cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 228 results. Next

A032766 Numbers that are congruent to 0 or 1 (mod 3).

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 42, 43, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 78, 79, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 102, 103
Offset: 0

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Omitting the initial 0, a(n) is the number of 1's in the n-th row of the triangle in A118111. - Hans Havermann, May 26 2002
Binomial transform is A053220. - Michael Somos, Jul 10 2003
Smallest number of different people in a set of n-1 photographs that satisfies the following conditions: In each photograph there are 3 women, the woman in the middle is the mother of the person on her left and is a sister of the person on her right and the women in the middle of the photographs are all different. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Sep 22 2006
Partial sums of A000034. - Richard Choulet, Jan 28 2010
Starting with 1 = row sums of triangle A171370. - Gary W. Adamson, Feb 15 2010
a(n) is the set of values for m in which 6k + m can be a perfect square (quadratic residues of 6 including trivial case of 0). - Gary Detlefs, Mar 19 2010
For n >= 2, a(n) is the smallest number with n as an anti-divisor. - Franklin T. Adams-Watters, Oct 28 2011
Sequence is also the maximum number of floors with 3 elevators and n stops in a "Convenient Building". See A196592 and Erich Friedman link below. - Robert Price, May 30 2013
a(n) is also the total number of coins left after packing 4-curves patterns (4c2) into a fountain of coins base n. The total number of 4c2 is A002620 and voids left is A000982. See illustration in links. - Kival Ngaokrajang, Oct 26 2013
Number of partitions of 6n into two even parts. - Wesley Ivan Hurt, Nov 15 2014
Number of partitions of 3n into exactly 2 parts. - Colin Barker, Mar 23 2015
Nonnegative m such that floor(2*m/3) = 2*floor(m/3). - Bruno Berselli, Dec 09 2015
For n >= 3, also the independence number of the n-web graph. - Eric W. Weisstein, Dec 31 2015
Equivalently, nonnegative numbers m for which m*(m+2)/3 and m*(m+5)/6 are integers. - Bruno Berselli, Jul 18 2016
Also the clique covering number of the n-Andrásfai graph for n > 0. - Eric W. Weisstein, Mar 26 2018
Maximum sum of degeneracies over all decompositions of the complete graph of order n+1 into three factors. The extremal decompositions are characterized in the Bickle link below. - Allan Bickle, Dec 21 2021
Also the Hadwiger number of the n-cocktail party graph. - Eric W. Weisstein, Apr 30 2022
The number of integer rectangles with a side of length n+1 and the property: the bisectors of the angles form a square within its limits. - Alexander M. Domashenko, Oct 17 2024
The maximum possible number of 5-cycles in an outerplanar graph on n+4 vertices. - Stephen Bartell, Jul 10 2025

Crossrefs

Cf. A006578 (partial sums), A000034 (first differences), A016789 (complement).
Essentially the same: A049624.
Column 1 (the second leftmost) of triangular table A026374.
Column 1 (the leftmost) of square array A191450.
Row 1 of A254051.
Row sums of A171370.
Cf. A066272 for anti-divisors.
Cf. A253888 and A254049 (permutations of this sequence without the initial zero).
Cf. A254103 and A254104 (pair of permutations based on this sequence and its complement).

Programs

  • Haskell
    a032766 n = div n 2 + n  -- Reinhard Zumkeller, Dec 13 2014
    (MIT/GNU Scheme) (define (A032766 n) (+ n (floor->exact (/ n 2)))) ;; Antti Karttunen, Jan 24 2015
    
  • Magma
    &cat[ [n, n+1]: n in [0..100 by 3] ]; // Vincenzo Librandi, Nov 16 2014
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+3 od: seq(a[n], n=0..69); # Zerinvary Lajos, Mar 16 2008
    seq(floor(n/2)+n, n=0..69); # Gary Detlefs, Mar 19 2010
    select(n->member(n mod 3,{0,1}), [$0..103]); # Peter Luschny, Apr 06 2014
  • Mathematica
    a[n_] := a[n] = 2a[n - 1] - 2a[n - 3] + a[n - 4]; a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 4; Array[a, 60, 0] (* Robert G. Wilson v, Mar 28 2011 *)
    Select[Range[0, 200], MemberQ[{0, 1}, Mod[#, 3]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
    Flatten[{#,#+1}&/@(3Range[0,40])] (* or *) LinearRecurrence[{1,1,-1}, {0,1,3}, 100] (* or *) With[{nn=110}, Complement[Range[0,nn], Range[2,nn,3]]] (* Harvey P. Dale, Mar 10 2013 *)
    CoefficientList[Series[x (1 + 2 x) / ((1 - x) (1 - x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Nov 16 2014 *)
    Floor[3 Range[0, 69]/2] (* L. Edson Jeffery, Jan 14 2017 *)
    Drop[Range[0,110],{3,-1,3}] (* Harvey P. Dale, Sep 02 2023 *)
  • PARI
    {a(n) = n + n\2}
    
  • PARI
    concat(0, Vec(x*(1+2*x)/((1-x)*(1-x^2)) + O(x^100))) \\ Altug Alkan, Dec 09 2015
    
