Lah-number, resp. Stirling-number of 2nd kind, triangle A008297, resp. A008277.
The product of two lower triangular Jabotinsky matrices (see A039692 for the Knuth 1992 reference) is again such a Jabotinsky matrix: J(n,m) = Sum_{j=m..n} J1(n,j)*J2(j,m). The e.g.f.s of the first columns of these triangular matrices are composed in the reversed order: f(x)=f2(f1(x)). With f1(x)=-(log(1-2*x))/2 for J1(n,m)=|A039683(n,m)| and f2(x)=exp(x)-1 for J2(n,m)=A008277(n,m) one has therefore f2(f1(x))=1/sqrt(1-2*x) - 1 = f(x) for J(n,m)=a(n,m). This proves the matrix product given below. The m-th column of a Jabotinsky matrix J(n,m) has e.g.f. (f(x)^m)/m!, m>=1.
a(n,m) gives the number of forests with m rooted ordered trees with n non-root vertices labeled in an organic way. Organic labeling means that the vertex labels along the (unique) path from the root with label 0 to any leaf (non-root vertex of degree 1) is increasing. Proof: first for m=1 then for m>=2 using the recurrence relation for a(n,m) given below. - Wolfdieter Lang, Aug 07 2007
Also the Bell transform of A001147(n+1) (adding 1,0,0,... as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Matrix begins:
    1;
    3,   1;
   15,   9,   1;
  105,  87,  18,   1;
  945, 975, 285,  30,   1;
  ...
Combinatoric meaning of a(3,2)=9: The nine increasing path sequences for the three rooted ordered trees with leaves labeled with 1,2,3 and the root labels 0 are: {(0,3),[(0,1),(0,2)]}; {(0,3),[(0,2),(0,1)]}; {(0,3),(0,1,2)}; {(0,1),[(0,3),(0,2)]}; [(0,1),[(0,2),(0,3)]]; [(0,2),[(0,1),(0,3)]]; {(0,2),[(0,3),(0,1)]}; {(0,1),(0,2,3)}; {(0,2),(0,1,3)}.
		

Crossrefs

The column sequences are A001147, A035101, A035119, ...
Row sums: A049118(n), n >= 1.

Programs

  • Haskell
    a035342 n k = a035342_tabl !! (n-1) !! (k-1)
    a035342_row n = a035342_tabl !! (n-1)
    a035342_tabl = map fst $ iterate (\(xs, i) -> (zipWith (+)
       ([0] ++ xs) $ zipWith (*) [i..] (xs ++ [0]), i + 2)) ([1], 3)
    -- Reinhard Zumkeller, Mar 12 2014
    
  • Maple
    T := (n,k) -> 2^(k-n)*hypergeom([k-n,k+1],[k-2*n+1],2)*GAMMA(2*n-k)/
    (GAMMA(k)*GAMMA(n-k+1)); for n from 1 to 9 do seq(simplify(T(n,k)),k=1..n) od; # Peter Luschny, Mar 31 2015
    T := (n, k) -> local j; 2^n*add((-1)^(k-j)*binomial(k, j)*pochhammer(j/2, n), j = 1..k)/k!: for n from 1 to 6 do seq(T(n, k), k=1..n) od;  # Peter Luschny, Mar 04 2024
  • Mathematica
    a[n_, k_] := 2^(n+k)*n!/(4^n*n*k!)*Sum[(j+k)*2^(j)*Binomial[j + k - 1, k-1]*Binomial[2*n - j - k - 1, n-1], {j, 0, n-k}]; Flatten[Table[a[n,k], {n, 1, 9}, {k, 1, n}] ] [[1 ;; 40]] (* Jean-François Alcover, Jun 01 2011, after Vladimir Kruchinin *)
  • Maxima
    a(n,k):=2^(n+k)*n!/(4^n*n*k!)*sum((j+k)*2^(j)*binomial(j+k-1,k-1)*binomial(2*n-j-k-1,n-1),j,0,n-k); /* Vladimir Kruchinin, Mar 30 2011 */
    
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    print(bell_matrix(lambda n: A001147(n+1), 9)) # Peter Luschny, Jan 19 2016

Formula

a(n, m) = Sum_{j=m..n} |A039683(n, j)|*S2(j, m) (matrix product), with S2(j, m) := A008277(j, m) (Stirling2 triangle). Priv. comm. to Wolfdieter Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the comment on products of Jabotinsky matrices.
a(n, m) = n!*A035324(n, m)/(m!*2^(n-m)), n >= m >= 1; a(n+1, m)= (2*n+m)*a(n, m)+a(n, m-1); a(n, m) := 0, n
E.g.f. of m-th column: ((x*c(x/2)/sqrt(1-2*x))^m)/m!, where c(x) = g.f. for Catalan numbers A000108.
From Vladimir Kruchinin, Mar 30 2011: (Start)
G.f. (1/sqrt(1-2*x) - 1)^k = Sum_{n>=k} (k!/n!)*a(n,k)*x^n.
a(n,k) = 2^(n+k) * n! / (4^n*n*k!) * Sum_{j=0..n-k} (j+k) * 2^(j) * binomial(j+k-1,k-1) * binomial(2*n-j-k-1,n-1). (End)
From Peter Bala, Nov 25 2011: (Start)
E.g.f.: G(x,t) = exp(t*A(x)) = 1 + t*x + (3*t + t^2)*x^2/2! + (15*t + 9*t^2 + t^3)*x^3/3! + ..., where A(x) = -1 + 1/sqrt(1-2*x) satisfies the autonomous differential equation A'(x) = (1+A(x))^3.
The generating function G(x,t) satisfies the partial differential equation t*(dG/dt+G) = (1-2*x)*dG/dx, from which follows the recurrence given above.
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^3*d/dx. Cf. A008277 (D = (1+x)*d/dx), A105278 (D = (1+x)^2*d/dx), A035469 (D = (1+x)^4*d/dx) and A049029 (D = (1+x)^5*d/dx). (End)
The n-th row polynomial R(n,x) is given by the Dobinski-type formula R(n,x) = exp(-x)*Sum_{k>=1} k*(k+2)*...*(k+2*n-2)*x^k/k!. - Peter Bala, Jun 22 2014
T(n,k) = 2^(k-n)*hypergeom([k-n,k+1],[k-2*n+1],2)*Gamma(2*n-k)/(Gamma(k)*Gamma(n-k+1)). - Peter Luschny, Mar 31 2015
T(n,k) = 2^n*Sum_{j=1..k} ((-1)^(k-j)*binomial(k, j)*Pochhammer(j/2, n)) / k!. - Peter Luschny, Mar 04 2024

