A000217 Triangular numbers: a(n) = binomial(n+1,2) = n*(n+1)/2 = 0 + 1 + 2 + ... + n.
0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431
Offset: 0
Examples
G.f.: x + 3*x^2 + 6*x^3 + 10*x^4 + 15*x^5 + 21*x^6 + 28*x^7 + 36*x^8 + 45*x^9 + ... When n=3, a(3) = 4*3/2 = 6. Example(a(4)=10): ABCD where A, B, C and D are different links in a chain or different amino acids in a peptide possible fragments: A, B, C, D, AB, ABC, ABCD, BC, BCD, CD = 10. a(2): hollyhock leaves on the Tokugawa Mon, a(4): points in Pythagorean tetractys, a(5): object balls in eight-ball billiards. - _Bradley Klee_, Aug 24 2015 From _Gus Wiseman_, Oct 28 2020: (Start) The a(1) = 1 through a(5) = 15 ordered triples of positive integers summing to n + 2 [Beeler, McGrath above] are the following. These compositions are ranked by A014311. (111) (112) (113) (114) (115) (121) (122) (123) (124) (211) (131) (132) (133) (212) (141) (142) (221) (213) (151) (311) (222) (214) (231) (223) (312) (232) (321) (241) (411) (313) (322) (331) (412) (421) (511) The unordered version is A001399(n-3) = A069905(n), with Heinz numbers A014612. The strict case is A001399(n-6)*6, ranked by A337453. The unordered strict case is A001399(n-6), with Heinz numbers A007304. (End)
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- C. Alsina and R. B. Nelson, Charming Proofs: A Journey into Elegant Mathematics, MAA, 2010. See Chapter 1.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 109ff.
- Marc Chamberland, Single Digits: In Praise of Small Numbers, Chapter 3, The Number Three, p. 72, Princeton University Press, 2015.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 33, 38, 40, 70.
- J. M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 309 pp 46-196, Ellipses, Paris, 2004
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
- Martin Gardner, Colossal Book of Mathematics, Chapter 34, Bulgarian Solitaire and Other Seemingly Endless Tasks, pp. 455-467, W. W. Norton & Company, 2001.
- James Gleick, The Information: A History, A Theory, A Flood, Pantheon, 2011. [On page 82 mentions a table of the first 19999 triangular numbers published by E. de Joncort in 1762.]
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.6 Mathematical Proof and §8.6 Figurate Numbers, pp. 158-159, 289-290.
- Cay S. Horstmann, Scala for the Impatient. Upper Saddle River, New Jersey: Addison-Wesley (2012): 171.
- Elemer Labos, On the number of RGB-colors we can distinguish. Partition Spectra. Lecture at 7th Hungarian Conference on Biometry and Biomathematics. Budapest. Jul 06 2005.
- A. Messiah, Quantum Mechanics, Vol.1, North Holland, Amsterdam, 1965, p. 457.
- J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 52-53, 129-132, 274.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 2-6, 13.
- T. Trotter, Some Identities for the Triangular Numbers, Journal of Recreational Mathematics, Spring 1973, 6(2).
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 91-93 Penguin Books 1987.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..30000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972.
- K. Adegoke, R. Frontzcak and T. Goy, Special formulas involving polygonal numbers and Horadam numbers, Carpathian Math. Publ., 13 (2021), no. 1, 207-216.
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- Joerg Arndt, Matters Computational (The Fxtbook), section 39.7, pp. 776-778.
- Luciano Ancora, The Square Pyramidal Number and other figurate numbers, ch. 5.
- S. Barbero, U. Cerruti, and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences, J. Int. Seq. 13 (2010) # 10.9.7, proposition 18.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- T. Beldon and T. Gardiner, Triangular numbers and perfect squares, The Mathematical Gazette 86 (2002), 423-431.
- Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372. [From _Parthasarathy Nambi_, Sep 30 2009]
- Anicius Manlius Severinus Boethius, De institutione arithmetica, libri duo, Sections 7-9.
