cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 490 results. Next

A006130 a(n) = a(n-1) + 3*a(n-2) for n > 1, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 4, 7, 19, 40, 97, 217, 508, 1159, 2683, 6160, 14209, 32689, 75316, 173383, 399331, 919480, 2117473, 4875913, 11228332, 25856071, 59541067, 137109280, 315732481, 727060321, 1674257764, 3855438727, 8878212019, 20444528200, 47079164257, 108412748857
Offset: 0

Views

Author

Keywords

Comments

Counts walks of length n at the vertex of degree five in the graph with adjacency matrix A = [1,1,1,1;1,0,0,0;1,0,0,0;1,0,0,0]. - Paul Barry, Oct 02 2004
Form the graph with matrix A = [0,1,1,1;1,1,0,0;1,0,1,0;1,0,0,1]. The sequence 0,1,1,4,... counts walks of length n between the vertex without loop and another vertex. - Paul Barry, Oct 02 2004
Length-n words with letters {0,1,2,3} where no two consecutive letters are nonzero, see fxtbook link below. - Joerg Arndt, Apr 08 2011
Hankel transform is the sequence [1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 10 2007
Let M = [1, sqrt(3); sqrt(3), 0] be a 2 X 2 matrix. Then A006130(n)={[M^n]A006130-A052533%20=%20A006130%20(shifted%20to%20the%20right%20one%20place,%20with%20first%20term%20=%200).%20-%20_L.%20Edson%20Jeffery">(1,1)}. Note that A006130-A052533 = A006130 (shifted to the right one place, with first term = 0). - _L. Edson Jeffery, Nov 25 2011 [Any matrix M = [1, y; 3/y, 0], with y not 0, will do it. - Wolfdieter Lang, Feb 18 2018]
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=2, 4*a(n-2) equals the number of 4-colored compositions of n with all parts >=2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011
a(n) is the number of compositions (ordered partitions) of n into parts 1 and 2 where there are three sorts of part 2 (see the g.f.). - Joerg Arndt, Jan 16 2024
Number of pairs of rabbits when there are 3 pairs per litter and offspring reach parenthood after 2 gestation periods. - Robert FERREOL, Oct 28 2018
Numerators of stationary probabilities sequence for number of customers in steady state of M2/M/1 queue, whose g.f. is (1-z)/(3-3z-z(1-z^2)). - Igor Kleiner, Nov 03 2018
INVERT transform of (1, 0, 3, 0, 9, 0, 27, ...). - Gary W. Adamson, Jul 15 2019
Number of 3-compositions of n+2 with 1 not allowed as a part; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 17 2020
Number of ways to tile a strip of length n with 3 colors of dominoes and 1 color of squares. - Greg Dresden, Sep 01 2021
Number of 3-permutations of n elements avoiding the patterns 231, 312, 321. See Bonichon and Sun. - Michel Marcus, Aug 20 2022
a(n-1), with a(-1) = 0, appears in the formula for the powers of the fundamental (integer) algebraic number c = (1 + sqrt(13))/2 = A209927: c^n = A052533(n) + a(n-1)*c. With the formulas given below, and also in A052533, in terms of S-Chebyshev polynomials this is valid also for the powers of 1/c = (-1 + sqrt(13))/6 = A356033. - Wolfdieter Lang, Nov 26 2023

Examples

			G.f. = 1 + x + 4*x^2 + 7*x^3 + 19*x^4 + 40*x^5 + 97*x^6 + 217*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Stephen Wolfram, 'The Mathematica Book,' Fourth Edition, Wolfram Media or Cambridge University Press, 1999, p. 96.

Crossrefs

Cf. A006131, A015440, A049310, A052533, A140167, A175291 (Pisano periods), A099232 (partial sums), A274977.

Programs

  • GAP
    a := [1, 1];; for n in [3..30] do a[n] := a[n-1] + 3*a[n-2]; od; a; # Muniru A Asiru, Feb 18 2018
  • Magma
    [n le 2 select 1 else Self(n-1) + 3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 17 2012
    
  • Maple
    a := n -> add(binomial(n-k, k)*3^k, k=0..n): seq(a(n), n=0..29); # Zerinvary Lajos, Sep 30 2006
    f:= gfun:-rectoproc({a(n) = a(n-1) + 3*a(n-2), a(0) = 1, a(1) = 1},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Aug 31 2015
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = a[n - 1] + 3a[n - 2]; Table[ a[n], {n, 0, 30}]
    LinearRecurrence[{1, 3}, {1, 1}, 30] (* Vincenzo Librandi, Oct 17 2012 *)
    RecurrenceTable[{a[n]== a[n-1] + 3*a[n-2], a[0]== 1, a[1]== 1}, a, {n,0,30}] (* G. C. Greubel, Aug 30 2015 *)
    a[0] := 1; a[n_] := Hypergeometric2F1[1/2-n/2, -n/2, -n, -12]; Table[a[n], {n, 0, 29}] (* Peter Luschny, Feb 18 2018 *)
    a[ n_] := With[{s = Sqrt[-1/3]}, ChebyshevU[n, s/2] / s^n] // Simplify; (* Michael Somos, Nov 04 2018 *)
  • PARI
    Vec(1/(1-x-3*x^2+O(x^66))) \\ Franklin T. Adams-Watters, May 26 2011
    
  • Python
    an = an1 = 1
    while an<10**5:
       print(an)
       an1 += an*3
       an = an1 - an*3   # Alex Ratushnyak, Apr 20 2012
    
  • Sage
    from sage.combinat.sloane_functions import recur_gen2
    it = recur_gen2(1,1,1,3)
    [next(it) for i in range(30)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [lucas_number1(n,1,-3) for n in range(1, 31)] # Zerinvary Lajos, Apr 22 2009
    

Formula

O.g.f.: 1/(1 - x - 3*x^2). - Simon Plouffe in his 1992 dissertation.
a(n) = (( (1 + sqrt(13))/2 )^(n+1) - ( (1 - sqrt(13))/2 )^(n+1))/sqrt(13).
a(n) = Sum_{k = 0..ceiling(n/2)} 3^k*C(n-k, k). - Benoit Cloitre, Philippe Deléham, Mar 07 2004
a(0) = 1; a(1) = 1; for n >= 1, a(n+1) = (a(n)^2 - (-3)^n) / a(n-1). - Philippe Deléham, Mar 07 2004
The i-th term of the sequence is the (1, 2) entry in the i-th power of the 2 X 2 matrix M = ((-1, 1), (1, 2)). - Simone Severini, Oct 15 2005
a(n) = lower right term in the 2 X 2 matrix [0,3; 1,1]^n. - Gary W. Adamson, Mar 02 2008
a(n) = Sum_{k = 0..n} A109466(n,k)*(-3)^(n-k). - Philippe Deléham, Oct 26 2008
a(n) = Product_{k = 1..floor((n - 1)/2)} (1 + 12*cos(k*Pi/n)^2). - Roger L. Bagula and Gary W. Adamson, Nov 21 2008
Limiting ratio = (1 + sqrt(13))/2 = 2.30277563.. = A098316 - 1. - Roger L. Bagula and Gary W. Adamson, Nov 21 2008
G.f.: G(0)/(2-x), where G(k)= 1 + 1/(1 - x*(13*k - 1)/(x*(13*k + 12) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 18 2013
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + 3*x)/( x*(4*k+3 + 3*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013
a(n) = ( Sum_{1 <= k <= n+1, k odd} C(n+1,k)*13^((k-1)/2) )/2^n. - Vladimir Shevelev, Feb 05 2014
E.g.f.: (1/(a - b))*(a*exp(a*x) - b*exp(b*x)), where 2*a = 1 + sqrt(13) and 2*b = 1 - sqrt(13). - G. C. Greubel, Aug 30 2015
a(n) = ((i*sqrt(3))^n)*S(n, (-i/sqrt(3))), with the imaginary unit i and the Chebyshev S polynomials (coefficients in A049310). - Wolfdieter Lang, Feb 18 2018
a(n) = hypergeom([(1-n)/2, -n/2], [-n], -12) for n >= 1. - Peter Luschny, Feb 18 2018
a(n) = 3 * (-3)^n * a(-2-n) for all n in Z. - Michael Somos, Nov 04 2018
a(n) = ( sqrt(3) )^n * Fibonacci(n+1, 1/sqrt(3)). - G. C. Greubel, Dec 26 2019
a(n) = numerator of the continued fraction 1 + 3/(1 + 3/(1 + 3/ ... + 3/1)) with exactly n 1's, for n>0. - Greg Dresden and Alexander Mark, Aug 16 2020
With an initial 0 prepended, the sequence [0, 1, 1, 4, 7, 19, 40, ...] satisfies the congruences a(n*p^k) == e*a(n*p^(k-1)) (mod p^k) for positive integers k and n and all primes p, where e = +1 for the primes p listed in A296937, e = 0 if p = 13, otherwise e = -1. See Young, Theorem 1, Corollary 1 (i). - Peter Bala, Dec 28 2022
From Wolfdieter Lang, Nov 27 2023: (Start)
a(n) = sqrt(-3)^n*S(n, 1/sqrt(-3)) with the S-Chebyshev polynomials (see A049310), also valid for negative n, using S(-n, x) = -S(n-2, x), for n >= 2, and S(-1, x) = 0. See above the formula in terms of Fibonacci polynomials).
a(n) = A052533(n+2)/3, for n >= 0. (End)
From Peter Bala, Jun 27 2025: (Start)
G.f.: Sum_{n >= 0} x^n * Product_{k = 1..n} (k + 3*x)/(1 + k*x) = Sum_{n >= 0} x^n * Product_{k = 1..n} (1 + 3*k*x)/(1 + 3*k*x^2).
The following products telescope:
Product_{k >= 0} (1 + 3^k/a(2*k+1)) = 1 + sqrt(13).
Product_{k >= 1} (1 - 3^k/a(2*k+1)) = 1/14 * (1 + sqrt(13)).
Product_{k >= 0} (1 + (-3)^k/a(2*k+1)) = (1/13) * (13 + sqrt(13)).
Product_{k >= 1} (1 - (-3)^k/a(2*k+1)) = (1/14) * (13 + sqrt(13)). (End)