Extensions

Simpler name from Peter Luschny, Mar 31 2015

A094638 Triangle read by rows: T(n,k) = |s(n,n+1-k)|, where s(n,k) are the signed Stirling numbers of the first kind A008276 (1 <= k <= n; in other words, the unsigned Stirling numbers of the first kind in reverse order).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 11, 6, 1, 10, 35, 50, 24, 1, 15, 85, 225, 274, 120, 1, 21, 175, 735, 1624, 1764, 720, 1, 28, 322, 1960, 6769, 13132, 13068, 5040, 1, 36, 546, 4536, 22449, 67284, 118124, 109584, 40320, 1, 45, 870, 9450, 63273, 269325, 723680, 1172700, 1026576, 362880
Offset: 1

Author

André F. Labossière, May 17 2004

Keywords

Comments

Triangle of coefficients of the polynomial (x+1)(x+2)...(x+n), expanded in decreasing powers of x. - T. D. Noe, Feb 22 2008
Row n also gives the number of permutation of 1..n with complexity 0,1,...,n-1. See the comments in A008275. - N. J. A. Sloane, Feb 08 2019
T(n,k) is the number of deco polyominoes of height n and having k columns. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: T(2,1)=1 and T(2,2)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 1 and 2 columns. - Emeric Deutsch, Aug 14 2006
Sum_{k=1..n} k*T(n,k) = A121586. - Emeric Deutsch, Aug 14 2006
Let the triangle U(n,k), 0 <= k <= n, read by rows, be given by [1,0,1,0,1,0,1,0,1,0,1,...] DELTA [1,1,2,2,3,3,4,4,5,5,6,...] where DELTA is the operator defined in A084938; then T(n,k) = U(n-1,k-1). - Philippe Deléham, Jan 06 2007
From Tom Copeland, Dec 15 2007: (Start)
Consider c(t) = column vector(1, t, t^2, t^3, t^4, t^5, ...).
Starting at 1 and sampling every integer to the right, we obtain (1,2,3,4,5,...). And T * c(1) = (1, 1*2, 1*2*3, 1*2*3*4,...), giving n! for n > 0. Call this sequence the right factorial (n+)!.
Starting at 1 and sampling every integer to the left, we obtain (1,0,-1,-2,-3,-4,-5,...). And T * c(-1) = (1, 1*0, 1*0*-1, 1*0*-1*-2,...) = (1, 0, 0, 0, ...), the left factorial (n-)!.
Sampling every other integer to the right, we obtain (1,3,5,7,9,...). T * c(2) = (1, 1*3, 1*3*5, ...) = (1,3,15,105,945,...), giving A001147 for n > 0, the right double factorial, (n+)!!.
Sampling every other integer to the left, we obtain (1,-1,-3,-5,-7,...). T * c(-2) = (1, 1*-1, 1*-1*-3, 1*-1*-3*-5,...) = (1,-1,3,-15,105,-945,...) = signed A001147, the left double factorial, (n-)!!.
Sampling every 3 steps to the right, we obtain (1,4,7,10,...). T * c(3) = (1, 1*4, 1*4*7,...) = (1,4,28,280,...), giving A007559 for n > 0, the right triple factorial, (n+)!!!.
Sampling every 3 steps to the left, we obtain (1,-2,-5,-8,-11,...), giving T * c(-3) = (1, 1*-2, 1*-2*-5, 1*-2*-5*-8,...) = (1,-2,10,-80,880,...) = signed A008544, the left triple factorial, (n-)!!!.
The list partition transform A133314 of [1,T * c(t)] gives [1,T * c(-t)] with all odd terms negated; e.g., LPT[1,T*c(2)] = (1,-1,-1,-3,-15,-105,-945,...) = (1,-A001147). And e.g.f. for [1,T * c(t)] = (1-xt)^(-1/t).
The above results hold for t any real or complex number. (End)
Let R_n(x) be the real and I_n(x) the imaginary part of Product_{k=0..n} (x + I*k). Then, for n=1,2,..., we have R_n(x) = Sum_{k=0..floor((n+1)/2)}(-1)^k*Stirling1(n+1,n+1-2*k)*x^(n+1-2*k), I_n(x) = Sum_{k=0..floor(n/2)}(-1)^(k+1)*Stirling1(n+1,n-2*k)*x^(n-2*k). - Milan Janjic, May 11 2008
T(n,k) is also the number of permutations of n with "reflection length" k (i.e., obtained from 12..n by k not necessarily adjacent transpositions). For example, when n=3, 132, 213, 321 are obtained by one transposition, while 231 and 312 require two transpositions. - Kyle Petersen, Oct 15 2008
From Tom Copeland, Nov 02 2010: (Start)
[x^(y+1) D]^n = x^(n*y) [T(n,1)(xD)^n + T(n,2)y (xD)^(n-1) + ... + T(n,n)y^(n-1)(xD)], with D the derivative w.r.t. x.
E.g., [x^(y+1) D]^4 = x^(4*y) [(xD)^4 + 6 y(xD)^3 + 11 y^2(xD)^2 + 6 y^3(xD)].
(xD)^m can be further expanded in terms of the Stirling numbers of the second kind and operators of the form x^j D^j. (End)
With offset 0, 0 <= k <= n: T(n,k) is the sum of products of each size k subset of {1,2,...,n}. For example, T(3,2) = 11 because there are three subsets of size two: {1,2},{1,3},{2,3}. 1*2 + 1*3 + 2*3 = 11. - Geoffrey Critzer, Feb 04 2011
The Kn11, Fi1 and Fi2 triangle sums link this triangle with two sequences, see the crossrefs. For the definitions of these triangle sums see A180662. The mirror image of this triangle is A130534. - Johannes W. Meijer, Apr 20 2011
T(n+1,k+1) is the elementary symmetric function a_k(1,2,...,n), n >= 0, k >= 0, (a_0(0):=1). See the T. D. Noe and Geoffrey Critzer comments given above. For a proof see the Stanley reference, p. 19, Second Proof. - Wolfdieter Lang, Oct 24 2011
Let g(t) = 1/d(log(P(j+1,-t)))/dt (see Tom Copeland's 2007 formulas). The Mellin transform (t to s) of t*Dirac[g(t)] gives Sum_{n=1..j} n^(-s), which as j tends to infinity gives the Riemann zeta function for Re(s) > 1. Dirac(x) is the Dirac delta function. The complex contour integral along a circle of radius 1 centered at z=1 of z^s/g(z) gives the same result. - Tom Copeland, Dec 02 2011
Rows are coefficients of the polynomial expansions of the Pochhammer symbol, or rising factorial, Pch(n,x) = (x+n-1)!/(x-1)!. Expansion of Pch(n,xD) = Pch(n,Bell(.,:xD:)) in a polynomial with terms :xD:^k=x^k*D^k gives the Lah numbers A008297. Bell(n,x) are the unsigned Bell polynomials or Stirling polynomials of the second kind A008277. - Tom Copeland, Mar 01 2014
From Tom Copeland, Dec 09 2016: (Start)
The Betti numbers, or dimension, of the pure braid group cohomology. See pp. 12 and 13 of the Hyde and Lagarias link.
Row polynomials and their products appear in presentation of the Jack symmetric functions of R. Stanley. See Copeland link on the Witt differential generator.
(End)
From Tom Copeland, Dec 16 2019: (Start)
The e.g.f. given by Copeland in the formula section appears in a combinatorial Dyson-Schwinger equation of quantum field theory in Yeats in Thm. 2 on p. 62 related to a Hopf algebra of rooted trees. See also the Green function on p. 70.
Per comments above, this array contains the coefficients in the expansion in polynomials of the Euler, or state number, operator xD of the rising factorials Pch(n,xD) = (xD+n-1)!/(xD-1)! = x [:Dx:^n/n!]x^{-1} = L_n^{-1}(-:xD:), where :Dx:^n = D^n x^n and :xD:^n = x^n D^n. The polynomials L_n^{-1} are the Laguerre polynomials of order -1, i.e., normalized Lah polynomials.
The Witt differential operators L_n = x^(n+1) D and the row e.g.f.s appear in Hopf and dual Hopf algebra relations presented by Foissy. The Witt operators satisfy L_n L_k - L_k L_n = (k-n) L_(n+k), as for the dual Hopf algebra. (End)