  • SageMath
    [int(3*n//2) for n in range(101)] # G. C. Greubel, Jun 23 2024

Formula

G.f.: x*(1+2*x)/((1-x)*(1-x^2)).
a(-n) = -A007494(n).
a(n) = A049615(n, 2), for n > 2.
From Paul Barry, Sep 04 2003: (Start)
a(n) = (6n - 1 + (-1)^n)/4.
a(n) = floor((3n + 2)/2) - 1 = A001651(n) - 1.
a(n) = sqrt(2) * sqrt( (6n-1) (-1)^n + 18n^2 - 6n + 1 )/4.
a(n) = Sum_{k=0..n} 3/2 - 2*0^k + (-1)^k/2. (End)
a(n) = 3*floor(n/2) + (n mod 2) = A007494(n) - A000035(n). - Reinhard Zumkeller, Apr 04 2005
a(n) = 2 * A004526(n) + A004526(n+1). - Philippe Deléham, Aug 07 2006
a(n) = 1 + ceiling(3*(n-1)/2). - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Sep 22 2006
Row sums of triangle A133083. - Gary W. Adamson, Sep 08 2007
a(n) = (cos(Pi*n) - 1)/4 + 3*n/2. - Bart Snapp (snapp(AT)coastal.edu), Sep 18 2008
A004396(a(n)) = n. - Reinhard Zumkeller, Oct 30 2009
a(n) = floor(n/2) + n. - Gary Detlefs, Mar 19 2010
a(n) = 3n - a(n-1) - 2, for n>0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
a(n) = n + (n-1) - (n-2) + (n-3) - ... 1 = A052928(n) + A008619(n-1). - Jaroslav Krizek, Mar 22 2011
a(n) = a(n-1) + a(n-2) - a(n-3). - Robert G. Wilson v, Mar 28 2011
a(n) = Sum_{k>=0} A030308(n,k) * A003945(k). - Philippe Deléham, Oct 17 2011
a(n) = 2n - ceiling(n/2). - Wesley Ivan Hurt, Oct 25 2013
a(n) = A000217(n) - 2 * A002620(n-1). - Kival Ngaokrajang, Oct 26 2013
a(n) = Sum_{i=1..n} gcd(i, 2). - Wesley Ivan Hurt, Jan 23 2014
a(n) = 2n + floor((-n - (n mod 2))/2). - Wesley Ivan Hurt, Mar 31 2014
A092942(a(n)) = n for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n) = floor(3*n/2). - L. Edson Jeffery, Jan 18 2015
a(n) = A254049(A249745(n)) = (1+A007310(n)) / 2 for n >= 1. - Antti Karttunen, Jan 24 2015
E.g.f.: (3*x*exp(x) - sinh(x))/2. - Ilya Gutkovskiy, Jul 18 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) + log(3)/2. - Amiram Eldar, Dec 04 2021

Extensions

Better description from N. J. A. Sloane, Aug 01 1998

A059893 Reverse the order of all but the most significant bit in binary expansion of n: if n = 1ab..yz then a(n) = 1zy..ba.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 12, 10, 14, 9, 13, 11, 15, 16, 24, 20, 28, 18, 26, 22, 30, 17, 25, 21, 29, 19, 27, 23, 31, 32, 48, 40, 56, 36, 52, 44, 60, 34, 50, 42, 58, 38, 54, 46, 62, 33, 49, 41, 57, 37, 53, 45, 61, 35, 51, 43, 59, 39, 55, 47, 63, 64, 96, 80, 112, 72, 104, 88, 120
Offset: 1

Views

Author

Marc LeBrun, Feb 06 2001

Keywords

Comments

A self-inverse permutation of the natural numbers.
a(n)=n if and only if A081242(n) is a palindrome. - Clark Kimberling, Mar 12 2003
a(n) is the position in B of the reversal of the n-th term of B, where B is the left-to-right binary enumeration sequence (A081242 with the empty word attached as first term). - Clark Kimberling, Mar 12 2003
From Antti Karttunen, Oct 28 2001: (Start)
When certain Stern-Brocot tree-related permutations are conjugated with this permutation, they induce a permutation on Z (folded to N), which is an infinite siteswap permutation (see, e.g., figure 7 in the Buhler and Graham paper, which is permutation A065174). We get:
A065260(n) = a(A057115(a(n))),
A065266(n) = a(A065264(a(n))),
A065272(n) = a(A065270(a(n))),
A065278(n) = a(A065276(a(n))),
A065284(n) = a(A065282(a(n))),
A065290(n) = a(A065288(a(n))). (End)
Every nonnegative integer has a unique representation c(1) + c(2)*2 + c(3)*2^2 + c(4)*2^3 + ..., where every c(i) is 0 or 1. Taking tuples of coefficients in lexical order (i.e., 0, 1; 01,11; 001,011,101,111; ...) yields A059893. - Clark Kimberling, Mar 15 2015
From Ed Pegg Jr, Sep 09 2015: (Start)
The reduced rationals can be ordered either as the Calkin-Wilf tree A002487(n)/A002487(n+1) or the Stern-Brocot tree A007305(n+2)/A047679(n). The present sequence gives the order of matching rationals in the other sequence.
For reference, the Calkin-Wilf tree is 1, 1/2, 2, 1/3, 3/2, 2/3, 3, 1/4, 4/3, 3/5, 5/2, 2/5, 5/3, 3/4, 4, 1/5, 5/4, 4/7, 7/3, 3/8, 8/5, 5/7, 7/2, 2/7, 7/5, 5/8, 8/3, 3/7, 7/4, 4/5, ..., which is A002487(n)/A002487(n+1).
The Stern-Brocot tree is 1, 1/2, 2, 1/3, 2/3, 3/2, 3, 1/4, 2/5, 3/5, 3/4, 4/3, 5/3, 5/2, 4, 1/5, 2/7, 3/8, 3/7, 4/7, 5/8, 5/7, 4/5, 5/4, 7/5, 8/5, 7/4, 7/3, 8/3, 7/2, ..., which is A007305(n+2)/A047679(n).
There is a great little OEIS-is-useful story here. I had code for the position of fractions in the Calkin-Wilf tree. The best I had for positions of fractions in the Stern-Brocot tree was the paper "Locating terms in the Stern-Brocot tree" by Bruce Bates, Martin Bunder, Keith Tognetti. The method was opaque to me, so I used my Calkin-Wilf code on the Stern-Brocot fractions, and got A059893. And thus the problem was solved. (End)