A104457 Decimal expansion of 1 + phi = phi^2 = (3 + sqrt(5))/2.

Original entry on oeis.org

2, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3, 7, 4, 8
Offset: 1

Views

Author

Eric W. Weisstein, Mar 08 2005

Keywords

Comments

Only first term differs from the decimal expansion of phi.
Zelo extends work of D. Roy by showing that the square of the golden ratio is the optimal exponent of approximation by algebraic numbers of degree 4 with bounded denominator and trace. - Jonathan Vos Post, Mar 02 2009 (Cf. last sentence in the Zelo reference. - Joerg Arndt, Jan 04 2014)
Hawkes asks: "What two numbers are those whose product, difference of their squares, and the ratio or quotient of their cubes, are all equal to each other?". - Charles R Greathouse IV, Dec 11 2012
This is the case n=10 in (Gamma(1/n)/Gamma(3/n))*(Gamma((n-1)/n)/Gamma((n-3)/n)) = 1+2*cos(2*Pi/n). - Bruno Berselli, Dec 14 2012
An algebraic integer of degree 2, with minimal polynomial x^2 - 3x + 1. - Charles R Greathouse IV, Nov 12 2014 [The other root is 2 - phi = A132338 - Wolfdieter Lang, Aug 29 2022]
To eight digits: 5*(((Pi+1)/e)-1) = 2.61803395481182... - Dan Graham, Nov 21 2017
The ratio diagonal/side of the second smallest diagonal in a regular 10-gon. - Mohammed Yaseen, Nov 04 2020
phi^2/10 is the moment of inertia of a solid regular icosahedron with a unit mass and a unit edge length (see A341906). - Amiram Eldar, Jun 08 2021

Examples

			2.6180339887498948482045868343656381177203091798...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.17.1, p. 153.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.
  • Damien Roy. Diophantine Approximation in Small Degree. Centre de Recherches Mathématiques. CRM Proceedings and Lecture Notes. Volume 36 (2004), 269-285.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 45.

Crossrefs

2 + 2*cos(2*Pi/n): A116425 (n = 7), A332438 (n = 9), A296184 (n = 10), A019973 (n = 12).

Programs

Formula

Equals 2 + A094214 = 1 + A001622. - R. J. Mathar, May 19 2008
Satisfies these three equations: x-sqrt(x)-1 = 0; x-1/sqrt(x)-2 = 0; x^2-3*x+1 = 0. - Richard R. Forberg, Oct 11 2014
Equals the nested radical sqrt(phi^2+sqrt(phi^4+sqrt(phi^8+...))). For a proof, see A094885. - Stanislav Sykora, May 24 2016
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (5*(2*n)!+8*n!^2)/(2*n!^2*3^(2*n+1)).
Equals 3/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
Equals 1/A132338 = 2*A239798 = 5*A229780. - Mohammed Yaseen, Nov 04 2020
Equals Product_{k>=1} 1 + 1/(phi + phi^k), where phi is the golden ratio (A001622) (Ohtsuka, 2018). - Amiram Eldar, Dec 02 2021
c^n = phi * A001906(n) + A001519(n), where c = phi^2. - Gary W. Adamson, Sep 08 2023
Equals lim_{n->oo} S(n, 3)/S(n-1, 3) with the S-Chebyshev polynomials (see A049310), S(3, n) = A000045(2*(n+1)) = A001906(n+1). - Wolfdieter Lang, Nov 15 2023
From Peter Bala, May 08 2024: (Start)
Constant c = 2 + 2*cos(2*Pi/5).
The linear fractional transformation z -> c - c/z has order 5, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/z)))). (End)
Equals Product_{k>=1} (1 + 1/A032908(k)). - Amiram Eldar, Nov 28 2024

A004189 a(n) = 10*a(n-1) - a(n-2); a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 10, 99, 980, 9701, 96030, 950599, 9409960, 93149001, 922080050, 9127651499, 90354434940, 894416697901, 8853812544070, 87643708742799, 867583274883920, 8588189040096401, 85014307126080090, 841554882220704499, 8330534515080964900, 82463790268588944501, 816307368170808480110
Offset: 0

Views

Author

Keywords

Comments

Indices of square numbers which are also generalized pentagonal numbers.
If t(n) denotes the n-th triangular number, t(A105038(n))=a(n)*a(n+1). - Robert Phillips (bobanne(AT)bellsouth.net), May 25 2008
The n-th term is a(n) = ((5+sqrt(24))^n - (5-sqrt(24))^n)/(2*sqrt(24)). - Sture Sjöstedt, May 31 2009
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 10's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
a(n) and b(n) (A001079) are the nonnegative proper solutions of the Pell equation b(n)^2 - 6*(2*a(n))^2 = +1. See the cross reference to A001079 below. - Wolfdieter Lang, Jun 26 2013
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,9}. - Milan Janjic, Jan 25 2015
For n > 1, this also gives the number of (n-1)-decimal-digit numbers which avoid a particular two-digit number with distinct digits. For example, there are a(5) = 9701 4-digit numbers which do not include "39" as a substring; see Wikipedia link. - Charles R Greathouse IV, Jan 14 2016
All possible solutions for y in Pell equation x^2 - 24*y^2 = 1. The values for x are given in A001079. - Herbert Kociemba, Jun 05 2022
Dickson on page 384 gives the Diophantine equation "(20) 24x^2 + 1 = y^2" and later states "... three consecutive sets (x_i, y_i) of solutions of (20) or 2x^2 + 1 = 3y^2 satisfy x_{n+1} = 10x_n - x_{n-1}, y_{n+1} = 10y_n - y_{n-1} with (x_1, y_1) = (0, 1) or (1, 1), (x_2, y_2) = (1, 5) or (11, 9), respectively." The first set of values (x_n, y_n) = (A001079(n-1), a(n-1)). - Michael Somos, Jun 19 2023

Examples

			a(2)=10 and (3(-8)^2-(-8))/2=10^2, a(3)=99 and (3(81)^2-(81))/2=99^2. - _Michael Somos_, Sep 05 2006
G.f. = x + 10*x^2 + 99*x^3 + 980*x^4 + 9701*x^5 + 96030*x^6 + ...
		