Examples

			Triangle starts:
  1;
  1,  1;
  1,  3,  2;
  1,  6, 11,  6;
  1, 10, 35, 50, 24;
...
		

References

  • M. Miyata and J. W. Son, On the complexity of permutations and the metric space of bijections, Tensor, 60 (1998), No. 1, 109-116 (MR1768839).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 18, equations 18:4:2 - 18:4:8 at page 151.
  • R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997.

Crossrefs

A008276 gives the (signed) Stirling numbers of the first kind.
Cf. A000108, A014137, A001246, A033536, A000984, A094639, A006134, A082894, A002897, A079727, A000217 (2nd column), A000914 (3rd column), A001303 (4th column), A000915 (5th column), A053567 (6th column), A000142 (row sums).
Triangle sums (see the comments): A124380 (Kn11), A001710 (Fi1, Fi2). - Johannes W. Meijer, Apr 20 2011

Programs

  • GAP
    Flat(List([1..10], n-> List([1..n], k-> Stirling1(n,n-k+1) ))); # G. C. Greubel, Dec 29 2019
  • Haskell
    a094638 n k = a094638_tabl !! (n-1) !! (k-1)
    a094638_row n = a094638_tabl !! (n-1)
    a094638_tabl = map reverse a130534_tabl
    -- Reinhard Zumkeller, Aug 01 2014
    
  • Magma
    [(-1)^(k+1)*StirlingFirst(n,n-k+1): k in [1..n], n in [1..10]]; // G. C. Greubel, Dec 29 2019
    
  • Maple
    T:=(n,k)->abs(Stirling1(n,n+1-k)): for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form. # Emeric Deutsch, Aug 14 2006
  • Mathematica
    Table[CoefficientList[Series[Product[1 + i x, {i,n}], {x,0,20}], x], {n,0,6}] (* Geoffrey Critzer, Feb 04 2011 *)
    Table[Abs@StirlingS1[n, n-k+1], {n, 10}, {k, n}]//Flatten (* Michael De Vlieger, Aug 29 2015 *)
  • Maxima
    create_list(abs(stirling1(n+1,n-k+1)),n,0,10,k,0,n); /* Emanuele Munarini, Jun 01 2012 */
    