Examples

			a(11) = a(1011) = 1110 = 14.
With empty word e prefixed, A081242 becomes (e,1,2,11,21,12,22,111,211,121,221,112,...); (reversal of term #9) = (term #12); i.e., a(9)=12 and a(12)=9. - _Clark Kimberling_, Mar 12 2003
From _Philippe Deléham_, Jun 02 2015: (Start)
This sequence regarded as a triangle with rows of lengths 1, 2, 4, 8, 16, ...:
   1;
   2,  3;
   4,  6,  5,  7;
   8, 12, 10, 14,  9,  13,  11,  15;
  16, 24, 20, 28, 18,  26,  22,  30,  17,  25,  21,  29,  19,  27,  23,  31;
  32, 48, 40, 56, 36,  52,  44, ...
Row sums = A010036. (End)
		

Crossrefs

{A000027, A054429, A059893, A059894} form a 4-group.
The set of permutations {A059893, A080541, A080542} generates an infinite dihedral group.
In other bases: A351702 (balanced ternary), A343150 (Zeckendorf), A343152 (lazy Fibonacci).

Programs

  • Haskell
    a059893 = foldl (\v b -> v * 2 + b) 1 . init . a030308_row
    -- Reinhard Zumkeller, May 01 2013
    (Scheme, with memoization-macro definec)
    (definec (A059893 n) (if (<= n 1) n (let* ((k (- (A000523 n) 1)) (r (A059893 (- n (A000079 k))))) (if (= 2 (floor->exact (/ n (A000079 k)))) (* 2 r) (+ 1 r)))))
    ;; Antti Karttunen, May 16 2015
    
  • Maple
    # Implements Bottomley's formula
    A059893 := proc(n) option remember; local k; if(1 = n) then RETURN(1); fi; k := floor_log_2(n)-1; if(2 = floor(n/(2^k))) then RETURN(2*A059893(n-(2^k))); else RETURN(1+A059893(n-(2^k))); fi; end;
    floor_log_2 := proc(n) local nn,i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end;
    # second Maple program:
    a:= proc(n) local i, m, r; m, r:= n, 0;
          for i from 0 while m>1 do r:= 2*r +irem(m,2,'m') od;
          r +2^i
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 28 2015
  • Mathematica
    A059893 = Reap[ For[n=1, n <= 100, n++, a=1; b=n; While[b > 1, a = 2*a + 2*FractionalPart[b/2]; b=Floor[b/2]]; Sow[a]]][[2, 1]] (* Jean-François Alcover, Jul 16 2012, after Harry J. Smith *)
    ro[n_]:=Module[{idn=IntegerDigits[n,2]},FromDigits[Join[{First[idn]}, Reverse[ Rest[idn]]],2]]; Array[ro,80] (* Harvey P. Dale, Oct 24 2012 *)
  • PARI
    a(n) = my(b=binary(n)); fromdigits(concat(b[1], Vecrev(vector(#b-1, k, b[k+1]))), 2); \\ Michel Marcus, Sep 29 2021
    
  • Python
    def a(n): return int('1' + bin(n)[3:][::-1], 2)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Mar 21 2017
  • R
    maxrow <- 6 # by choice
    a <- 1
    for(m in 0:maxrow) for(k in 0:(2^m-1)) {
      a[2^(m+1)+    k] <- 2*a[2^m+k]
      a[2^(m+1)+2^m+k] <- 2*a[2^m+k] + 1
    }
    a
    # Yosu Yurramendi, Mar 20 2017
    
  • R
    maxblock <- 7 # by choice
    a <- 1
    for(n in 2:2^maxblock){
      ones <- which(as.integer(intToBits(n)) == 1)
      nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)]
      anbit <- nbit
      anbit[1:(length(anbit) - 1)] <- anbit[rev(1:(length(anbit)-1))]
      a <- c(a, sum(anbit*2^(0:(length(anbit) - 1))))
    }
    a
    # Yosu Yurramendi, Apr 25 2021
    

Formula

a(n) = A030109(n) + A053644(n). If 2*2^k <= n < 3*2^k then a(n) = 2*a(n-2^k); if 3*2^k <= n < 4*2^k then a(n) = 1 + a(n-2^k) starting with a(1)=1. - Henry Bottomley, Sep 13 2001

A008587 Multiples of 5: a(n) = 5 * n.

Original entry on oeis.org

0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275
Offset: 0

Views

Author

Keywords

Comments

1/31 = 0.0322580645... = (1/2)^5 + (1/2)^10 + (1/2)^15 + ... - Gary W. Adamson, Mar 14 2009
Complement of A047201; A079998(a(n))=1; A011558(a(n))=0. - Reinhard Zumkeller, Nov 30 2009
The y-intercept of a line perpendicular to y=mx,where m is the slope a/b and in this case a=2 and b=1, is a^2 + b^2 or 5, the first value of the list given. The remaining value are multiples of the first number of the list. - Larry J Zimmermann, Aug 21 2010

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 85.

Crossrefs

Cf. index to numbers of the form n*(d*n+10-d)/2 in A140090.