- Henry Bottomley, Illustration of initial terms of A000217, A002378
- Sadek Bouroubi and Ali Debbache, An unexpected meeting between the P^3_1-set and the cubic-triangular numbers, arXiv:2001.11407 [math.NT], 2020.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Bikash Chakraborty, Proof Without Words: Sums of Powers of Natural numbers, arXiv:2012.11539 [math.HO], 2020.
- Peter M. Chema, Illustration of first 25 terms as corners of a double square spiral.
- Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
- Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
- Alexandru Dimca and Takuro Abe, On complex supersolvable line arrangements, arXiv:1907.12497 [math.AG], 2019.
- Tomislav Došlić, Maximum Product Over Partitions Into Distinct Parts, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.8.
- Askar Dzhumadil'daev and Damir Yeliussizov, Power Sums of Binomial Coefficients, Journal of Integer Sequences, Vol. 16 (2013), #13.1.1.
- J. East, Presentations for singular subsemigroups of the partial transformation semigroup, Internat. J. Algebra Comput., 20 (2010), no. 1, 1-25.
- J. East, On the singular part of the partition monoid, Internat. J. Algebra Comput., 21 (2011), no. 1-2, 147-178.
- Gennady Eremin, Naturalized bracket row and Motzkin triangle, arXiv:2004.09866 [math.CO], 2020.
- Leonhard Euler, The Euler archive - E806 D, Miscellanea, Section 87, Opera Postuma Mathematica et Physica, 2 vols., St. Petersburg Academy of Science, 1862.
- E. T. Frankel, A calculus of figurate numbers and finite differences, American Mathematical Monthly, 57 (1950), 14-25. [Annotated scanned copy]
- Fekadu Tolessa Gedefa, On The Log-Concavity of Polygonal Figurate Number Sequences, arXiv:2006.05286 [math.CO], 2020.
- Adam Grabowski, Polygonal Numbers, Formalized Mathematics, Vol. 21, No. 2, Pages 103-113, 2013; DOI: 10.2478/forma-2013-0012; alternate copy
- S. S. Gupta, Fascinating Triangular Numbers
- C. Hamberg, Triangular Numbers Are Everywhere, llinois Mathematics and Science Academy, IMSA Math Journal: a Resource Notebook for High School Mathematics (1992), pp. 7-10.
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 35. Book's website
- J. M. Howie, Idempotent generators in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh Sect. A, 81 (1978), no. 3-4, 317-323.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 253 [Dead link]
- Milan Janjić, Two Enumerative Functions
- Xiangdong Ji, Chapter 8: Structure of Finite Nuclei, Lecture notes for Phys 741 at Univ. of Maryland, pp. 139-140 [From _Tom Copeland_, Apr 07 2014].
- R. Jovanovic, Triangular numbers [Cached copy at Wayback Machine]
- Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
- Hyun Kwang Kim, On regular polytope numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
- J. Koller, Triangular Numbers
- A. J. F. Leatherland, Triangle Numbers on Ulam Spiral. In Eric Weisstein's World of Mathematics, there is a reference in the entry for Prime Spiral to Leatherland, A. J. F., The Mysterious Prime Spiral Phenomenon. - _N. J. A. Sloane_, Dec 13 2019
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 13, 15, 29.
- Sergey V. Muravyov, Liudmila I. Khudonogova, and Ekaterina Y. Emelyanova, Interval data fusion with preference aggregation, Measurement (2017), see page 5.
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- A. Nowicki, The numbers a^2+b^2-dc^2, J. Int. Seq. 18 (2015) # 15.2.3.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
- Michael Penn, A functional equation from the Netherlands, YouTube video, 2021.
- Ivars Peterson, Triangular Numbers and Magic Squares.
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Omar E. Pol, Illustration of initial terms of A000217, A000290, A000326, A000384, A000566, A000567
- David G. Radcliffe, A product rule for triangular numbers, arXiv:1606.05398 [math.NT], 2016.