  • PARI
    {T(n,k)=if(n<1 || k>n,0,(n-1)!*polcoeff(polcoeff(x*y/(1 - x*y+x*O(x^n))^(1 + 1/y),n,x),k,y))} /* Paul D. Hanna, Jul 21 2011 */
    
  • Sage
    [[stirling_number1(n, n-k+1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Dec 29 2019
    

Formula

With P(n,t) = Sum_{k=0..n-1} T(n,k+1) * t^k = 1*(1+t)*(1+2t)...(1+(n-1)*t) and P(0,t)=1, exp[P(.,t)*x] = (1-tx)^(-1/t). T(n,k+1) = (1/k!) (D_t)^k (D_x)^n [ (1-tx)^(-1/t) - 1 ] evaluated at t=x=0. (1-tx)^(-1/t) - 1 is the e.g.f. for a plane m-ary tree when t=m-1. See Bergeron et al. in "Varieties of Increasing Trees". - Tom Copeland, Dec 09 2007
First comment and formula above rephrased as o.g.f. for row n: Product_{i=0...n} (1+i*x). - Geoffrey Critzer, Feb 04 2011
n-th row polynomials with alternate signs are the characteristic polynomials of the (n-1)x(n-1) matrices with 1's in the superdiagonal, (1,2,3,...) in the main diagonal, and the rest zeros. For example, the characteristic polynomial of [1,1,0; 0,2,1; 0,0,3] is x^3 - 6*x^2 + 11*x - 6. - Gary W. Adamson, Jun 28 2011
E.g.f.: A(x,y) = x*y/(1 - x*y)^(1 + 1/y) = Sum_{n>=1, k=1..n} T(n,k)*x^n*y^k/(n-1)!. - Paul D. Hanna, Jul 21 2011
With F(x,t) = (1-t*x)^(-1/t) - 1 an e.g.f. for the row polynomials P(n,t) of A094638 with P(0,t)=0, G(x,t)= [1-(1+x)^(-t)]/t is the comp. inverse in x. Consequently, with H(x,t) = 1/(dG(x,t)/dx) = (1+x)^(t+1),
P(n,t) = [(H(x,t)*d/dx)^n] x evaluated at x=0; i.e.,
F(x,t) = exp[x*P(.,t)] = exp[x*H(u,t)*d/du] u, evaluated at u = 0.
Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 20 2011
T(n,k) = |A008276(n,k)|. - R. J. Mathar, May 19 2016
The row polynomials of this entry are the reversed row polynomials of A143491 multiplied by (1+x). E.g., (1+x)(1 + 5x + 6x^2) = (1 + 6x + 11x^2 + 6x^3). - Tom Copeland, Dec 11 2016
Regarding the row e.g.f.s in Copeland's 2007 formulas, e.g.f.s for A001710, A001715, and A001720 give the compositional inverses of the e.g.f. here for t = 2, 3, and 4 respectively. - Tom Copeland, Dec 28 2019

Extensions

Edited by Emeric Deutsch, Aug 14 2006

A105278 Triangle read by rows: T(n,k) = binomial(n,k)*(n-1)!/(k-1)!.

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 24, 36, 12, 1, 120, 240, 120, 20, 1, 720, 1800, 1200, 300, 30, 1, 5040, 15120, 12600, 4200, 630, 42, 1, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, 362880, 1451520, 1693440, 846720, 211680, 28224, 2016, 72, 1, 3628800, 16329600
Offset: 1

Author

Miklos Kristof, Apr 25 2005

Keywords

Comments

T(n,k) is the number of partially ordered sets (posets) on n elements that consist entirely of k chains. For example, T(4, 3)=12 since there are exactly 12 posets on {a,b,c,d} that consist entirely of 3 chains. Letting ab denote a<=b and using a slash "/" to separate chains, the 12 posets can be given by a/b/cd, a/b/dc, a/c/bd, a/c/db, a/d/bc, a/d/cb, b/c/ad, b/c/da, b/d/ac, b/d/ca, c/d/ab and c/d/ba, where the listing of the chains is arbitrary (e.g., a/b/cd = a/cd/b =...cd/b/a). - Dennis P. Walsh, Feb 22 2007
Also the matrix product |S1|.S2 of Stirling numbers of both kinds.
This Lah triangle is a lower triangular matrix of the Jabotinsky type. See the column e.g.f. and the D. E. Knuth reference given in A008297. - Wolfdieter Lang, Jun 29 2007
The infinitesimal matrix generator of this matrix is given in A132710. See A111596 for an interpretation in terms of circular binary words and generalized factorials. - Tom Copeland, Nov 22 2007
Three combinatorial interpretations: T(n,k) is (1) the number of ways to split [n] = {1,...,n} into a collection of k nonempty lists ("partitions into sets of lists"), (2) the number of ways to split [n] into an ordered collection of n+1-k nonempty sets that are noncrossing ("partitions into lists of noncrossing sets"), (3) the number of Dyck n-paths with n+1-k peaks labeled 1,2,...,n+1-k in some order. - David Callan, Jul 25 2008
Given matrices A and B with A(n,k) = T(n,k)*a(n-k) and B(n,k) = T(n,k)*b(n-k), then A*B = D where D(n,k) = T(n,k)*[a(.)+b(.)]^(n-k), umbrally. - Tom Copeland, Aug 21 2008
An e.g.f. for the row polynomials of A(n,k) = T(n,k)*a(n-k) is exp[a(.)* D_x * x^2] exp(x*t) = exp(x*t) exp[(.)!*Lag(.,-x*t,1)*a(.)*x], umbrally, where [(.)! Lag(.,x,1)]^n = n! Lag(n,x,1) is a normalized Laguerre polynomial of order 1. - Tom Copeland, Aug 29 2008
Triangle of coefficients from the Bell polynomial of the second kind for f = 1/(1-x). B(n,k){x1,x2,x3,...} = B(n,k){1/(1-x)^2,...,(j-1)!/(1-x)^j,...} = T(n,k)/(1-x)^(n+k). - Vladimir Kruchinin, Mar 04 2011
The triangle, with the row and column offset taken as 0, is the generalized Riordan array (exp(x), x) with respect to the sequence n!*(n+1)! as defined by Wang and Wang (the generalized Riordan array (exp(x), x) with respect to the sequence n! is Pascal's triangle A007318, and with respect to the sequence n!^2 is A021009 unsigned). - Peter Bala, Aug 15 2013
For a relation to loop integrals in QCD, see p. 33 of Gopakumar and Gross and Blaizot and Nowak. - Tom Copeland, Jan 18 2016
Also the Bell transform of (n+1)!. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
Also the number of k-dimensional flats of the n-dimensional Shi arrangement. - Shuhei Tsujie, Apr 26 2019
The numbers T(n,k) appear as coefficients when expanding the rising factorials (x)^k = x(x+1)...(x+k-1) in the basis of falling factorials (x)k = x(x-1)...(x-k+1). Specifically, (x)^n = Sum{k=1..n} T(n,k) (x)k. - _Jeremy L. Martin, Apr 21 2021