Programs

Formula

From R. J. Mathar, May 26 2008: (Start)
O.g.f.: 5x/(1-x)^2.
a(n) = A008706(n), n > 0. (End)
a(n) = Sum_{k>=0} A030308(n,k)*A020714(k). - Philippe Deléham, Oct 17 2011
E.g.f.: 5*x*exp(x). - Stefano Spezia, Aug 19 2024

A030190 Binary Champernowne sequence (or word): write the numbers 0,1,2,3,4,... in base 2 and juxtapose.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

a(A003607(n)) = 0 and for n > 0: a(A030303(n)) = 1. - Reinhard Zumkeller, Dec 11 2011
An irregular table in which the n-th row lists the bits of n (see the example section). - Jason Kimberley, Dec 07 2012
The binary Champernowne constant: it is normal in base 2. - Jason Kimberley, Dec 07 2012
This is the characteristic function of A030303, which gives the indices of 1's in this sequence and has first differences given by A066099. - M. F. Hasler, Oct 12 2020

Examples

			As an array, this begins:
0,
1,
1, 0,
1, 1,
1, 0, 0,
1, 0, 1,
1, 1, 0,
1, 1, 1,
1, 0, 0, 0,
1, 0, 0, 1,
1, 0, 1, 0,
1, 0, 1, 1,
1, 1, 0, 0,
1, 1, 0, 1,
1, 1, 1, 0,
1, 1, 1, 1,
1, 0, 0, 0, 0,
1, 0, 0, 0, 1,
...
		

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

Cf. A007376, A003137, A030308. Same as and more fundamental than A030302, but I have left A030302 in the OEIS because there are several sequences that are based on it (A030303 etc.). - N. J. A. Sloane.
a(n) = T(A030530(n), A083652(A030530(n))-n-1), T as defined in A083651, a(A083652(k))=1.
Tables in which the n-th row lists the base b digits of n: this sequence and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012
A076478 is a similar sequence.
For run lengths see A056062; see also A318924.
See also A066099 for (run lengths of 0s) + 1 = first difference of positions of 1s given by A030303.

Programs

  • Haskell
    import Data.List (unfoldr)
    a030190 n = a030190_list !! n
    a030190_list = concatMap reverse a030308_tabf
    -- Reinhard Zumkeller, Jun 16 2012, Dec 11 2011
    
  • Magma
    [0]cat &cat[Reverse(IntegerToSequence(n,2)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    Flatten[ Table[ IntegerDigits[n, 2], {n, 0, 26}]] (* Robert G. Wilson v, Mar 08 2005 *)
    First[RealDigits[ChampernowneNumber[2], 2, 100, 0]] (* Paolo Xausa, Jun 16 2024 *)
  • PARI
    A030190_row(n)=if(n,binary(n),[0]) \\ M. F. Hasler, Oct 12 2020
    
  • Python
    from itertools import count, islice
    def A030190_gen(): return (int(d) for m in count(0) for d in bin(m)[2:])
    A030190_list = list(islice(A030190_gen(),30)) # Chai Wah Wu, Jan 07 2022

A044813 Positive integers having distinct base-2 run lengths.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 14, 15, 16, 24, 28, 30, 31, 32, 35, 39, 48, 49, 55, 57, 59, 60, 62, 63, 64, 67, 79, 96, 97, 111, 112, 120, 121, 123, 124, 126, 127, 128, 131, 135, 143, 159, 192, 193, 223, 224, 225, 239, 241, 247, 248, 249, 251, 252, 254, 255, 256, 259, 263
Offset: 1

Views

Author

Keywords

Comments

A005811(a(n)) = A165413(a(n)). - Reinhard Zumkeller, Mar 02 2013
From Emeric Deutsch, Jan 25 2018: (Start)
Also, the indices of the compositions that have distinct parts. For the definition of the index of a composition see A298644. For example, 223 is in the sequence since its binary form is 11011111 and the composition [2,1,5] has distinct parts. 100 is not in the sequence since its binary form is 1100100 and the parts of the composition [2,2,1,2] are not distinct.
The command c(n) from the Maple program yields the composition having index n. (End)

Crossrefs

Programs

  • Haskell
    import Data.List (group, nub)
    a044813 n = a044813_list !! (n-1)
    a044813_list = filter p [1..] where
       p x = nub xs == xs where
             xs = map length $ group $ a030308_row x
    -- Reinhard Zumkeller, Mar 02 2013
    
  • Maple
    Runs := proc (L) local j, r, i, k: j := 1: r[j] := L[1]: for i from 2 to nops(L) do if L[i] = L[i-1] then r[j] := r[j], L[i] else j := j+1: r[j] := L[i] end if end do: [seq([r[k]], k = 1 .. j)] end proc: RunLengths := proc (L) map(nops, Runs(L)) end proc: c := proc (n) ListTools:-Reverse(convert(n, base, 2)): RunLengths(%) end proc: A := {}: for n to 300 do if nops(convert(c(n), set)) = nops(c(n)) then A := `union`(A, {n}) else end if end do: A; # most of the Maple program is due to W. Edwin Clark. - Emeric Deutsch, Jan 25 2018
  • Mathematica
    f[n_] := Unequal@@Length/@Split[IntegerDigits[n,2]]; Select[Range[300],f] (* Ray Chandler, Oct 21 2011 *)
  • PARI
    is(n) = {
      my(v = 0, hist = vector(1 + logint(n+1, 2)));
      while(n != 0,
            v = valuation(n, 2); n >>= v; n++;
            hist[v+1]++; if (hist[v+1] >= 2, return(0));
            v = valuation(n, 2); n >>= v; n--;
            hist[v+1]++; if (hist[v+1] >= 2, return(0)));
      return(1);
    };
    seq(n) = {
      my(k = 1, top = 0, v = vector(n));
      while(top < n, if (is(k), v[top++] = k); k++);
      return(v);
    };
    seq(59) \\ Gheorghe Coserea, Nov 02 2015
    