References

  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, p. 384.

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), this sequence (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=5;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else 10*Self(n-1)-Self(n-2): n in [1..20] ]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    A004189 := proc(n)
        option remember;
        if n <= 1 then
            n ;
        else
            10*procname(n-1)-procname(n-2) ;
        end if;
    end proc:
    seq(A004189(n),n=0..20) ; # R. J. Mathar, Apr 30 2017
    seq( simplify(ChebyshevU(n-1, 5)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    Table[GegenbauerC[n-1,1,5], {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008; modified by G. C. Greubel, Jun 06 2019 *)
    LinearRecurrence[{10, -1}, {0, 1}, 20] (* Jean-François Alcover, Nov 15 2017 *)
    ChebyshevU[Range[21] -2, 5] (* G. C. Greubel, Dec 23 2019 *)
  • PARI
    {a(n) = subst(poltchebi(n+1) - 5*poltchebi(n), 'x, 5) / 24}; /* Michael Somos, Sep 05 2006 */
    
  • PARI
    a(n)=([9,1;8,1]^(n-1)*[1;1])[1,1] \\ Charles R Greathouse IV, Jan 14 2016
    
  • PARI
    vector(21, n, n--; polchebyshev(n-1, 2, 5) ) \\ G. C. Greubel, Dec 23 2019
    
  • Sage
    [lucas_number1(n,10,1) for n in range(22)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n-1,5) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = S(2*n-1, sqrt(12))/sqrt(12) = S(n-1, 10); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) := 0.
A001079(n) = sqrt(24*(a(n)^2)+1), that is a(n) = sqrt((A001079(n)^2-1)/24).
From Barry E. Williams, Aug 18 2000: (Start)
a(n) = ( (5+2*sqrt(6))^n - (5-2*sqrt(6))^n )/(4*sqrt(6)).
G.f.: x/(1-10*x+x^2). (End)
a(-n) = -a(n). - Michael Somos, Sep 05 2006
From Mohamed Bouhamida, May 26 2007: (Start)
a(n) = 9*(a(n-1) + a(n-2)) - a(n-3).
a(n) = 11*(a(n-1) - a(n-2)) + a(n-3).
a(n) = 10*a(n-1) - a(n-2). (End)
a(n+1) = Sum_{k=0..n} A101950(n,k)*9^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 1} (1 + 1/a(n)) = 1/2*(2 + sqrt(6)).
Product {n >= 2} (1 - 1/a(n)) = 1/5*(2 + sqrt(6)). (End)
a(n) = (A054320(n-1) + A072256(n))/2. - Richard R. Forberg, Nov 21 2013
a(2*n - 1) = A046173(n).
E.g.f.: exp(5*x)*sinh(2*sqrt(6)*x)/(2*sqrt(6)). - Stefano Spezia, Dec 12 2022
a(n) = Sum_{k = 0..n-1} binomial(n+k, 2*k+1)*8^k = Sum_{k = 0..n-1} (-1)^(n+k+1)* binomial(n+k, 2*k+1)*12^k. - Peter Bala, Jul 18 2023

A126120 Catalan numbers (A000108) interpolated with 0's.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, 0, 429, 0, 1430, 0, 4862, 0, 16796, 0, 58786, 0, 208012, 0, 742900, 0, 2674440, 0, 9694845, 0, 35357670, 0, 129644790, 0, 477638700, 0, 1767263190, 0, 6564120420, 0, 24466267020, 0, 91482563640, 0, 343059613650, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 06 2007

Keywords

Comments

Inverse binomial transform of A001006.
The Hankel transform of this sequence gives A000012 = [1,1,1,1,1,...].
Counts returning walks (excursions) of length n on a 1-d integer lattice with step set {+1,-1} which stay in the chamber x >= 0. - Andrew V. Sutherland, Feb 29 2008
Moment sequence of the trace of a random matrix in G=USp(2)=SU(2). If X=tr(A) is a random variable (A distributed according to the Haar measure on G) then a(n) = E[X^n]. - Andrew V. Sutherland, Feb 29 2008
Essentially the same as A097331. - R. J. Mathar, Jun 15 2008
Number of distinct proper binary trees with n nodes. - Chris R. Sims (chris.r.sims(AT)gmail.com), Jun 30 2010
-a(n-1), with a(-1):=0, n>=0, is the Z-sequence for the Riordan array A049310 (Chebyshev S). For the definition see that triangle. - Wolfdieter Lang, Nov 04 2011
See A180874 (also A238390 and A097610) and A263916 for relations to the general Bell A036040, cycle index A036039, and cumulant expansion polynomials A127671 through the Faber polynomials. - Tom Copeland, Jan 26 2016
A signed version is generated by evaluating polynomials in A126216 that are essentially the face polynomials of the associahedra. This entry's sequence is related to an inversion relation on p. 34 of Mizera, related to Feynman diagrams. - Tom Copeland, Dec 09 2019

Examples

			G.f. = 1 + x^2 + 2*x^4 + 5*x^6 + 14*x^8 + 42*x^10 + 132*x^12 + 429*x^14 + ...
From _Gus Wiseman_, Nov 14 2022: (Start)
The a(0) = 1 through a(8) = 14 ordered binary rooted trees with n + 1 nodes (ranked by A358375):
  o  .  (oo)  .  ((oo)o)  .  (((oo)o)o)  .  ((((oo)o)o)o)
                 (o(oo))     ((o(oo))o)     (((o(oo))o)o)
                             ((oo)(oo))     (((oo)(oo))o)
                             (o((oo)o))     (((oo)o)(oo))
                             (o(o(oo)))     ((o((oo)o))o)
                                            ((o(o(oo)))o)
                                            ((o(oo))(oo))
                                            ((oo)((oo)o))
                                            ((oo)(o(oo)))
                                            (o(((oo)o)o))
                                            (o((o(oo))o))
                                            (o((oo)(oo)))
                                            (o(o((oo)o)))
                                            (o(o(o(oo))))
(End)
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Ch. 49, Hemisphere Publishing Corp., 1987.

Crossrefs

Cf. A126216.
The unordered version is A001190, ranked by A111299.
These trees (ordered binary rooted) are ranked by A358375.

Programs

  • Magma
    &cat [[Catalan(n), 0]: n in [0..30]]; // Vincenzo Librandi, Jul 28 2016
    
  • Maple
    with(combstruct): grammar := { BB = Sequence(Prod(a,BB,b)), a = Atom, b = Atom }: seq(count([BB,grammar], size=n),n=0..47); # Zerinvary Lajos, Apr 25 2007
    BB := {E=Prod(Z,Z), S=Union(Epsilon,Prod(S,S,E))}: ZL:=[S,BB,unlabeled]: seq(count(ZL, size=n), n=0..45); # Zerinvary Lajos, Apr 22 2007
    BB := [T,{T=Prod(Z,Z,Z,F,F), F=Sequence(B), B=Prod(F,Z,Z)}, unlabeled]: seq(count(BB, size=n+1), n=0..45); # valid for n> 0. # Zerinvary Lajos, Apr 22 2007
    seq(n!*coeff(series(hypergeom([],[2],x^2),x,n+2),x,n),n=0..45); # Peter Luschny, Jan 31 2015
    # Using function CompInv from A357588.
    CompInv(48, n -> ifelse(irem(n, 2) = 0, 0, (-1)^iquo(n-1, 2))); # Peter Luschny, Oct 07 2022
  • Mathematica
    a[n_?EvenQ] := CatalanNumber[n/2]; a[n_] = 0; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Sep 10 2012 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ BesselI[ 1, 2 x] / x, {x, 0, n}]]; (* Michael Somos, Mar 19 2014 *)
    bot[n_]:=If[n==1,{{}},Join@@Table[Tuples[bot/@c],{c,Table[{k,n-k-1},{k,n-1}]}]];
    Table[Length[bot[n]],{n,10}] (* Gus Wiseman, Nov 14 2022 *)
    Riffle[CatalanNumber[Range[0,50]],0,{2,-1,2}] (* Harvey P. Dale, May 28 2024 *)
  • Python
    from math import comb
    def A126120(n): return 0 if n&1 else comb(n,m:=n>>1)//(m+1) # Chai Wah Wu, Apr 22 2024
  • Sage
    def A126120_list(n) :
        D = [0]*(n+2); D[1] = 1
        b = True; h = 2; R = []
        for i in range(2*n-1) :
            if b :
                for k in range(h,0,-1) : D[k] -= D[k-1]
                h += 1; R.append(abs(D[1]))
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            b = not b
        return R
    A126120_list(46) # Peter Luschny, Jun 03 2012
    