Examples

			T(1,1) = C(1,1)*0!/0! = 1,
T(2,1) = C(2,1)*1!/0! = 2,
T(2,2) = C(2,2)*1!/1! = 1,
T(3,1) = C(3,1)*2!/0! = 6,
T(3,2) = C(3,2)*2!/1! = 6,
T(3,3) = C(3,3)*2!/2! = 1,
Sheffer a-sequence recurrence: T(6,2)= 1800 = (6/3)*120 + 6*240.
B(n,k) =
   1/(1-x)^2;
   2/(1-x)^3,  1/(1-x)^4;
   6/(1-x)^4,  6/(1-x)^5,  1/(1-x)^6;
  24/(1-x)^5, 36/(1-x)^6, 12/(1-x)^7, 1/(1-x)^8;
The triangle T(n,k) begins:
  n\k      1       2       3      4      5     6    7  8  9 ...
  1:       1
  2:       2       1
  3:       6       6       1
  4:      24      36      12      1
  5:     120     240     120     20      1
  6:     720    1800    1200    300     30     1
  7:    5040   15120   12600   4200    630    42    1
  8:   40320  141120  141120  58800  11760  1176   56  1
  9:  362880 1451520 1693440 846720 211680 28224 2016 72  1
  ...
Row n=10: [3628800, 16329600, 21772800, 12700800, 3810240, 635040, 60480, 3240, 90, 1]. - _Wolfdieter Lang_, Feb 01 2013
From _Peter Bala_, Feb 24 2025: (Start)
The array factorizes as an infinite product (read from right to left):
  /  1                \        /1             \^m /1           \^m /1           \^m
  |  2    1            |      | 0   1          |  |0  1         |  |1  1         |
  |  6    6   1        | = ...| 0   0   1      |  |0  1  1      |  |0  2  1      |
  | 24   36  12   1    |      | 0   0   1  1   |  |0  0  2  1   |  |0  0  3  1   |
  |120  240 120  20   1|      | 0   0   0  2  1|  |0  0  0  3  1|  |0  0  0  4  1|
  |...                 |      |...             |  |...          |  |...          |
where m = 2. Cf. A008277 (m = 1), A035342 (m = 3), A035469 (m = 4), A049029 (m = 5) A049385 (m = 6), A092082 (m = 7), A132056 (m = 8), A223511 - A223522 (m = 9 through 20), A001497 (m = -1), A004747 (m = -2), A000369 (m = -3), A011801 (m = -4), A013988 (m = -5). (End)
		

Crossrefs

Triangle of Lah numbers (A008297) unsigned.
Cf. A111596 (signed triangle with extra n=0 row and m=0 column).
Cf. A130561 (for a natural refinement).
Cf. A094638 (for differential operator representation).
Cf. A248045 (central terms), A002868 (row maxima).
Cf, A059110.
Cf. A089231 (triangle with mirrored rows).
Cf. A271703 (triangle with extra n=0 row and m=0 column).

Programs

  • GAP
    Flat(List([1..10],n->List([1..n],k->Binomial(n,k)*Factorial(n-1)/Factorial(k-1)))); # Muniru A Asiru, Jul 25 2018
  • Haskell
    a105278 n k = a105278_tabl !! (n-1) !! (k-1)
    a105278_row n = a105278_tabl !! (n-1)
    a105278_tabl = [1] : f [1] 2 where
       f xs i = ys : f ys (i + 1) where
         ys = zipWith (+) ([0] ++ xs) (zipWith (*) [i, i + 1 ..] (xs ++ [0]))
    -- Reinhard Zumkeller, Sep 30 2014, Mar 18 2013
    
  • Magma
    /* As triangle */ [[Binomial(n,k)*Factorial(n-1)/Factorial(k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 31 2014
    