  • Python
    from itertools import groupby
    def ok(n):
      runlengths = [len(list(g)) for k, g in groupby(bin(n)[2:])]
      return len(runlengths) == len(set(runlengths))
    print([i for i in range(1, 264) if ok(i)]) # Michael S. Branicky, Jan 04 2021

Formula

a(Sum_{k=0..n} A032020(k)) = 2^n, for n>1. - Gheorghe Coserea, May 30 2017

Extensions

Extended by Ray Chandler, Oct 21 2011

A053645 Distance to largest power of 2 less than or equal to n; write n in binary, change the first digit to zero, and convert back to decimal.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
Offset: 1

Views

Author

Henry Bottomley, Mar 22 2000

Keywords

Comments

Triangle read by rows in which row n lists the first 2^n nonnegative integers (A001477), n >= 0. Right border gives A000225. Row sums give A006516. See example. - Omar E. Pol, Oct 17 2013
Without the initial zero also: zeroless numbers in base 3 (A032924: 1, 2, 11, 12, 21, ...), ternary digits decreased by 1 and read as binary. - M. F. Hasler, Jun 22 2020

Examples

			From _Omar E. Pol_, Oct 17 2013: (Start)
Written as an irregular triangle the sequence begins:
  0;
  0,1;
  0,1,2,3;
  0,1,2,3,4,5,6,7;
  0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15;
  ...
(End)
		

Crossrefs

Programs

  • Haskell
    a053645 1 = 0
    a053645 n = 2 * a053645 n' + b  where (n', b) = divMod n 2
    -- Reinhard Zumkeller, Aug 28 2014
    a053645_list = concatMap (0 `enumFromTo`) a000225_list
    -- Reinhard Zumkeller, Feb 04 2013, Mar 23 2012
    
  • Magma
    [n - 2^Ilog2(n): n in [1..70]]; // Vincenzo Librandi, Jul 18 2019
    
  • Maple
    seq(n - 2^ilog2(n), n=1..1000); # Robert Israel, Dec 23 2015
  • Mathematica
    Table[n - 2^Floor[Log2[n]], {n, 100}] (* IWABUCHI Yu(u)ki, May 25 2017 *)
    Table[FromDigits[Rest[IntegerDigits[n, 2]], 2], {n, 100}] (* IWABUCHI Yu(u)ki, May 25 2017 *)
  • PARI
    a(n)=n-2^(#binary(n)-1) \\ Charles R Greathouse IV, Sep 02 2015
    
  • Python
    def a(n): return n - 2**(n.bit_length()-1)
    print([a(n) for n in range(1, 85)]) # Michael S. Branicky, Jul 03 2021
    
  • Python
    def A053645(n): return n&(1<Chai Wah Wu, Jan 22 2023

Formula

a(n) = n - 2^A000523(n).
G.f.: 1/(1-x) * ((2x-1)/(1-x) + Sum_{k>=1} 2^(k-1)*x^2^k). - Ralf Stephan, Apr 18 2003
a(n) = (A006257(n)-1)/2. - N. J. A. Sloane, May 16 2003
a(1) = 0, a(2n) = 2a(n), a(2n+1) = 2a(n) + 1. - N. J. A. Sloane, Sep 13 2003
a(n) = A062050(n) - 1. - N. J. A. Sloane, Jun 12 2004
a(A004760(n+1)) = n. - Reinhard Zumkeller, May 20 2009
a(n) = f(n-1,1) with f(n,m) = if n < m then n else f(n-m,2*m). - Reinhard Zumkeller, May 20 2009
Conjecture: a(n) = (1 - A036987(n-1))*(1 + a(n-1)) for n > 1 with a(1) = 0. - Mikhail Kurkov, Jul 16 2019

A049417 a(n) = isigma(n): sum of infinitary divisors of n.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 15, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 60, 26, 42, 40, 40, 30, 72, 32, 51, 48, 54, 48, 50, 38, 60, 56, 90, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 120, 72, 120, 80, 90, 60, 120, 62, 96, 80, 85, 84, 144, 68, 90
Offset: 1

Views

Author

Yasutoshi Kohmoto, Dec 11 1999

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.
This sequence is an infinitary analog of the Dedekind psi function A001615. Indeed, a(n) = Product_{q in Q_n}(q+1) = n*Product_{q in Q_n} (1+1/q), where {q} are terms of A050376 and Q_n is the set of distinct q's whose product is n. - Vladimir Shevelev, Apr 01 2014
1/a(n) is the asymptotic density of numbers that are infinitarily divided by n (i.e., numbers whose set of infinitary divisors includes n). - Amiram Eldar, Jul 23 2025

Examples

			If n = 8: 8 = 2^3 = 2^"11" (writing 3 in binary) so the infinitary divisors are 2^"00" = 1, 2^"01" = 2, 2^"10" = 4 and 2^"11" = 8; so a(8) = 1+2+4+8 = 15.
n = 90 = 2*5*9, where 2, 5, 9 are in A050376; so a(n) = 3*6*10 = 180. - _Vladimir Shevelev_, Feb 19 2011
		

Crossrefs

Cf. A049418 (3-infinitary), A074847 (4-infinitary), A097863 (5-infinitary).