Formula

a(2*n) = A000108(n), a(2*n+1) = 0.
a(n) = A053121(n,0).
(1/Pi) Integral_{0 .. Pi} (2*cos(x))^n *2*sin^2(x) dx. - Andrew V. Sutherland, Feb 29 2008
G.f.: (1 - sqrt(1 - 4*x^2)) / (2*x^2) = 1/(1-x^2/(1-x^2/(1-x^2/(1-x^2/(1-... (continued fraction). - Philippe Deléham, Nov 24 2009
G.f. A(x) satisfies A(x) = 1 + x^2*A(x)^2. - Vladimir Kruchinin, Feb 18 2011
E.g.f.: I_1(2x)/x Where I_n(x) is the modified Bessel function. - Benjamin Phillabaum, Mar 07 2011
Apart from the first term the e.g.f. is given by x*HyperGeom([1/2],[3/2,2], x^2). - Benjamin Phillabaum, Mar 07 2011
a(n) = Integral_{x=-2..2} x^n*sqrt((2-x)*(2+x))/(2*Pi) dx. - Peter Luschny, Sep 11 2011
E.g.f.: E(0)/(1-x) where E(k) = 1-x/(1-x/(x-(k+1)*(k+2)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013
G.f.: 3/2- sqrt(1-4*x^2)/2 = 1/x^2 + R(0)/x^2, where R(k) = 2*k-1 - x^2*(2*k-1)*(2*k+1)/R(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 28 2013 (warning: this is not the g.f. of this sequence, R. J. Mathar, Sep 23 2021)
G.f.: 1/Q(0), where Q(k) = 2*k+1 + x^2*(1-4*(k+1)^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 09 2014
a(n) = n!*[x^n]hypergeom([],[2],x^2). - Peter Luschny, Jan 31 2015
a(n) = 2^n*hypergeom([3/2,-n],[3],2). - Peter Luschny, Feb 03 2015
a(n) = ((-1)^n+1)*2^(2*floor(n/2)-1)*Gamma(floor(n/2)+1/2)/(sqrt(Pi)* Gamma(floor(n/2)+2)). - Ilya Gutkovskiy, Jul 23 2016
D-finite with recurrence (n+2)*a(n) +4*(-n+1)*a(n-2)=0. - R. J. Mathar, Mar 21 2021
From Peter Bala, Feb 03 2024: (Start)
a(n) = 2^n * Sum_{k = 0..n} (-2)^(-k)*binomial(n, k)*Catalan(k+1).
G.f.: 1/(1 + 2*x) * c(x/(1 + 2*x))^2 = 1/(1 - 2*x) * c(-x/(1 - 2*x))^2 = c(x^2), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

Extensions

An erroneous comment removed by Tom Copeland, Jul 23 2016

A108299 Triangle read by rows, 0 <= k <= n: T(n,k) = binomial(n-[(k+1)/2],[k/2])*(-1)^[(k+1)/2].

Original entry on oeis.org

1, 1, -1, 1, -1, -1, 1, -1, -2, 1, 1, -1, -3, 2, 1, 1, -1, -4, 3, 3, -1, 1, -1, -5, 4, 6, -3, -1, 1, -1, -6, 5, 10, -6, -4, 1, 1, -1, -7, 6, 15, -10, -10, 4, 1, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1, 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1, 1, -1, -11, 10, 45, -36, -84, 56, 70
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 01 2005

Keywords

Comments

Matrix inverse of A124645.
Let L(n,x) = Sum_{k=0..n} T(n,k)*x^(n-k) and Pi=3.14...:
L(n,x) = Product_{k=1..n} (x - 2*cos((2*k-1)*Pi/(2*n+1)));
Sum_{k=0..n} T(n,k) = L(n,1) = A010892(n+1);
Sum_{k=0..n} abs(T(n,k)) = A000045(n+2);
abs(T(n,k)) = A065941(n,k), T(n,k) = A065941(n,k)*A087960(k);
T(2*n,k) + T(2*n+1,k+1) = 0 for 0 <= k <= 2*n;
T(n,0) = A000012(n) = 1; T(n,1) = -1 for n > 0;
T(n,2) = -(n-1) for n > 1; T(n,3) = A000027(n)=n for n > 2;
T(n,4) = A000217(n-3) for n > 3; T(n,5) = -A000217(n-4) for n > 4;
T(n,6) = -A000292(n-5) for n > 5; T(n,7) = A000292(n-6) for n > 6;
T(n,n-3) = A058187(n-3)*(-1)^floor(n/2) for n > 2;
T(n,n-2) = A008805(n-2)*(-1)^floor((n+1)/2) for n > 1;
T(n,n-1) = A008619(n-1)*(-1)^floor(n/2) for n > 0;
T(n,n) = L(n,0) = (-1)^floor((n+1)/2);
L(n,1) = A010892(n+1); L(n,-1) = A061347(n+2);
L(n,2) = 1; L(n,-2) = A005408(n)*(-1)^n;
L(n,3) = A001519(n); L(n,-3) = A002878(n)*(-1)^n;
L(n,4) = A001835(n+1); L(n,-4) = A001834(n)*(-1)^n;
L(n,5) = A004253(n); L(n,-5) = A030221(n)*(-1)^n;
L(n,6) = A001653(n); L(n,-6) = A002315(n)*(-1)^n;
L(n,7) = A049685(n); L(n,-7) = A033890(n)*(-1)^n;
L(n,8) = A070997(n); L(n,-8) = A057080(n)*(-1)^n;
L(n,9) = A070998(n); L(n,-9) = A057081(n)*(-1)^n;
L(n,10) = A072256(n+1); L(n,-10) = A054320(n)*(-1)^n;
L(n,11) = A078922(n+1); L(n,-11) = A097783(n)*(-1)^n;
L(n,12) = A077417(n); L(n,-12) = A077416(n)*(-1)^n;
L(n,13) = A085260(n);
L(n,14) = A001570(n); L(n,-14) = A028230(n)*(-1)^n;
L(n,n) = A108366(n); L(n,-n) = A108367(n).
Row n of the matrix inverse (A124645) has g.f.: x^floor(n/2)*(1-x)^(n-floor(n/2)). - Paul D. Hanna, Jun 12 2005
From L. Edson Jeffery, Mar 12 2011: (Start)
Conjecture: Let N=2*n+1, with n > 2. Then T(n,k) (0 <= k <= n) gives the k-th coefficient in the characteristic function p_N(x)=0, of degree n in x, for the n X n tridiagonal unit-primitive matrix G_N (see [Jeffery]) of the form
G_N=A_{N,1}=
(0 1 0 ... 0)
(1 0 1 0 ... 0)
(0 1 0 1 0 ... 0)
...
(0 ... 0 1 0 1)
(0 ... 0 1 1),
with solutions phi_j = 2*cos((2*j-1)*Pi/N), j=1,2,...,n. For example, for n=3,
G_7=A_{7,1}=
(0 1 0)
(1 0 1)
(0 1 1).
We have {T(3,k)}=(1,-1,-2,1), while the characteristic function of G_7 is p(x) = x^3-x^2-2*x+1 = 0, with solutions phi_j = 2*cos((2*j-1)*Pi/7), j=1,2,3. (End)
The triangle sums, see A180662 for their definitions, link A108299 with several sequences, see the crossrefs. - Johannes W. Meijer, Aug 08 2011
The roots to the polynomials are chaotic using iterates of the operation (x^2 - 2), with cycle lengths L and initial seeds returning to the same term or (-1)* the seed. Periodic cycle lengths L are shown in A003558 such that for the polynomial represented by row r, the cycle length L is A003558(r-1). The matrices corresponding to the rows as characteristic polynomials are likewise chaotic [cf. Kappraff et al., 2005] with the same cycle lengths but substituting 2*I for the "2" in (x^2 - 2), where I = the Identity matrix. For example, the roots to x^3 - x^2 - 2x + 1 = 0 are 1.801937..., -1.246979..., and 0.445041... With 1.801937... as the initial seed and using (x^2 - 2), we obtain the 3-period trajectory of 8.801937... -> 1.246979... -> -0.445041... (returning to -1.801937...). We note that A003558(2) = 3. The corresponding matrix M is: [0,1,0; 1,0,1; 0,1,1,]. Using seed M with (x^2 - 2*I), we obtain the 3-period with the cycle completed at (-1)*M. - Gary W. Adamson, Feb 07 2012