  • Maple
    The triangle: for n from 1 to 13 do seq(binomial(n,k)*(n-1)!/(k-1)!,k=1..n) od;
    the sequence: seq(seq(binomial(n,k)*(n-1)!/(k-1)!,k=1..n),n=1..13);
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ...) as column 0.
    BellMatrix(n -> (n+1)!, 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    nn = 9; a = x/(1 - x); f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y a], {x, 0, nn}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 11 2011 *)
    nn = 9; Flatten[Table[(j - k)! Binomial[j, k] Binomial[j - 1, k - 1], {j, nn}, {k, j}]] (* Jan Mangaldan, Mar 15 2013 *)
    rows = 10;
    t = Range[rows]!;
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
    T[n_, n_] := 1; T[n_, k_] /;0Oliver Seipel, Dec 06 2024 *)
  • Perl
    use ntheory ":all"; say join ", ", map { my $n=$; map { stirling($n,$,3) } 1..$n; } 1..9; # Dana Jacobsen, Mar 16 2017
    

Formula

T(n,k) = Sum_{m=n..k} |S1(n,m)|*S2(m,k), k>=n>=1, with Stirling triangles S2(n,m):=A048993 and S1(n,m):=A048994.
T(n,k) = C(n,k)*(n-1)!/(k-1)!.
Sum_{k=1..n} T(n,k) = A000262(n).
n*Sum_{k=1..n} T(n,k) = A103194(n) = Sum_{k=1..n} T(n,k)*k^2.
E.g.f. column k: (x^(k-1)/(1-x)^(k+1))/(k-1)!, k>=1.
Recurrence from Sheffer (here Jabotinsky) a-sequence [1,1,0,...] (see the W. Lang link under A006232): T(n,k)=(n/k)*T(n-1,m-1) + n*T(n-1,m). - Wolfdieter Lang, Jun 29 2007
The e.g.f. is, umbrally, exp[(.)!* L(.,-t,1)*x] = exp[t*x/(1-x)]/(1-x)^2 where L(n,t,1) = Sum_{k=0..n} T(n+1,k+1)*(-t)^k = Sum_{k=0..n} binomial(n+1,k+1)* (-t)^k / k! is the associated Laguerre polynomial of order 1. - Tom Copeland, Nov 17 2007
For this Lah triangle, the n-th row polynomial is given umbrally by
n! C(B.(x)+1+n,n) = (-1)^n C(-B.(x)-2,n), where C(x,n)=x!/(n!(x-n)!),
the binomial coefficient, and B_n(x)= exp(-x)(xd/dx)^n exp(x), the n-th Bell / Touchard / exponential polynomial (cf. A008277). E.g.,
2! C(-B.(-x)-2,2) = (-B.(x)-2)(-B.(x)-3) = B_2(x) + 5*B_1(x) + 6 = 6 + 6x + x^2.
n! C(B.(x)+1+n,n) = n! e^(-x) Sum_{j>=0} C(j+1+n,n)x^j/j! is a corresponding Dobinski relation. See the Copeland link for the relation to inverse Mellin transform. - Tom Copeland, Nov 21 2011
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^2*d/dx. Cf. A008277 (D = (1+x)*d/dx), A035342 (D = (1+x)^3*d/dx), A035469 (D = (1+x)^4*d/dx) and A049029 (D = (1+x)^5*d/dx). - Peter Bala, Nov 25 2011
T(n,k) = Sum_{i=k..n} A130534(n-1,i-1)*A008277(i,k). - Reinhard Zumkeller, Mar 18 2013
Let E(x) = Sum_{n >= 0} x^n/(n!*(n+1)!). Then a generating function is exp(t)*E(x*t) = 1 + (2 + x)*t + (6 + 6*x + x^2)*t^2/(2!*3!) + (24 + 36*x + 12*x^2 + x^3)*t^3/(3!*4!) + ... . - Peter Bala, Aug 15 2013
P_n(x) = L_n(1+x) = n!*Lag_n(-(1+x);1), where P_n(x) are the row polynomials of A059110; L_n(x), the Lah polynomials of A105278; and Lag_n(x;1), the Laguerre polynomials of order 1. These relations follow from the relation between the iterated operator (x^2 D)^n and ((1+x)^2 D)^n with D = d/dx. - Tom Copeland, Jul 23 2018
Dividing each n-th diagonal by n!, where the main diagonal is n=1, generates the Narayana matrix A001263. - Tom Copeland, Sep 23 2020
T(n,k) = A089231(n,n-k). - Ron L.J. van den Burg, Dec 12 2021
T(n,k) = T(n-1,k-1) + (n+k-1)*T(n-1,k). - Bérénice Delcroix-Oger, Jun 25 2025

Extensions

Stirling comments and e.g.f.s from Wolfdieter Lang, Apr 11 2007

A049029 Triangle read by rows, the Bell transform of the quartic factorial numbers A007696(n+1) without column 0.

Original entry on oeis.org

1, 5, 1, 45, 15, 1, 585, 255, 30, 1, 9945, 5175, 825, 50, 1, 208845, 123795, 24150, 2025, 75, 1, 5221125, 3427515, 775845, 80850, 4200, 105, 1, 151412625, 108046575, 27478710, 3363045, 219450, 7770, 140, 1, 4996616625, 3824996175, 1069801425
Offset: 1

Keywords

Comments

Previous name was: Triangle of numbers related to triangle A048882; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297, ...
a(n,m) enumerates unordered n-vertex m-forests composed of m plane increasing quintic (5-ary) trees. Proof based on the a(n,m) recurrence. See also the F. Bergeron et al. reference, especially Table 1, first row and Example 1 for the e.g.f. for m=1. - Wolfdieter Lang, Sep 14 2007
Also the Bell transform of A007696(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

Examples

			Triangle starts:
{1};
{5,1};
{45,15,1};
{585,255,30,1};
{9945,5175,825,50,1};
...
		