Programs

  • Haskell
    a049417 1 = 1
    a049417 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f p e = product $ zipWith div
               (map (subtract 1 . (p ^)) $
                    zipWith (*) a000079_list $ map (+ 1) $ a030308_row e)
               (map (subtract 1 . (p ^)) a000079_list)
    -- Reinhard Zumkeller, Sep 18 2015
    
  • Maple
    isidiv := proc(d, n)
        local n2, d2, p, j;
        if n mod d <> 0 then
            return false;
        end if;
        for p in numtheory[factorset](n) do
            padic[ordp](n,p) ;
            n2 := convert(%, base, 2) ;
            padic[ordp](d,p) ;
            d2 := convert(%, base, 2) ;
            for j from 1 to nops(d2) do
                if op(j, n2) = 0 and op(j, d2) <> 0 then
                    return false;
                end if;
            end do:
        end do;
        return true;
    end proc:
    idivisors := proc(n)
        local a, d;
        a := {} ;
        for d in numtheory[divisors](n) do
            if isidiv(d, n) then
                a := a union {d} ;
            end if;
        end do:
        a ;
    end proc:
    A049417 := proc(n)
        local d;
        add(d, d=idivisors(n)) ;
    end proc:
    seq(A049417(n),n=1..100) ; # R. J. Mathar, Feb 19 2011
  • Mathematica
    bitty[k_] := Union[Flatten[Outer[Plus, Sequence @@ ({0, #1} & ) /@ Union[2^Range[0, Floor[Log[2, k]]]*Reverse[IntegerDigits[k, 2]]]]]]; Table[Plus@@((Times @@ (First[it]^(#1 /. z -> List)) & ) /@ Flatten[Outer[z, Sequence @@ bitty /@ Last[it = Transpose[FactorInteger[k]]], 1]]), {k, 2, 120}]
    (* Second program: *)
    a[n_] := If[n == 1, 1, Sort @ Flatten @ Outer[ Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] // Total;
    Array[a, 100] (* Jean-François Alcover, Mar 23 2020, after Paul Abbott in A077609 *)
  • PARI
    A049417(n) = {my(b, f=factorint(n)); prod(k=1, #f[,2], b = binary(f[k,2]); prod(j=1, #b, if(b[j], 1+f[k,1]^(2^(#b-j)), 1)))} \\ Andrew Lelechenko, Apr 22 2014
    
  • PARI
    isigma(n)=vecprod([vecprod([f[1]^2^k+1|k<-[0..exponent(f[2])], bittest(f[2],k)])|f<-factor(n)~]) \\ M. F. Hasler, Oct 20 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A049417(n): return prod(p**(1<Chai Wah Wu, Jul 11 2024

Formula

Multiplicative: If e = Sum_{k >= 0} d_k 2^k (binary representation of e), then a(p^e) = Product_{k >= 0} (p^(2^k*{d_k+1}) - 1)/(p^(2^k) - 1). - Christian G. Bower and Mitch Harris, May 20 2005 [This means there is a factor p^2^k + 1 if d_k = 1, otherwise the factor is 1. - M. F. Hasler, Oct 20 2022]
Let n = Product(q_i) where {q_i} is a set of distinct terms of A050376. Then a(n) = Product(q_i + 1). - Vladimir Shevelev, Feb 19 2011
If n is squarefree, then a(n) = A001615(n). - Vladimir Shevelev, Apr 01 2014
a(n) = Sum_{k>=1} A077609(n,k). - R. J. Mathar, Oct 04 2017
a(n) = A126168(n)+n. - R. J. Mathar, Oct 05 2017
Multiplicative with a(p^e) = Product{k >= 0, e_k = 1} p^2^k + 1, where e = Sum e_k 2^k, i.e., e_k is bit k of e. - M. F. Hasler, Oct 20 2022
a(n) = iphi(n^2)/iphi(n), where iphi(n) = A091732(n). - Amiram Eldar, Sep 21 2024

Extensions

More terms from Wouter Meeussen, Sep 02 2001

A007494 Numbers that are congruent to 0 or 2 mod 3.

Original entry on oeis.org

0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107
Offset: 0

Views

Author

Christopher Lam Cham Kee (Topher(AT)CyberDude.Com)

Keywords

Comments

The map n -> a(n) (where a(n) = 3n/2 if n even or (3n+1)/2 if n odd) was studied by Mahler, in connection with "Z-numbers" and later by Flatto. One question was whether, iterating from an initial integer, one eventually encountered an iterate = 1 (mod 4). - Jeff Lagarias, Sep 23 2002
Partial sums of 0,2,1,2,1,2,1,2,1,... . - Paul Barry, Aug 18 2007
a(n) = numbers k such that antiharmonic mean of the first k positive integers is not integer. A169609(a(n-1)) = 3. See A146535 and A169609. Complement of A016777. - Jaroslav Krizek, May 28 2010
Range of A173732. - Reinhard Zumkeller, Apr 29 2012
Number of partitions of 6n into two odd parts. - Wesley Ivan Hurt, Nov 15 2014
Numbers m such that 3 divides A000217(m). - Bruno Berselli, Aug 04 2017
Maximal length of a snake like polyomino that fits in a 2 X n rectangle. - Alain Goupil, Feb 12 2020

References

  • L. Flatto, Z-numbers and beta-transformations, in Symbolic dynamics and its applications (New Haven, CT, 1991), 181-201, Contemp. Math., 135, Amer. Math. Soc., Providence, RI, 1992.