- F. Richman, Triangle numbers
- J. Riordan, Review of Frankel (1950) [Annotated scanned copy]
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42. doi:10.4169/math.mag.85.1.36 .
- Frank Ruskey and Jennifer Woodcock, The Rand and block distances of pairs of set partitions, in Combinatorial Algorithms, 287-299, Lecture Notes in Comput. Sci., 7056, Springer, Heidelberg, 2011.
- Sci.math Newsgroup, Square numbers which are triangular [Broken link: Cached copy]
- James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4.
- J.S. Seneschal, Iterated Triangular Numbers as Complete Graphs
- Claude-Alexandre Simonetti, A new mathematical symbol: the termirial, arXiv:2005.00348 [math.GM], 2020.
- N. J. A. Sloane, Illustration of initial terms of A000217, A000290, A000326
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
- H. Stamm-Wilbrandt, Sum of Pascal's triangle reciprocals [Cached copy from the Wayback Machine]
- Leo Tavares, Illustration of the formula "a(n) + a(n-1) = n^2".
- T. Trotter, Some Identities for the Triangular Numbers, J. Rec. Math. vol. 6, no. 2 Spring 1973. [Cached copy from the Wayback Machine]
- G. Villemin's Almanach of Numbers, Nombres Triangulaires
- Manuel Vogel, Motion of a Single Particle in a Real Penning Trap, Particle Confinement in Penning Traps, Springer Series on Atomic, Optical, and Plasma Physics, Vol. 100. Springer, Cham. 2018, 61-88.
- Michel Waldschmidt, Continued fractions, École de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc).
- Eric Weisstein's World of Mathematics, Absolute Value, Binomial Coefficient, Composition, Distance, Golomb Ruler, Line Line Picking, Polygonal Number, Triangular Number, Trinomial Coefficient, and Wiener Index
- Wikipedia, Triangular number; also: Floyd's triangle.
- Index entries for "core" sequences
- Index entries for related partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for two-way infinite sequences
- Index to sequences related to polygonal numbers
- Index entries for sequences related to Benford's law
Crossrefs
The figurate numbers, with parameter k as in the second Python program: A001477 (k=0), this sequence (k=1), A000290 (k=2), A000326 (k=3), A000384 (k=4), A000566 (k=5), A000567 (k=6), A001106 (k=7), A001107 (k=8).
Cf. A000096, A000124, A000292, A000330, A000396, A000668, A001082, A001788, A002024, A002378, A002415, A003056 (inverse function), A004526, A006011, A007318, A008953, A008954, A010054 (characteristic function), A028347, A036666, A046092, A051942, A055998, A055999, A056000, A056115, A056119, A056121, A056126, A062717, A087475, A101859, A109613, A143320, A210569, A245031, A245300, A060544, A016754.
a(n) = A110449(n, 0).
a(n) = A110555(n+2, 2).
A diagonal of A008291.
Column 2 of A195152.
Numbers of the form n*t(n+k,h)-(n+k)*t(n,h), where t(i,h) = i*(i+2*h+1)/2 for any h (for A000217 is k=1): A005563, A067728, A140091, A140681, A212331.
Iterations: A007501 (start=2), A013589 (start=4), A050542 (start=5), A050548 (start=7), A050536 (start=8), A050909 (start=9).
Cf. A104712 (first column, starting with a(1)).
A011782 counts compositions of any length.