Crossrefs

a(n, m) := S2(5, n, m) is the fifth triangle of numbers in the sequence S2(1, n, m) := A008277(n, m) (Stirling 2nd kind), S2(2, n, m) := A008297(n, m) (Lah), S2(3, n, m) := A035342(n, m), S2(4, n, m) := A035469(n, m). a(n, 1)= A007696(n). A007559(n).
Cf. A048882, A007696. Row sums: A049120(n), n >= 1.

Programs

Formula

a(n, m) = n!*A048882(n, m)/(m!*4^(n-m)); a(n+1, m) = (4*n+m)*a(n, m)+ a(n, m-1), n >= m >= 1; a(n, m) := 0, n
a(n, m) = sum(|A051142(n, j)|*S2(j, m), j=m..n) (matrix product), with S2(j, m) := A008277(j, m) (Stirling2 triangle). Priv. comm. to W. Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the general comment on products of Jabotinsky matrices given under A035342.
From Peter Bala, Nov 25 2011: (Start)
E.g.f.: G(x,t) = exp(t*A(x)) = 1+t*x+(5*t+t^2)*x^2/2!+(45*t+15*t^2+t^3)*x^3/3!+..., where A(x) = -1+(1-4*x)^(-1/4) satisfies the autonomous differential equation A'(x) = (1+A(x))^5.
The generating function G(x,t) satisfies the partial differential equation t*(dG/dt+G) = (1-4*x)*dG/dx, from which follows the recurrence given above.
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^5*d/dx. Cf. A008277 (D = (1+x)*d/dx), A105278 (D = (1+x)^2*d/dx), A035342 (D = (1+x)^3*d/dx) and A035469 (D = (1+x)^4*d/dx).
(End)

Extensions

New name from Peter Luschny, Jan 30 2016

A111596 The matrix inverse of the unsigned Lah numbers A271703.

Original entry on oeis.org

1, 0, 1, 0, -2, 1, 0, 6, -6, 1, 0, -24, 36, -12, 1, 0, 120, -240, 120, -20, 1, 0, -720, 1800, -1200, 300, -30, 1, 0, 5040, -15120, 12600, -4200, 630, -42, 1, 0, -40320, 141120, -141120, 58800, -11760, 1176, -56, 1, 0, 362880, -1451520, 1693440, -846720, 211680, -28224, 2016, -72, 1
Offset: 0

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Comments

Also the associated Sheffer triangle to Sheffer triangle A111595.
Coefficients of Laguerre polynomials (-1)^n * n! * L(n,-1,x), which equals (-1)^n * Lag(n,x,-1) below. Lag(n,Lag(.,x,-1),-1) = x^n evaluated umbrally, i.e., with (Lag(.,x,-1))^k = Lag(k,x,-1). - Tom Copeland, Apr 26 2014
Without row n=0 and column m=0 this is, up to signs, the Lah triangle A008297.
The unsigned column sequences are (with leading zeros): A000142, A001286, A001754, A001755, A001777, A001778, A111597-A111600 for m=1..10.
The row polynomials p(n,x) := Sum_{m=0..n} a(n,m)*x^m, together with the row polynomials s(n,x) of A111595 satisfy the exponential (or binomial) convolution identity s(n,x+y) = Sum_{k=0..n} binomial(n,k)*s(k,x)*p(n-k,y), n>=0.
Exponential Riordan array [1,x/(1+x)]. Inverse of the exponential Riordan array [1,x/(1-x)], which is the unsigned version of A111596. - Paul Barry, Apr 12 2007
For the unsigned subtriangle without column number m=0 and row number n=0, see A105278.
Unsigned triangle also matrix product |S1|*S2 of Stirling number matrices.
The unsigned row polynomials are Lag(n,-x,-1), the associated Laguerre polynomials of order -1 with negated argument. See Gradshteyn and Ryzhik, Abramowitz and Stegun and Rota (Finite Operator Calculus) for extensive formulas. - Tom Copeland, Nov 17 2007, Sep 09 2008
An infinitesimal matrix generator for unsigned A111596 is given by A132792. - Tom Copeland, Nov 22 2007
From the formalism of A132792 and A133314 for n > k, unsigned A111596(n,k) = a(k) * a(k+1)...a(n-1) / (n-k)! = a generalized factorial, where a(n) = A002378(n) = n-th term of first subdiagonal of unsigned A111596. Hence Deutsch's remark in A002378 provides an interpretation of A111596(n,k) in terms of combinations of certain circular binary words. - Tom Copeland, Nov 22 2007
Given T(n,k)= A111596(n,k) and matrices A and B with A(n,k) = T(n,k)*a(n-k) and B(n,k) = T(n,k)*b(n-k), then A*B = C where C(n,k) = T(n,k)*[a(.)+b(.)]^(n-k), umbrally. - Tom Copeland, Aug 27 2008
Operationally, the unsigned row polynomials may be expressed as p_n(:xD:) = x*:Dx:^n*x^{-1}=x*D^nx^n*x^{-1}= n!*binomial(xD+n-1,n) = (-1)^n n! binomial(-xD,n) = n!L(n,-1,-:xD:), where, by definition, :AB:^n = A^nB^n for any two operators A and B, D = d/dx, and L(n,-1,x) is the Laguerre polynomial of order -1. A similarity transformation of the operators :Dx:^n generates the higher order Laguerre polynomials, which can also be expressed in terms of rising or falling factorials or Kummer's confluent hypergeometric functions (cf. the Mathoverflow post). - Tom Copeland, Sep 21 2019