Crossrefs

Complement of A016777.
Range of A002517.
Cf. A274406. [Bruno Berselli, Jun 26 2016]

Programs

Formula

a(n) = 3*n/2 if n even, otherwise (3*n+1)/2.
If u(1)=0, u(n) = n + floor(u(n-1)/3), then a(n-1) = u(n). - Benoit Cloitre, Nov 26 2002
G.f.: x*(x+2)/((1-x)^2*(1+x)). - Ralf Stephan, Apr 13 2002
a(n) = 3*floor(n/2) + 2*(n mod 2) = A032766(n) + A000035(n). - Reinhard Zumkeller, Apr 04 2005
a(n) = (6*n+1)/4 - (-1)^n/4; a(n) = Sum_{k=0..n-1} (1 + (-1)^(k/2)*cos(k*Pi/2)). - Paul Barry, Aug 18 2007
A145389(a(n)) <> 1. - Reinhard Zumkeller, Oct 10 2008
a(n) = A002943(n) - A173511(n). - Reinhard Zumkeller, Feb 20 2010
a(n) = 3*n - a(n-1) - 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
a(n) = Sum_{k>=0} A030308(n,k)*A042950(k). - Philippe Deléham, Oct 17 2011
a(n) = n + ceiling(n/2). - Arkadiusz Wesolowski, Sep 18 2012
a(n) = 2n - floor(n/2) = floor((3n+1)/2) = n + (n + (n mod 2))/2. - Wesley Ivan Hurt, Oct 19 2013
a(n) = A000217(n+1) - A099392(n+1). - Bui Quang Tuan, Mar 27 2015
a(n) = n + floor(n/2) + (n mod 2). - Bruno Berselli, Apr 04 2016
a(n) = Sum_{i=1..n} numerator(2/i). - Wesley Ivan Hurt, Feb 26 2017
a(n) = Sum_{k=0..n-1} Sum_{i=0..k} C(i,k)+(-1)^(k-i). - Wesley Ivan Hurt, Sep 20 2017
E.g.f.: (3*exp(x)*x + sinh(x))/2. - Stefano Spezia, Feb 11 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = log(3)/2 - Pi/(6*sqrt(3)). - Amiram Eldar, Dec 04 2021

A042948 Numbers congruent to 0 or 1 (mod 4).

Original entry on oeis.org

0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60, 61, 64, 65, 68, 69, 72, 73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93, 96, 97, 100, 101, 104, 105, 108
Offset: 0

Views

Author

Keywords

Comments

Maximum number of squares attacked by a bishop on an (n + 1) X (n + 1) chessboard. - Stewart Gordon, Mar 23 2001
Maximum vertex degree of the (n + 1) X (n + 1) bishop graph and black bishop graph. - Eric W. Weisstein, Jun 26 2017
Also number of squares attacked by a bishop on a toroidal chessboard. - Diego Torres (torresvillarroel(AT)hotmail.com), May 30 2001
Numbers n such that {1, 2, 3, ..., n-1, n} is a perfect Skolem set. - Emeric Deutsch, Nov 24 2006
The number of terms which lie on the principal diagonals of an n X n square spiral. - William A. Tedeschi, Mar 02 2008
Possible nonnegative discriminants of quadratic equation a*x^2 + b*x + c or discriminants of binary quadratic forms a*x^2 + b*x*y + c^y^2. - Artur Jasinski, Apr 28 2008
A133872(a(n)) = 1; complement of A042964. - Reinhard Zumkeller, Oct 03 2008
Partial sums are A035608. - Jaroslav Krizek, Dec 18 2009 [corrected by Werner Schulte, Dec 04 2023]
Nonnegative m for which floor(k*m/4) = k*floor(m/4), where k = 2 or 3. Example: 13 is in the sequence because floor(2*13/4) = 2*floor(13/4), and also floor(3*13/4) = 3*floor(13/4). - Bruno Berselli, Dec 09 2015
Also number of maximal cliques in the n X n white bishop graph. - Eric W. Weisstein, Dec 01 2017
The offset should have been 1. - Jianing Song, Oct 06 2018
Numbers k for which the binomial coefficient C(k,2) is even. - Tanya Khovanova, Oct 20 2018
Numbers m such that there exists a permutation (x(1), x(2), ..., x(m)) with all absolute differences |x(k) - k| distinct. - Jukka Kohonen, Oct 02 2021
Numbers m such that there exists a multiset of integers whose size is m, and sum and product are both -m. - Yifan Xie, Mar 25 2024

Crossrefs

Programs

  • Magma
    [n: n in [0..150]|n mod 4 in {0, 1}]; // Vincenzo Librandi, Dec 09 2015
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+4 od: seq(a[n], n=0..54); # Zerinvary Lajos, Mar 16 2008
  • Mathematica
    Select[Range[0, 150], Or[Mod[#, 4] == 0, Mod[#, 4] == 1] &] (* Vincenzo Librandi, Dec 09 2015 *)
    Table[(4 n - 5 - (-1)^n)/2, {n, 20}] (* Eric W. Weisstein, Dec 01 2017 *)
    LinearRecurrence[{1, 1, -1}, {1, 4, 5}, {0, 20}] (* Eric W. Weisstein, Dec 01 2017 *)
    CoefficientList[Series[x (1 + 3 x)/((-1 + x)^2 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
    {#, # + 1} & /@ (4 Range[0, 40]) // Flatten (* Harvey P. Dale, Jan 15 2024 *)
  • Maxima
    makelist(-1/2+1/2*(-1)^n+2*n, n, 0, 60); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=2*n-n%2;
    
  • PARI
    concat(0, Vec(x*(1+3*x)/((1+x)*(1-x)^2) + O(x^100))) \\ Altug Alkan, Dec 09 2015
    

Formula

a(n) = A042963(n+1) - 1. [Corrected by Jianing Song, Oct 06 2018]
From Michael Somos, Jan 12 2000: (Start)
G.f.: x*(1 + 3*x)/((1 + x)*(1 - x)^2).
a(n) = a(n-1) + 2 + (-1)^n. (End)
a(n) = 4*n - a(n-1) - 3 with a(0) = 0. - Vincenzo Librandi, Nov 17 2010
a(n) = Sum_{k>=0} A030308(n,k)*A151821(k+1). - Philippe Deléham, Oct 17 2011
a(n) = floor((4/3)*floor(3*n/2)). - Clark Kimberling, Jul 04 2012
a(n) = n + 2*floor(n/2) = 2*n - (n mod 2). - Bruno Berselli, Apr 30 2016
E.g.f.: 2*exp(x)*x - sinh(x). - Stefano Spezia, Sep 09 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 + 3*log(2)/4. - Amiram Eldar, Dec 05 2021
a(n) = A000290(n) - 4*A002620(n-1). - Leo Tavares, Oct 04 2022

A052928 The even numbers repeated.