Programs
-
Haskell
a000217 n = a000217_list !! n a000217_list = scanl1 (+) [0..] -- Reinhard Zumkeller, Sep 23 2011
-
J
a000217=: *-:@>: NB. Stephen Makdisi, May 02 2018
-
Magma
[n*(n+1)/2: n in [0..60]]; // Bruno Berselli, Jul 11 2014
-
Magma
[n: n in [0..1500] | IsSquare(8*n+1)]; // Juri-Stepan Gerasimov, Apr 09 2016
-
Maple
A000217 := proc(n) n*(n+1)/2; end; istriangular:=proc(n) local t1; t1:=floor(sqrt(2*n)); if n = t1*(t1+1)/2 then return true else return false; end if; end proc; # N. J. A. Sloane, May 25 2008 ZL := [S, {S=Prod(B, B, B), B=Set(Z, 1 <= card)}, unlabeled]: seq(combstruct[count](ZL, size=n), n=2..55); # Zerinvary Lajos, Mar 24 2007 isA000217 := proc(n) issqr(1+8*n) ; end proc: # R. J. Mathar, Nov 29 2015 [This is the recipe Leonhard Euler proposes in chapter VII of his "Vollständige Anleitung zur Algebra", 1765. Peter Luschny, Sep 02 2022]
-
Mathematica
Array[ #*(# - 1)/2 &, 54] (* Zerinvary Lajos, Jul 10 2009 *) FoldList[#1 + #2 &, 0, Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *) Accumulate[Range[0,70]] (* Harvey P. Dale, Sep 09 2012 *) CoefficientList[Series[x / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 30 2014 *) (* For Mathematica 10.4+ *) Table[PolygonalNumber[n], {n, 0, 53}] (* Arkadiusz Wesolowski, Aug 27 2016 *) LinearRecurrence[{3, -3, 1}, {0, 1, 3}, 54] (* Robert G. Wilson v, Dec 04 2016 *) (* The following Mathematica program, courtesy of Steven J. Miller, is useful for testing if a sequence is Benford. To test a different sequence only one line needs to be changed. This strongly suggests that the triangular numbers are not Benford, since the second and third columns of the output disagree. - N. J. A. Sloane, Feb 12 2017 *) fd[x_] := Floor[10^Mod[Log[10, x], 1]] benfordtest[num_] := Module[{}, For[d = 1, d <= 9, d++, digit[d] = 0]; For[n = 1, n <= num, n++, { d = fd[n(n+1)/2]; If[d != 0, digit[d] = digit[d] + 1]; }]; For[d = 1, d <= 9, d++, digit[d] = 1.0 digit[d]/num]; For[d = 1, d <= 9, d++, Print[d, " ", 100.0 digit[d], " ", 100.0 Log[10, (d + 1)/d]]]; ]; benfordtest[20000] Table[Length[Join@@Permutations/@IntegerPartitions[n,{3}]],{n,0,15}] (* Gus Wiseman, Oct 28 2020 *)
-
PARI
A000217(n) = n * (n + 1) / 2;
-
PARI
is_A000217(n)=n*2==(1+n=sqrtint(2*n))*n \\ M. F. Hasler, May 24 2012
-
PARI
is(n)=ispolygonal(n,3) \\ Charles R Greathouse IV, Feb 28 2014
-
PARI
list(lim)=my(v=List(),n,t); while((t=n*n++/2)<=lim,listput(v,t)); Vec(v) \\ Charles R Greathouse IV, Jun 18 2021
-
Python
for n in range(0,60): print(n*(n+1)//2, end=', ') # Stefano Spezia, Dec 06 2018
-
Python
# Intended to compute the initial segment of the sequence, not # isolated terms. If in the iteration the line "x, y = x + y + 1, y + 1" # is replaced by "x, y = x + y + k, y + k" then the figurate numbers are obtained, # for k = 0 (natural A001477), k = 1 (triangular), k = 2 (squares), k = 3 (pentagonal), k = 4 (hexagonal), k = 5 (heptagonal), k = 6 (octagonal), etc. def aList(): x, y = 1, 1 yield 0 while True: yield x x, y = x + y + 1, y + 1 A000217 = aList() print([next(A000217) for i in range(54)]) # Peter Luschny, Aug 03 2019
-
SageMath
[n*(n+1)/2 for n in (0..60)] # Bruno Berselli, Jul 11 2014
-
Scala
(1 to 53).scanLeft(0)( + ) // Horstmann (2012), p. 171
-
Scheme
(define (A000217 n) (/ (* n (+ n 1)) 2)) ;; Antti Karttunen, Jul 08 2017
Formula
G.f.: x/(1-x)^3. - Simon Plouffe in his 1992 dissertation
E.g.f.: exp(x)*(x+x^2/2).