Examples

			Triangle begins:
  1;
  1,  -1;
  1,  -1,  -1;
  1,  -1,  -2,   1;
  1,  -1,  -3,   2,   1;
  1,  -1,  -4,   3,   3,  -1;
  1,  -1,  -5,   4,   6,  -3,  -1;
  1,  -1,  -6,   5,  10,  -6,  -4,   1;
  1,  -1,  -7,   6,  15, -10, -10,   4,   1;
  1,  -1,  -8,   7,  21, -15, -20,  10,   5,  -1;
  1,  -1,  -9,   8,  28, -21, -35,  20,  15,  -5,  -1;
  1,  -1, -10,   9,  36, -28, -56,  35,  35, -15,  -6,   1;
  ...
		

References

  • Friedrich L. Bauer, 'De Moivre und Lagrange: Cosinus eines rationalen Vielfachen von Pi', Informatik Spektrum 28 (Springer, 2005).
  • Jay Kappraff, S. Jablan, G. Adamson, & R. Sazdonovich: "Golden Fields, Generalized Fibonacci Sequences, & Chaotic Matrices"; FORMA, Vol 19, No 4, (2005).

Crossrefs

Cf. A049310, A039961, A124645 (matrix inverse).
Triangle sums (see the comments): A193884 (Kn11), A154955 (Kn21), A087960 (Kn22), A000007 (Kn3), A010892 (Fi1), A134668 (Fi2), A078031 (Ca2), A193669 (Gi1), A001519 (Gi3), A193885 (Ze1), A050935 (Ze3). - Johannes W. Meijer, Aug 08 2011
Cf. A003558.

Programs

  • Haskell
    a108299 n k = a108299_tabl !! n !! k
    a108299_row n = a108299_tabl !! n
    a108299_tabl = [1] : iterate (\row ->
       zipWith (+) (zipWith (*) ([0] ++ row) a033999_list)
                   (zipWith (*) (row ++ [0]) a059841_list)) [1,-1]
    -- Reinhard Zumkeller, May 06 2012
  • Maple
    A108299 := proc(n,k): binomial(n-floor((k+1)/2), floor(k/2))*(-1)^floor((k+1)/2) end: seq(seq(A108299 (n,k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
  • Mathematica
    t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 16 2013 *)
  • PARI
    {T(n,k)=polcoeff(polcoeff((1-x*y)/(1-x+x^2*y^2+x^2*O(x^n)),n,x)+y*O(y^k),k,y)} (Hanna)
    

Formula

T(n,k) = binomial(n-floor((k+1)/2),floor(k/2))*(-1)^floor((k+1)/2).
T(n+1, k) = if sign(T(n, k-1))=sign(T(n, k)) then T(n, k-1)+T(n, k) else -T(n, k-1) for 0 < k < n, T(n, 0) = 1, T(n, n) = (-1)^floor((n+1)/2).
G.f.: A(x, y) = (1 - x*y)/(1 - x + x^2*y^2). - Paul D. Hanna, Jun 12 2005
The generating polynomial (in z) of row n >= 0 is (u^(2*n+1) + v^(2*n+1))/(u + v), where u and v are defined by u^2 + v^2 = 1 and u*v = z. - Emeric Deutsch, Jun 16 2011
From Johannes W. Meijer, Aug 08 2011: (Start)
abs(T(n,k)) = A065941(n,k) = abs(A187660(n,n-k));
T(n,n-k) = A130777(n,k); abs(T(n,n-k)) = A046854(n,k) = abs(A066170(n,k)). (End)

Extensions

Corrected and edited by Philippe Deléham, Oct 20 2008

A073133 Table by antidiagonals of T(n,k) = n*T(n,k-1) + T(n,k-2) starting with T(n,1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 12, 5, 1, 5, 17, 33, 29, 8, 1, 6, 26, 72, 109, 70, 13, 1, 7, 37, 135, 305, 360, 169, 21, 1, 8, 50, 228, 701, 1292, 1189, 408, 34, 1, 9, 65, 357, 1405, 3640, 5473, 3927, 985, 55, 1, 10, 82, 528, 2549, 8658, 18901, 23184, 12970, 2378, 89
Offset: 1

Views

Author

Henry Bottomley, Jul 16 2002

Keywords

Comments

Columns of the array are generated from Fibonacci polynomials f(x). They are: (1), (x), (x^2 + 1), (x^3 + 2x), (x^4 + 3x^2 + 1), (x^5 + 4x^3 + 3x), (x^6 + 5x^4 + 6x^2 +1), ... If column headings start 0, 1, 2, ... then the terms in the n-th column are generated from the n-th degree Fibonacci polynomial. For example, column 5 (8, 70, 360, ...) is generated from f(x), x = 1,2,3,...; fifth-degree polynomial x^5 + 4x^3 + 3x; e.g., f(2) = 70 = 2^5 + 4*8 + 3*2. - Gary W. Adamson, Apr 02 2006
The ratio of two consecutive entries of the sequence in the n-th row approaches (n + sqrt(n^2 + 4))/2. Example: The sequence beginning (1, 3, 10, 33, ...) tends to 3.302775... = (3 + sqrt(13))/2. - Gary W. Adamson, Aug 12 2013
As to the array sequences, (n+1)-th sequence is the INVERT transform of the n-th sequence. - Gary W. Adamson, Aug 20 2013
The array can be extended infinitely above the Fibonacci row by taking successive INVERTi transforms, resulting in:
...
1, -2, 5, -12, 29, -70, ...
1, -1, 2, -3, 5, -8, ...
l, 0, 1, 0, 1, 0, ...
1, 1, 2, 3, 5, 8, ...
1, 2, 5, 12, 29, 70, ...
...
This results in an infinite array in which sequences above the (1, 0, 1, 0, ...) are reflections of the sequences below, except for the alternate signs. Any sequence in the (+ sign) row starting (1, n, ...) is the (2*n-th) INVERT transform of the same sequence but with alternate signs. Example: (1, 2, 5, 12, ...) is the (2*2) = fourth INVERT transform of (1, -2, 5, -12, ...) by inspection. Conjecture: This "reflection" principle will result from taking successive INVERT transforms of any aerated sequence starting 1, ... and with positive signs. Likewise, the rows above the aerated sequence are successive INVERTi transforms of the aerated sequence. - Gary W. Adamson, Jul 14 2019
From Michael A. Allen, Feb 21 2023: (Start)
Row n is the n-metallonacci sequence.
T(n,k) is the number of tilings of a (k-1)-board (a board with dimensions (k-1) X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are n kinds of squares available. (End)

Examples

			Table begins:
  1, 1,  2,  3,   5,    8,   13, ...
  1, 2,  5, 12,  29,   70,  169, ...
  1, 3, 10, 33, 109,  360, 1189, ...
  1, 4, 17, 72, 305, 1292, 5473, ... etc.
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k<0 then return 0;
        elif k=1 then return 1;
        else return n*T(n,k-1) + T(n,k-2);
        fi;
      end;
    Flat(List([1..15], n-> List([1..n], k-> T(n-k+1,k) ))); # G. C. Greubel, Aug 12 2019
  • Maple
    A073133 := proc(n,k)
        option remember;
        if k <= 1 then
            k;
        else
            n*procname(n,k-1)+procname(n,k-2) ;
        end if;
    end proc:
    seq(seq( A073133(d-k,k),k=1..d-1),d=2..13) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    T[n_, 1]:= 1; T[n_, k_]:= T[n, k] = If[k<0, 0, n*T[n, k-1] + T[n, k-2]]; Table[T[n-k+1, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Aug 12 2019 *)
  • PARI
    T(n,k) = if(k==1, 1, k<0, 0, n*T(n,k-1)+T(n,k-2));
    for(n=1,15, for(k=1,n, print1(T(n-k+1,k), ", "))) \\ G. C. Greubel, Aug 12 2019
    