Examples

			Binomial convolution of row polynomials: p(3,x) = 6*x-6*x^2+x^3; p(2,x) = -2*x+x^2, p(1,x) = x, p(0,x) = 1,
together with those from A111595: s(3,x) = 9*x-6*x^2+x^3; s(2,x) = 1-2*x+x^2, s(1,x) = x, s(0,x) = 1; therefore
9*(x+y)-6*(x+y)^2+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = (6*y-6*y^2+y^3) + 3*x*(-2*y+y^2) + 3*(1-2*x+x^2)*y + 9*x-6*x^2+x^3.
From _Wolfdieter Lang_, Apr 28 2014: (Start)
The triangle a(n,m) begins:
n\m  0     1       2       3      4     5   6  7
0:   1
1:   0     1
2:   0    -2       1
3:   0     6      -6       1
4:   0   -24      36     -12      1
5:   0   120    -240     120    -20     1
6:   0  -720    1800   -1200    300   -30   1
7:   0  5040  -15120   12600  -4200   630 -42  1
...
For more rows see the link.
(End)
		

Crossrefs

Row sums: A111884. Unsigned row sums: A000262.
A002868 gives maximal element (in magnitude) in each row.
Cf. A130561 for a natural refinement.
Cf. A264428, A264429, A271703 (unsigned).
Cf. A008297, A089231, A105278 (variants).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n::odd, -(n+1)!, (n+1)!), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    a[0, 0] = 1; a[n_, m_] := ((-1)^(n-m))*(n!/m!)*Binomial[n-1, m-1]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *)
    T[ n_, k_] := (-1)^n n! Coefficient[ LaguerreL[ n, -1, x], x, k]; (* Michael Somos, Dec 15 2014 *)
    rows = 9;
    t = Table[(-1)^(n+1) n!, {n, 1, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}]  // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • PARI
    {T(n, k) = if( n<1 || k<1, n==0 && k==0, (-1)^n * n! * polcoeff( sum(k=1, n, binomial( n-1, k-1) * (-x)^k / k!), k))}; /* Michael Somos, Dec 15 2014 */
  • Sage
    lah_number = lambda n, k: factorial(n-k)*binomial(n,n-k)*binomial(n-1,n-k)
    A111596_row = lambda n: [(-1)^(n-k)*lah_number(n, k) for k in (0..n)]
    for n in range(10): print(A111596_row(n)) # Peter Luschny, Oct 05 2014
    
  • Sage
    # uses[inverse_bell_transform from A264429]
    def A111596_matrix(dim):
        fact = [factorial(n) for n in (1..dim)]
        return inverse_bell_transform(dim, fact)
    A111596_matrix(10) # Peter Luschny, Dec 20 2015
    

Formula

E.g.f. m-th column: ((x/(1+x))^m)/m!, m>=0.
E.g.f. for row polynomials p(n, x) is exp(x*y/(1+y)).
a(n, m) = ((-1)^(n-m))*|A008297(n, m)| = ((-1)^(n-m))*(n!/m!)*binomial(n-1, m-1), n>=m>=1; a(0, 0)=1; else 0.
a(n, m) = -(n-1+m)*a(n-1, m) + a(n-1, m-1), n>=m>=0, a(n, -1):=0, a(0, 0)=1; a(n, m)=0 if n
|a(n,m)| = Sum_{k=m..n} |S1(n,k)|*S2(k,m), n>=0. S2(n,m):=A048993. S1(n,m):=A048994. - Wolfdieter Lang, May 04 2007
From Tom Copeland, Nov 21 2011: (Start)
For this Lah triangle, the n-th row polynomial is given umbrally by
(-1)^n n! binomial(-Bell.(-x),n), where Bell_n(-x)= exp(x)(xd/dx)^n exp(-x), the n-th Bell / Touchard / exponential polynomial with neg. arg., (cf. A008277). E.g., 2! binomial(-Bell.(-x),2) = -Bell.(-x)*(-Bell.(-x)-1) = Bell_2(-x)+Bell_1(-x) = -2x+x^2.
A Dobinski relation is (-1)^n n! binomial(-Bell.(-x),n)= (-1)^n n! e^x Sum_{j>=0} (-1)^j binomial(-j,n)x^j/j!= n! e^x Sum_{j>=0} (-1)^j binomial(j-1+n,n)x^j/j!. See the Copeland link for the relation to inverse Mellin transform. (End)
The n-th row polynomial is (-1/x)^n e^x (x^2*D_x)^n e^(-x). - Tom Copeland, Oct 29 2012
Let f(.,x)^n = f(n,x) = x!/(x-n)!, the falling factorial,and r(.,x)^n = r(n,x) = (x-1+n)!/(x-1)!, the rising factorial, then the Lah polynomials, Lah(n,t)= n!*Sum{k=1..n} binomial(n-1,k-1)(-t)^k/k! (extra sign factor on odd rows), give the transform Lah(n,-f(.,x))= r(n,x), and Lah(n,r(.,x))= (-1)^n * f(n,x). - Tom Copeland, Oct 04 2014
|T(n,k)| = Sum_{j=0..2*(n-k)} A254881(n-k,j)*k^j/(n-k)!. Note that A254883 is constructed analogously from A254882. - Peter Luschny, Feb 10 2015
The T(n,k) are the inverse Bell transform of [1!,2!,3!,...] and |T(n,k)| are the Bell transform of [1!,2!,3!,...]. See A264428 for the definition of the Bell transform and A264429 for the definition of the inverse Bell transform. - Peter Luschny, Dec 20 2015
Dividing each n-th diagonal by n!, where the main diagonal is n=1, generates a shifted, signed Narayana matrix A001263. - Tom Copeland, Sep 23 2020

Extensions

New name using a comment from Wolfdieter Lang by Peter Luschny, May 10 2021
Previous Showing 21-30 of 107 results. Next