Original entry on oeis.org

0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, 64, 64, 66, 66, 68, 68, 70, 70, 72, 72
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is also the binary rank of the complete graph K(n). - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 07 2009
Let I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then, for n >= 6, a(n) is the number of (0,1) n X n matrices A <= P^(-1)+I+P having exactly two 1's in every row and column with perA=2. - Vladimir Shevelev, Apr 12 2010
a(n+2) is the number of symmetry allowed, linearly independent terms at n-th order in the series expansion of the (E+A)xe vibronic perturbation matrix, H(Q) (cf. Eisfeld & Viel). - Bradley Klee, Jul 21 2015
The arithmetic function v_2(n,1) as defined in A289187. - Robert Price, Aug 22 2017
For n > 1, also the chromatic number of the n X n white bishop graph. - Eric W. Weisstein, Nov 17 2017
For n > 2, also the maximum vertex degree of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 23 2018
For n >= 2, a(n+2) gives the minimum weight of a Boolean function of algebraic degree at most n-2 whose support contains n linearly independent elements. - Christof Beierle, Nov 25 2019

References

  • C. D. Godsil and G. Royle, Algebraic Graph Theory, Springer, 2001, page 181. - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 07 2009
  • V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19.

Crossrefs

First differences: A010673; partial sums: A007590; partial sums of partial sums: A212964(n+1).
Complement of A109613 with respect to universe A004526. - Guenther Schrack, Dec 07 2017
Is first differences of A099392. Fixed point sequence: A005843. - Guenther Schrack, May 30 2019
For n >= 3, A329822(n) gives the minimum weight of a Boolean function of algebraic degree at most n-3 whose support contains n linearly independent elements. - Christof Beierle, Nov 25 2019

Programs

  • Haskell
    a052928 = (* 2) . flip div 2
    a052928_list = 0 : 0 : map (+ 2) a052928_list
    -- Reinhard Zumkeller, Jun 20 2015
  • Magma
    [2*Floor(n/2) : n in [0..50]]; // Wesley Ivan Hurt, Sep 13 2014
    
  • Maple
    spec := [S,{S=Union(Sequence(Prod(Z,Z)),Prod(Sequence(Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Flatten[Table[{2n, 2n}, {n, 0, 39}]] (* Alonso del Arte, Jun 24 2012 *)
    With[{ev=2Range[0,40]},Riffle[ev,ev]] (* Harvey P. Dale, May 08 2021 *)
    Table[Round[n + 1/2], {n, -1, 72}] (* Ed Pegg Jr, Jul 28 2025 *)
  • PARI
    a(n)=n\2*2 \\ Charles R Greathouse IV, Nov 20 2011
    

Formula

a(n) = 2*floor(n/2).
G.f.: 2*x^2/((-1+x)^2*(1+x)).
a(n) + a(n+1) + 2 - 2*n = 0.
a(n) = n - 1/2 + (-1)^n/2.
a(n) = n + Sum_{k=1..n} (-1)^k. - William A. Tedeschi, Mar 20 2008
a(n) = a(n-1) + a(n-2) - a(n-3). - R. J. Mathar, Feb 19 2010
a(n) = |A123684(n) - A064455(n)| = A032766(n) - A008619(n-1). - Jaroslav Krizek, Mar 22 2011
For n > 0, a(n) = floor(sqrt(n^2+(-1)^n)). - Francesco Daddi, Aug 02 2011
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=0 and b(k)=2^k for k>0. - Philippe Deléham, Oct 19 2011
a(n) = A109613(n) - 1. - M. F. Hasler, Oct 22 2012
a(n) = n - (n mod 2). - Wesley Ivan Hurt, Jun 29 2013
a(n) = a(a(n-1)) + a(n-a(n-1)) for n>2. - Nathan Fox, Jul 24 2016
a(n) = 2*A004526(n). - Filip Zaludek, Oct 28 2016
E.g.f.: x*exp(x) - sinh(x). - Ilya Gutkovskiy, Oct 28 2016
a(-n) = -a(n+1); a(n) = A005843(A004526(n)). - Guenther Schrack, Sep 11 2018
From Guenther Schrack, May 29 2019: (Start)
a(b(n)) = b(n) + ((-1)^b(n) - 1)/2 for any sequence b(n) of offset 0.
a(a(n)) = a(n), idempotent.
a(A086970(n)) = A124356(n-1) for n > 1.
a(A000124(n)) = A192447(n+1).
a(n)*a(n+1)/2 = A007590(n), also equals partial sums of a(n).
A007590(a(n)) = 2*A008794(n). (End)

Extensions

More terms from James Sellers, Jun 05 2000
Removed duplicate of recurrence; corrected original recurrence and g.f. against offset - R. J. Mathar, Feb 19 2010
Previous Showing 31-40 of 228 results. Next