  • Sage
    def T(n, k):
        if (k<0): return 0
        elif (k==1): return 1
        else: return n*T(n, k-1) + T(n, k-2)
    [[T(n-k+1, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Aug 12 2019
    

Formula

T(n, k) = A073134(n, k) + 2*A073135(n, k-2) = Sum_{j=0..k-1} abs(A049310(k-1, j)*n^j).
T(n,k) = [[0,1; 1,n]^{k+1}]{1,1}, n,k in {1,2,...}. - _L. Edson Jeffery, Sep 23 2012
G.f. for row n: x/(1-n*x-x^2). - L. Edson Jeffery, Aug 28 2013

A049660 a(n) = Fibonacci(6*n)/8.

Original entry on oeis.org

0, 1, 18, 323, 5796, 104005, 1866294, 33489287, 600940872, 10783446409, 193501094490, 3472236254411, 62306751484908, 1118049290473933, 20062580477045886, 360008399296352015, 6460088606857290384, 115921586524134874897, 2080128468827570457762
Offset: 0

Views

Author

Keywords

Comments

For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 18's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n >= 2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,17}. - Milan Janjic, Jan 25 2015
10*a(n)^2 = Tri(4)*S(n-1, 18)^2 is the triangular number Tri((T(n, 9) - 1)/2), with Tri, S and T given in A000217, A049310 and A053120. This is instance k = 4 of the k-family of identities given in a comment on A001109. - Wolfdieter Lang, Feb 01 2016
Possible solutions for y in Pell equation x^2 - 80*y^2 = 1. The values for x are given in A023039. - Herbert Kociemba, Jun 05 2022

Examples

			a(3) = F(6 * 3) / 8 = F(18) / 8 = 2584 / 8 = 323. - _Indranil Ghosh_, Feb 06 2017
		

Crossrefs

Column m=6 of array A028412.
Partial sums of A007805.

Programs

Formula

G.f.: x/(1 - 18*x + x^2).
a(n) = A134492(n)/8.
a(n) ~ (1/40)*sqrt(5)*(sqrt(5) + 2)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
For all terms k of the sequence, 80*k^2 + 1 is a square. Limit_{n->oo} a(n)/a(n-1) = 8*phi + 5 = 9 + 4*sqrt(5). - Gregory V. Richardson, Oct 14 2002
a(n) = S(n-1, 18) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the second kind. S(-1, x) := 0. See A049310.
a(n) = (((9 + 4*sqrt(5))^n - (9 - 4*sqrt(5))^n))/(8*sqrt(5)).
a(n) = sqrt((A023039(n)^2 - 1)/80) (cf. Richardson comment).
a(n) = 18*a(n-1) - a(n-2). - Gregory V. Richardson, Oct 14 2002
a(n) = A001076(2n)/4.
a(n) = 17*(a(n-1) + a(n-2)) - a(n-3) = 19*(a(n-1) - a(n-2)) + a(n-3). - Mohamed Bouhamida, May 26 2007
a(n+1) = Sum_{k=0..n} A101950(n,k)*17^k. - Philippe Deléham, Feb 10 2012
Product_{n>=1} (1 + 1/a(n)) = (1/2)*(2 + sqrt(5)). - Peter Bala, Dec 23 2012
Product_{n>=2} (1 - 1/a(n)) = (2/9)*(2 + sqrt(5)). - Peter Bala, Dec 23 2012
a(n) = (1/32)*(F(6*n + 3) - F(6*n - 3)).
Sum_{n>=1} 1/(4*a(n) + 1/(4*a(n))) = 1/4. Compare with A001906 and A049670. - Peter Bala, Nov 29 2013
From Peter Bala, Apr 02 2015: (Start)
Sum_{n >= 1} a(n)*x^(2*n) = -G(x)*G(-x), where G(x) = Sum_{n >= 1} A001076(n)*x^n.
1 + 4*Sum_{n >= 1} a(n)*x^(2*n) = (1 + F(x))*(1 + F(-x)) = (1 + 2*x*G(x))*(1 - 2*x*G(-x)), where F(x) = Sum_{n >= 1} Fibonacci(3*n + 3)*x^n.
1 + 7*Sum_{n >= 1} a(n)*x^(2*n) = (1 + G(x))*(1 + G(-x)) = (1 + 7*G(x))*(1 + 7*G(-x)).
1 + 12*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 2*G(x))*(1 + 2*G(-x)) = (1 + 6*G(x))*(1 + 6*G(-x)) = (1 + A(x))*(1 + A(-x)), where A(x) = Sum_{n >= 1} Fibonacci(3*n)*x^n is the o.g.f for A014445.
1 + 15*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 5*G(x))*(1 + 5*G(-x)) = (1 + 3*G(x))*(1 + 3*G(-x)) = H(x)*H(-x), where H(x) = Sum_{n >= 0} A155179(n)*x^n.
1 + 16*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 4*G(x))*(1 + 4*G(-x)) = (1 + 2* Sum_{n >= 1} Fibonacci(3*n - 1)*x^n)*(1 + 2* Sum_{n >= 1} Fibonacci(3*n - 1)*(-x)^n) = (1 + 2* Sum_{n >= 1} Fibonacci(3*n + 1)*x^n)*(1 + 2* Sum_{n >= 1} Fibonacci(3*n + 1)*(-x)^n).
1 + 20*Sum_{n >= 1} a(n)*x^(2*n) = (1 + Sum_{n >= 1} Lucas(3*n)*x^n)*(1 + Sum_{n >= 1} Lucas(3*n)*(-x)^n).
1 - 5*Sum_{n >= 1} a(n)*x^(2*n) = (1 + Sum_{n >= 1} A001077(n+1)*x^n)*(1 + Sum_{n >= 1} A001077(n+1)*(-x)^n).
1 - 9*Sum_{n >= 1} a(n)*x^(2*n) = (1 - G(x))*(1 - G(-x)) = (1 + 9*G(x))*(1 + 9*G(-x)).
1 - 16*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 2*Sum_{n >= 1} A099843(n)*x^n)*(1 + 2*Sum_{n >= 1} A099843(n)*(-x)^n).
1 - 20*Sum_{n >= 1} a(n)*x^(2*n) = (1 - 2*G(x))*(1 - 2*G(-x)) = (1 + 10*G(x))*(1 + 10*G(-x)).
(End)

Extensions

Chebyshev and other comments from Wolfdieter Lang, Nov 08 2002

A001077 Numerators of continued fraction convergents to sqrt(5).

Original entry on oeis.org

1, 2, 9, 38, 161, 682, 2889, 12238, 51841, 219602, 930249, 3940598, 16692641, 70711162, 299537289, 1268860318, 5374978561, 22768774562, 96450076809, 408569081798, 1730726404001, 7331474697802, 31056625195209
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A001076(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = -1.
a(2*n) with b(2*n) := A001076(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,9) = A023039(n), n >= 0 and a(2*n+1) = 2*S(2*n, 2*sqrt(5)) = A075796(n+1), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
From Greg Dresden, May 21 2023: (Start)
For n >= 2, 8*a(n) is the number of ways to tile this T-shaped figure of length n-1 with four colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 8*a(6) = 23112 different tilings.
_
|| _
|||_|||
|_|
(End)

Examples

			1  2  9  38  161  (A001077)
-, -, -, --, ---, ...
0  1  4  17   72  (A001076)
1 + 2*x + 9*x^2 + 38*x^3 + 161*x^4 + 682*x^5 + 2889*x^6 + 12238*x^7 + ... - _Michael Somos_, Aug 11 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques, Gauthier-Villars, Paris, 1952, p. 282.