a(n) = a(-1-n).
a(n) + a(n-1)*a(n+1) = a(n)^2. - Terrel Trotter, Jr., Apr 08 2002
a(n) = (-1)^n*Sum_{k=1..n} (-1)^k*k^2. - Benoit Cloitre, Aug 29 2002
a(n+1) = ((n+2)/n)*a(n), Sum_{n>=1} 1/a(n) = 2. - Jon Perry, Jul 13 2003
For n > 0, a(n) = A001109(n) - Sum_{k=0..n-1} (2*k+1)*A001652(n-1-k); e.g., 10 = 204 - (1*119 + 3*20 + 5*3 + 7*0). - Charlie Marion, Jul 18 2003
With interpolated zeros, this is n*(n+2)*(1+(-1)^n)/16. - Benoit Cloitre, Aug 19 2003
a(n+1) is the determinant of the n X n symmetric Pascal matrix M_(i, j) = binomial(i+j+1, i). - Benoit Cloitre, Aug 19 2003
a(n) = ((n+1)^3 - n^3 - 1)/6. - Xavier Acloque, Oct 24 2003
a(n) = a(n-1) + (1 + sqrt(1 + 8*a(n-1)))/2. This recursive relation is inverted when taking the negative branch of the square root, i.e., a(n) is transformed into a(n-1) rather than a(n+1). - Carl R. White, Nov 04 2003
a(n) = Sum_{k=1..n} phi(k)*floor(n/k) = Sum_{k=1..n} A000010(k)*A010766(n, k) (R. Dedekind). - Vladeta Jovovic, Feb 05 2004
a(n) + a(n+1) = (n+1)^2. - N. J. A. Sloane, Feb 19 2004
a(n) = a(n-2) + 2*n - 1. - Paul Barry, Jul 17 2004
a(n) = sqrt(Sum_{i=1..n} Sum_{j=1..n} (i*j)) = sqrt(A000537(n)). - Alexander Adamchuk, Oct 24 2004
a(n) = sqrt(sqrt(Sum_{i=1..n} Sum_{j=1..n} (i*j)^3)) = (Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} (i*j*k)^3)^(1/6). - Alexander Adamchuk, Oct 26 2004
a(n) == 1 (mod n+2) if n is odd and a(n) == n/2+2 (mod n+2) if n is even. - Jon Perry, Dec 16 2004
a(0) = 0, a(1) = 1, a(n) = 2*a(n-1) - a(n-2) + 1. - Miklos Kristof, Mar 09 2005
a(n) = a(n-1) + n. - Zak Seidov, Mar 06 2005
a(n) = A111808(n,2) for n > 1. - Reinhard Zumkeller, Aug 17 2005
a(n)*a(n+1) = A006011(n+1) = (n+1)^2*(n^2+2)/4 = 3*A002415(n+1) = 1/2*a(n^2+2*n). a(n-1)*a(n) = (1/2)*a(n^2-1). - Alexander Adamchuk, Apr 13 2006 [Corrected and edited by Charlie Marion, Nov 26 2010]
a(n) = floor((2*n+1)^2/8). - Paul Barry, May 29 2006
For positive n, we have a(8*a(n))/a(n) = 4*(2*n+1)^2 = (4*n+2)^2, i.e., a(A033996(n))/a(n) = 4*A016754(n) = (A016825(n))^2 = A016826(n). - Lekraj Beedassy, Jul 29 2006
a(n)^2 + a(n+1)^2 = a((n+1)^2) [R B Nelsen, Math Mag 70 (2) (1997), p. 130]. - R. J. Mathar, Nov 22 2006
a(n) = A126890(n,0). - Reinhard Zumkeller, Dec 30 2006
a(n)*a(n+k)+a(n+1)*a(n+1+k) = a((n+1)*(n+1+k)). Generalizes previous formula dated Nov 22 2006 [and comments by J. M. Bergot dated May 22 2012]. - Charlie Marion, Feb 04 2011
(sqrt(8*a(n)+1)-1)/2 = n. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 26 2007
8*a(n)^3 + a(n)^2 = Y(n)^2, where Y(n) = n*(n+1)*(2*n+1)/2 = 3*A000330(n). - Mohamed Bouhamida, Nov 06 2007 [Edited by Derek Orr, May 05 2015]
A general formula for polygonal numbers is P(k,n) = (k-2)*(n-1)n/2 + n = n + (k-2)*A000217(n-1), for n >= 1, k >= 3. - Omar E. Pol, Apr 28 2008 and Mar 31 2013
a(3*n) = A081266(n), a(4*n) = A033585(n), a(5*n) = A144312(n), a(6*n) = A144314(n). - Reinhard Zumkeller, Sep 17 2008
If we define f(n,i,a) = Sum_{j=0..k-1} (binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j)), then a(n) = -f(n,n-1,1), for n >= 1. - Milan Janjic, Dec 20 2008
4*a(x) + 4*a(y) + 1 = (x+y+1)^2 + (x-y)^2. - Vladimir Shevelev, Jan 21 2009
An exponential generating function for the inverse of this sequence is given by Sum_{m>=0} ((Pochhammer(1, m)*Pochhammer(1, m))*x^m/(Pochhammer(3, m)*factorial(m))) = ((2-2*x)*log(1-x)+2*x)/x^2, the n-th derivative of which has a closed form which must be evaluated by taking the limit as x->0. A000217(n+1) = (lim_{x->0} d^n/dx^n (((2-2*x)*log(1-x)+2*x)/x^2))^-1 = (lim_{x->0} (2*Gamma(n)*(-1/x)^n*(n*(x/(-1+x))^n*(-x+1+n)*LerchPhi(x/(-1+x), 1, n) + (-1+x)*(n+1)*(x/(-1+x))^n + n*(log(1-x)+log(-1/(-1+x)))*(-x+1+n))/x^2))^-1. - Stephen Crowley, Jun 28 2009
a(n) = A034856(n+1) - A005408(n) = A005843(n) + A000124(n) - A005408(n). - Jaroslav Krizek, Sep 05 2009
a(A006894(n)) = a(A072638(n-1)+1) = A072638(n) = A006894(n+1)-1 for n >= 1. For n=4, a(11) = 66. - Jaroslav Krizek, Sep 12 2009
With offset 1, a(n) = floor(n^3/(n+1))/2. - Gary Detlefs, Feb 14 2010
a(n) = 4*a(floor(n/2)) + (-1)^(n+1)*floor((n+1)/2). - Bruno Berselli, May 23 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=1. - Mark Dols, Aug 20 2010
From Charlie Marion, Oct 15 2010: (Start)
a(n) + 2*a(n-1) + a(n-2) = n^2 + (n-1)^2; and
a(n) + 3*a(n-1) + 3*a(n-2) + a(n-3) = n^2 + 2*(n-1)^2 + (n-2)^2.
In general, for n >= m > 2, Sum_{k=0..m} binomial(m,m-k)*a(n-k) = Sum_{k=0..m-1} binomial(m-1,m-1-k)*(n-k)^2.
a(n) - 2*a(n-1) + a(n-2) = 1, a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 0 and a(n) - 4*a(n-1) + 6*a(n-2) - 4*(a-3) + a(n-4) = 0.
In general, for n >= m > 2, Sum_{k=0..m} (-1)^k*binomial(m,m-k)*a(n-k) = 0.