Crossrefs

Programs

  • Magma
    I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    A001077:=(-1+2*z)/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
    with(combinat): a:=n->fibonacci(n+1, 4)-2*fibonacci(n, 4): seq(a(n), n=0..30); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{4, 1}, {1, 2}, 30]
    Join[{1},Numerator[Convergents[Sqrt[5],30]]] (* Harvey P. Dale, Mar 23 2016 *)
    CoefficientList[Series[(1-2*x)/(1-4*x-x^2), {x, 0, 30}], x] (* G. C. Greubel, Dec 19 2017 *)
    LucasL[3*Range[0,30]]/2 (* Rigoberto Florez, Apr 03 2019 *)
    a[ n_] := LucasL[n, 4]/2; (* Michael Somos, Nov 02 2021 *)
  • PARI
    {a(n) = fibonacci(3*n) / 2 + fibonacci(3*n - 1)}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    a(n)=if(n<2,n+1,my(t=4);for(i=1,n-2,t=4+1/t);numerator(2+1/t)) \\ Charles R Greathouse IV, Dec 05 2011
    
  • PARI
    x='x+O('x^30); Vec((1-2*x)/(1-4*x-x^2)) \\ G. C. Greubel, Dec 19 2017
    
  • Sage
    [lucas_number2(n,4,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
    

Formula

G.f.: (1-2*x)/(1-4*x-x^2).
a(n) = 4*a(n-1) + a(n-2), a(0)=1, a(1)=2.
a(n) = ((2 + sqrt(5))^n + (2 - sqrt(5))^n)/2.
a(n) = A014448(n)/2.
Limit_{n->infinity} a(n)/a(n-1) = phi^3 = 2 + sqrt(5). - Gregory V. Richardson, Oct 13 2002
a(n) = ((-i)^n)*T(n, 2*i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
Binomial transform of A084057. - Paul Barry, May 10 2003
E.g.f.: exp(2x)cosh(sqrt(5)x). - Paul Barry, May 10 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*5^k*2^(n-2k). - Paul Barry, Nov 15 2003
a(n) = 4*a(n-1) + a(n-2) when n > 2; a(1) = 1, a(2) = 2. - Alex Vinokur (alexvn(AT)barak-online.net), Oct 25 2004
a(n) = A001076(n+1) - 2*A001076(n) = A097924(n) - A015448(n+1); a(n+1) = A097924(n) + 2*A001076(n) = A097924(n) + 2(A048876(n) - A048875(n)). - Creighton Dement, Mar 19 2005
a(n) = F(3*n)/2 + F(3*n-1) where F() = Fibonacci numbers A000045. - Gerald McGarvey, Apr 28 2007
a(n) = A000032(3*n)/2.
For n >= 1: a(n) = (1/2)*Fibonacci(6*n)/Fibonacci(3*n) and a(n) = integer part of (2 + sqrt(5))^n. - Artur Jasinski, Nov 28 2011
a(n) = Sum_{k=0..n} A201730(n,k)*4^k. - Philippe Deléham, Dec 06 2011
a(n) = A001076(n) + A015448(n). - R. J. Mathar, Jul 06 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) is the (1,1)-entry of the matrix W^n with W=[2, sqrt(5); sqrt(5), 2]. - Carmine Suriano, Mar 21 2014
From Rigoberto Florez, Apr 03 2019: (Start)
a(n) = A099919(n) + A049651(n) if n > 0.
a(n) = 1 + Sum_{k=0..n-1} L(3*k + 1) if n >= 0, L(n) = n-th Lucas number (A000032). (End)
From Christopher Hohl, Aug 22 2021: (Start)
For n >= 2, a(2n-1) = A079962(6n-9) + A079962(6n-3).
For n >= 1, a(2n) = sqrt(20*A079962(6n-3)^2 + 1). (End)
a(n) = Sum_{k=0..n-2} A168561(n-2,k)*4^k + 2 * Sum_{k=0..n-1} A168561(n-1,k)*4^k, n>0. - R. J. Mathar, Feb 14 2024
a(n) = 4^n*Sum_{k=0..n} A374439(n, k)*(-1/4)^k. - Peter Luschny, Jul 26 2024
From Peter Bala, Jul 08 2025: (Start)
The following series telescope:
Sum_{n >= 1} 1/(a(n) + 5*(-1)^(n+1)/a(n)) = 3/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = b(n) - b(n+1), where b(n) = (1/4) * (a(n) + a(n-1)) / (a(n)*a(n-1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5*(-1)^(n+1)/a(n)) = 1/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = c(n) + c(n+1), where c(n) = (1/4) * (a(n) - a(n-1)) / (a(n)*a(n-1)). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A001090 a(n) = 8*a(n-1) - a(n-2); a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 8, 63, 496, 3905, 30744, 242047, 1905632, 15003009, 118118440, 929944511, 7321437648, 57641556673, 453811015736, 3572846569215, 28128961537984, 221458845734657, 1743541804339272, 13726875588979519, 108071462907496880, 850844827670995521, 6698687158460467288
Offset: 0

Views

Author

Keywords

Comments

This sequence gives the values of y in solutions of the Diophantine equation x^2 - 15*y^2 = 1; the corresponding values of x are in A001091. - Vincenzo Librandi, Nov 12 2010 [edited by Jon E. Schoenfield, May 02 2014]
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 8's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,7}. - Milan Janjic, Jan 25 2015
From Klaus Purath, Jul 25 2024: (Start)
For any three consecutive terms (x, y, z) y^2 - x*z = 1 always applies.
a(n) = (t(i+2n) - t(i))/(t(i+n+1) - t(i+n-1)) where (t) is any recurrence t(k) = 9t(k-1) - 9t(k-2) + t(k-3) or t(k) = 8t(k-1) - t(k-2) without regard to initial values.
In particular, if the recurrence (t) of the form (9,-9,1) has the initial values t(0) = 1, t(1) = 2, t(2) = 9, a(n) = t(n) - 1 applies. (End)

Examples

			G.f. = x + 8*x^2 + 63*x^3 + 496*x^4 + 3905*x^5 + 30744*x^6 + 242047*x^7 + ...
		

References

  • Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals one-third A136325.
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), this sequence (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=4;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 8*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 20 2017
    
  • Maple
    A001090:=1/(1-8*z+z**2); # Simon Plouffe in his 1992 dissertation
    seq( simplify(ChebyshevU(n-1, 4)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    Table[GegenbauerC[n-1, 1, 4], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    LinearRecurrence[{8,-1},{0,1},30] (* Harvey P. Dale, Aug 29 2012 *)
    a[n_]:= ChebyshevU[n-1, 4]; (* Michael Somos, May 28 2014 *)
    CoefficientList[Series[x/(1-8*x+x^2), {x,0,20}], x] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {a(n) = subst(poltchebi(n+1) - 4 * poltchebi(n), x, 4) / 15}; /* Michael Somos, Apr 05 2008 */
    
  • PARI
    {a(n) = polchebyshev(n-1, 2, 4)}; /* Michael Somos, May 28 2014 */
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x/(1-8*x-x^2))) \\ G. C. Greubel, Dec 20 2017
    
  • SageMath
    [lucas_number1(n,8,1) for n in range(22)] # Zerinvary Lajos, Jun 25 2008
    
  • SageMath
    [chebyshev_U(n-1,4) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