(End)
a(n) = sqrt(A000537(n)). - Zak Seidov, Dec 07 2010
For n > 0, a(n) = 1/(Integral_{x=0..Pi/2} 4*(sin(x))^(2*n-1)*(cos(x))^3). - Francesco Daddi, Aug 02 2011
a(n) + a(a(n)) + 1 = a(a(n)+1). - J. M. Bergot, Apr 27 2012
a(n) = -s(n+1,n), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n)*a(n+1) = a(Sum_{m=1..n} A005408(m))/2, for n >= 1. For example, if n=8, then a(8)*a(9) = a(80)/2 = 1620. - Ivan N. Ianakiev, May 27 2012
G.f.: x * (1 + 3x + 6x^2 + ...) = x * Product_{j>=0} (1+x^(2^j))^3 = x * A(x) * A(x^2) * A(x^4) * ..., where A(x) = (1 + 3x + 3x^2 + x^3). - Gary W. Adamson, Jun 26 2012
G.f.: G(0) where G(k) = 1 + (2*k+3)*x/(2*k+1 - x*(k+2)*(2*k+1)/(x*(k+2) + (k+1)/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 23 2012
G.f.: x + 3*x^2/(Q(0)-3*x) where Q(k) = 1 + k*(x+1) + 3*x - x*(k+1)*(k+4)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) + a(n+1) + a(n+2) + a(n+3) + n = a(2*n+4). - Ivan N. Ianakiev, Mar 16 2013
a(n) + a(n+1) + ... + a(n+8) + 6*n = a(3*n+15). - Charlie Marion, Mar 18 2013
a(n) + a(n+1) + ... + a(n+20) + 2*n^2 + 57*n = a(5*n+55). - Charlie Marion, Mar 18 2013
3*a(n) + a(n-1) = a(2*n), for n > 0. - Ivan N. Ianakiev, Apr 05 2013
In general, a(k*n) = (2*k-1)*a(n) + a((k-1)*n-1). - Charlie Marion, Apr 20 2015
Also, a(k*n) = a(k)*a(n) + a(k-1)*a(n-1). - Robert Israel, Apr 20 2015
a(n+1) = det(binomial(i+2,j+1), 1 <= i,j <= n). - Mircea Merca, Apr 06 2013
a(n) = floor(n/2) + ceiling(n^2/2) = n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = floor((n+1)/(exp(2/(n+1))-1)). - Richard R. Forberg, Jun 22 2013
Sum_{n>=1} a(n)/n! = 3*exp(1)/2 by the e.g.f. Also see A067764 regarding ratios calculated this way for binomial coefficients in general. - Richard R. Forberg, Jul 15 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2) - 2 = 0.7725887... . - Richard R. Forberg, Aug 11 2014
2/(Sum_{n>=m} 1/a(n)) = m, for m > 0. - Richard R. Forberg, Aug 12 2014
A228474(a(n))=n; A248952(a(n))=0; A248953(a(n))=a(n); A248961(a(n))=A000330(n). - Reinhard Zumkeller, Oct 20 2014
a(a(n)-1) + a(a(n+2)-1) + 1 = A000124(n+1)^2. - Charlie Marion, Nov 04 2014
Sum_{k=0..n} k*a(k+1) = a(A000096(n+1)). - Charlie Marion, Jul 15 2015
Let O(n) be the oblong number n(n+1) = A002378(n) and S(n) the square number n^2 = A000290(n). Then a(n) + a(n+2k) = O(n+k) + S(k) and a(n) + a(n+2k+1) = S(n+k+1) + O(k). - Charlie Marion, Jul 16 2015