15*a(n)^2 - A001091(n)^2 = -1.
a(n) = sqrt((A001091(n)^2 - 1)/15).
a(n) = S(2*n-1, sqrt(10))/sqrt(10) = S(n-1, 8); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310, with S(-1, x) := 0.
From Barry E. Williams, Aug 18 2000: (Start)
a(n) = ((4+sqrt(15))^n - (4-sqrt(15))^n)/(2*sqrt(15)).
G.f.: x/(1-8*x+x^2). (End)
Limit_{n->infinity} a(n)/a(n-1) = 4 + sqrt(15). - Gregory V. Richardson, Oct 13 2002
[A070997(n-1), a(n)] = [1,6; 1,7]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(-n) = -a(n). - Michael Somos, Apr 05 2008
a(n+1) = Sum_{k=0..n} A101950(n,k)*7^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product_{n >= 1} (1 + 1/a(n)) = (1/3)*(3 + sqrt(15)).
Product_{n >= 2} (1 - 1/a(n)) = (1/8)*(3 + sqrt(15)).
(End)
a(n) = A136325(n)/3. - Greg Dresden, Sep 12 2019
E.g.f.: exp(4*x)*sinh(sqrt(15)*x)/sqrt(15). - Stefano Spezia, Dec 12 2022
a(n) = Sum_{k = 0..n-1} binomial(n+k, 2*k+1)*6^k = Sum_{k = 0..n-1} (-1)^(n+k+1)* binomial(n+k, 2*k+1)*10^k. - Peter Bala, Jul 17 2023

Extensions

More terms from Wolfdieter Lang, Aug 02 2000

A008615 a(n) = floor(n/2) - floor(n/3).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 13, 14, 14, 14, 14, 15, 14
Offset: 0

Views

Author

Keywords

Comments

If the two leading 0's are dropped, this becomes the essentially identical sequence A103221, with g.f. 1/((1-x^2)*(1-x^3)), which arises in many contexts. For example, 1/((1-x^4)*(1-x^6)) is the Poincaré series [or Poincare series] for modular forms of weight w for the full modular group. As generators one may take the Eisenstein series E_4 (A004009) and E_6 (A013973).
Dimension of the space of weight 2n+8 cusp forms for Gamma_0( 1 ).
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 5 ).
a(n) is the number of ways n can be written as the sum of a positive even number and a nonnegative multiple of 3 and so the number of ways (n-2) can be written as the sum of a nonnegative even number and a nonnegative multiple of 3 and also the number of ways (n+3) can be written as the sum of a positive even number and a positive multiple of 3.
It appears that this is also the number of partitions of 2n+6 that are 4-term arithmetic progressions. - John W. Layman, May 01 2009 [verified by Wesley Ivan Hurt, Jan 17 2021]
a(n) is the number of (n+3)-digit fixed points under the base-3 Kaprekar map A164993 (see A164997 for the list of fixed points). - Joseph Myers, Sep 04 2009
Starting from n=10 also the number of balls in new consecutive hexagonal edges, if an (infinite) chain of balls is winded spirally around the first ball at the center, such that each six steps make an entire winding. - K. G. Stier, Dec 21 2012
In any three consecutive terms at least two of them are equal to each other. - Michael Somos, Mar 01 2014
Number of partitions of (n-2) into parts 2 and 3. - David Neil McGrath, Sep 05 2014
a(n), n >= 0, is also the dimension of S_{2*(n+4)}, the complex vector space of modular cusp forms of weight 2*(n+4) and level 1 (full modular group). The dimension of S_0, S_2, S_4 and S_6 is 0. See, e.g., Ash and Gross, p. 178. Table 13.1. - Wolfdieter Lang, Sep 16 2016
From Wolfdieter Lang, May 08 2017: (Start)
a(n-2) = floor((n-2)/2) - floor((n-2)/3) = floor(n/2) - floor((n+1)/3) is for n >=0 the number of integers k in the interval (n+1)/3 < k <= floor(n/2). This problem appears in the computation of the number of zeros of Chebyshev S(n, x) polynomials (coefficients in A049310) in the open interval (-1, +1). See a comment there. This computation was motivated by a conjecture given in A008611 by Michel Lagneau, Mar 31 2017.
a(n) is also the number of integers k in the closed interval (n+1)/3 <= k <= floor(n/2), which is floor(n/2) - (ceiling((n+1)/3) - 1) for n >= 0 (proof trivial for n+1 == 0 (mod 3) and otherwise). From the preceding statement this a(n) is also a(n-2) + [n == 2 (mod 3)] for n >= 0 (with [statement] = 1 if the statement is true and zero otherwise). This proves the recurrence given by Michael Somos in the formula section. (End)
Assuming the Collatz conjecture to be true, for n > 1, a(n+7) is the row length of the n-th row of A340985. That is, the number of weakly connected components of the Collatz digraph of order n. - Sebastian Karlsson, Feb 23 2021

Examples

			G.f. = x^2 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + 2*x^11 + 2*x^12 + ...
		

References

  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.
  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
  • E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag, Berlin, 1983; p. 141, Th. 1.1.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962.
  • J.-M. Kantor, Où en sont les mathématiques, La formule de Molien-Weyl, SMF, Vuibert, p. 79

Crossrefs

Essentially the same as A103221.
First differences of A069905 (and A001399).

Programs

  • Haskell
    a008615 n = n `div` 2 - n `div` 3  -- Reinhard Zumkeller, Apr 28 2014
    
  • Magma
    [Floor(n/2)-Floor(n/3): n in [0..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Magma
    a := func< n | n lt 2 select 0 else n eq 2 select 1 else Dimension( ModularForms( PSL2( Integers()), 2*n-4))>; /* Michael Somos, Dec 11 2018 */
    
  • Maple
    a := n-> floor(n/2) - floor(n/3): seq(a(n), n = 0 .. 87);
  • Mathematica
    a[n_]:=Floor[n/2]-Floor[n/3]; Array[a,90,0] (* Vladimir Joseph Stephan Orlovsky, Dec 05 2008; corrected by Harvey P. Dale, Nov 30 2011 *)
    LinearRecurrence[{0, 1, 1, 0, -1}, {0, 0, 1, 0, 1}, 100]; (* Vincenzo Librandi, Sep 09 2015 *)
  • PARI
    {a(n) = (n\2) - (n\3)}; /* Michael Somos, Feb 06 2003 */
    
  • Python
    def A008615(n): return n//2 - n//3 # Chai Wah Wu, Jun 07 2022

Formula

a(n) = a(n-6) + 1 = a(n-2) + a(n-3) - a(n-5). - Henry Bottomley, Sep 02 2000
G.f.: x^2 / ((1-x^2) * (1-x^3)).
From Reinhard Zumkeller, Feb 27 2008: (Start)
a(A016933(n)) = a(A016957(n)) = a(A016969(n)) = n+1.
a(A008588(n)) = a(A016921(n)) = a(A016945(n)) = n. (End)
a(6*k) = k, k >= 0. - Zak Seidov, Sep 09 2012
a(n) = A005044(n+1) - A005044(n-3). - Johannes W. Meijer, Oct 18 2013
a(n) = floor((n+4)/6) - floor((n+3)/6) + floor((n+2)/6). - Mircea Merca, Nov 27 2013
Euler transform of length 3 sequence [0, 1, 1]. - Michael Somos, Mar 01 2014
a(n+2) = a(n) + 1 if n == 0 (mod 3), a(n+2) = a(n) otherwise. - Michael Somos, Mar 01 2014. See the May 08 2017 comment above. - Wolfdieter Lang, May 08 2017
a(n) = -a(-1 - n) for all n in Z. - Michael Somos, Mar 01 2014.
a(n) = A004526(n) - A002264(n). - Reinhard Zumkeller, Apr 28 2014
a(n) = Sum_{i=0..n-2} (floor(i/6)-floor((i-3)/6))*(-1)^i. - Wesley Ivan Hurt, Sep 08 2015
a(n) = a(n+6) - 1 = A103221(n+4) - 1, n >= 0. - Wolfdieter Lang, Sep 16 2016
12*a(n) = 2*n +1 +3*(-1)^n -4*A057078(n). - R. J. Mathar, Jun 19 2019
a(n) = Sum_{k=1..floor((n+3)/2)} Sum_{j=k..floor((2*n+6-k)/3)} Sum_{i=j..floor((2*n+6-j-k)/2)} ([j-k = i-j = 2*n+6-2*i-j-k] - [k = j = i = 2*n+6-i-j-k]), where [ ] is the (generalized) Iverson bracket. - Wesley Ivan Hurt, Jan 17 2021
E.g.f.: (3*(2 + x)*cosh(x) - 2*exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 3*(x-1)*sinh(x))/18. - Stefano Spezia, Oct 17 2022
Previous Showing 81-90 of 490 results. Next