A generalization of the Nov 22 2006 formula, a(n)^2 + a(n+1)^2 = a((n+1)^2), follows. Let T(k,n) = a(n) + k. Then for all k, T(k,n)^2 + T(k,n+1)^2 = T(k,(n+1)^2 + 2*k) - 2*k. - Charlie Marion, Dec 10 2015
a(n)^2 + a(n+1)^2 = a(a(n) + a(n+1)). Deducible from N. J. A. Sloane's a(n) + a(n+1) = (n+1)^2 and R. B. Nelson's a(n)^2 + a(n+1)^2 = a((n+1)^2). - Ben Paul Thurston, Dec 28 2015
Dirichlet g.f.: (zeta(s-2) + zeta(s-1))/2. - Ilya Gutkovskiy, Jun 26 2016
a(n)^2 - a(n-1)^2 = n^3. - Miquel Cerda, Jun 29 2016
a(n) = A080851(0,n-1). - R. J. Mathar, Jul 28 2016
a(n)^2 + a(n+3)^2 + 19 = a(n^2 + 4*n + 10). - Charlie Marion, Nov 23 2016
2*a(n)^2 + a(n) = a(n^2+n). - Charlie Marion, Nov 29 2016
G.f.: x/(1-x)^3 = (x * r(x) * r(x^3) * r(x^9) * r(x^27) * ...), where r(x) = (1 + x + x^2)^3 = (1 + 3*x + 6*x^2 + 7*x^3 + 6*x^4 + 3*x^5 + x^6). - Gary W. Adamson, Dec 03 2016
a(n) = sum of the elements of inverse of matrix Q(n), where Q(n) has elements q_i,j = 1/(1-4*(i-j)^2). So if e = appropriately sized vector consisting of 1's, then a(n) = e'.Q(n)^-1.e. - Michael Yukish, Mar 20 2017
a(n) = Sum_{k=1..n} ((2*k-1)!!*(2*n-2*k-1)!!)/((2*k-2)!!*(2*n-2*k)!!). - Michael Yukish, Mar 20 2017
Sum_{i=0..k-1} a(n+i) = (3*k*n^2 + 3*n*k^2 + k^3 - k)/6. - Christopher Hohl, Feb 23 2019
a(n) == 0 (mod n) iff n is odd (see De Koninck reference). - Bernard Schott, Jan 10 2020
8*a(k)*a(n) + ((a(k)-1)*n + a(k))^2 = ((a(k)+1)*n + a(k))^2. This formula reduces to the well-known formula, 8*a(n) + 1 = (2*n+1)^2, when k = 1. - Charlie Marion, Jul 23 2020
a(k)*a(n) = Sum_{i = 0..k-1} (-1)^i*a((k-i)*(n-i)). - Charlie Marion, Dec 04 2020
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(7)*Pi/2)/(2*Pi).
Product_{n>=2} (1 - 1/a(n)) = 1/3. (End)
a(n) = Sum_{k=1..2*n-1} (-1)^(k+1)*a(k)*a(2*n-k). For example, for n = 4, 1*28 - 3*21 + 6*15 - 10*10 + 15*6 - 21*3 + 28*1 = 10. - Charlie Marion, Mar 23 2022
2*a(n) = A000384(n) - n^2 + 2*n. In general, if P(k,n) = the n-th k-gonal number, then (j+1)*a(n) = P(5 + j, n) - n^2 + (j+1)*n. More generally, (j+1)*P(k,n) = P(2*k + (k-2)*(j-1),n) - n^2 + (j+1)*n. - Charlie Marion, Mar 14 2023
a(n) = (1/6)* Sum_{k = 0..3*n} (-1)^(n+k+1) * k*(k + 1) * binomial(3*n+k, 2*k). - Peter Bala, Nov 03 2024
From Peter Bala, Jul 05 2025: (Start)
The following series telescope: for k >= 0,
Sum_{n >= 1} a(n)*a(n+2)*...*a(n+2*k)/(a(n+1)*a(n+3)*...*a(n+2*k+3)) = 1/(2*k + 3);
Sum_{n >= 1} a(n+1)*a(n+3)*...*a(n+2*k+1)/(a(n)*a(n+2)*...*a(n+2*k+2)) = 2/(2*k + 3) * Sum_{i = 1..2*k+3} 1/i. (End)
Extensions
Edited by Derek Orr, May 05 2015
Comments