Original entry on oeis.org
2, 164, 1414, 6216, 19338, 48620, 105742, 206992, 374034, 634676, 1023638, 1583320, 2364570, 3427452, 4842014, 6689056, 9060898, 12062148, 15810470, 20437352, 26088874, 32926476, 41127726, 50887088, 62416690, 75947092, 91728054, 110029304, 131141306, 155376028
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359.
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
A000330
Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6.
Original entry on oeis.org
0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370
Offset: 0
G.f. = x + 5*x^2 + 14*x^3 + 30*x^4 + 55*x^5 + 91*x^6 + 140*x^7 + 204*x^8 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover Publications, NY, 1964, p. 194.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 215,223.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 122, see #19 (3(1)), I(n); p. 155.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 47-49.
- H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
- J. M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 310, pp. 46-196, Ellipses, Paris, 2004.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
- M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, p. 293.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 293.
- M. Holt, Math puzzles and games, Walker Publishing Company, 1977, p. 2 and p. 89.
- Simon Singh, The Simpsons and Their Mathematical Secrets. London: Bloomsbury Publishing PLC (2013): 188.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 126.
- Felix Fröhlich, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- L. Ancora, Quadrature of the Parabola with the Square Pyramidal Number, Mondadori Education, Archimede 66, No. 3, 139-144 (2014).
- Jack Anderson, Amy Woodall, and Alexandru Zaharescu, Arithmetic Polygons and Sums of Consecutive Squares, arXiv:2411.08398 [math.NT], 2024.
- Ben Babcock and Adam Van Tuyl, Revisiting the spreading and covering numbers, arXiv preprint arXiv:1109.5847 [math.AC], 2011.
- Joshua L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359.
- Joshua L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]
- Michael A. Bennett, Lucas' square pyramid problem revisited, Acta Arithmetica 105 (2002), 341-347.
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Fritz Beukers and Jaap Top, On oranges and integral points on certain plane cubic curves, Nieuw Arch. Wiskd., IV (1988), Ser. 6, No. 3, 203-210.
- Henry Bottomley, Illustration of initial terms.
- Steve Butler and Pavel Karasik, A note on nested sums, J. Int. Seq. 13 (2010), 10.4.4, p=1 in first displayed equation page 4.
- Bikash Chakraborty, Proof Without Words: Sums of Powers of Natural numbers, arXiv:2012.11539 [math.HO], 2020.
- Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
- Alexander Diaz-Lopez, Pamela E. Harris, Erik Insko, and Darleen Perez-Lavin, Peaks Sets of Classical Coxeter Groups, arXiv preprint arXiv:1505.04479 [math.GR], 2015.
- Anji Dong, Katerina Saettone, Kendra Song, and Alexandru Zaharescu, Cannonball Polygons with Multiplicities, arXiv:2507.18057 [math.NT], 2025. See p. 1.
- Michael Dougherty, Christopher French, Benjamin Saderholm, and Wenyang Qian, Hankel Transforms of Linear Combinations of Catalan Numbers, Journal of Integer Sequences, Vol. 14 (2011), Article 11.5.1.
- David Galvin and Courtney Sharpe, Independent set sequence of linear hyperpaths, arXiv:2409.15555 [math.CO], 2024. See p. 7.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- T. Aaron Gulliver, Sequences from hexagonal pyramid of integers, International Mathematical Forum, Vol. 6, 2011, no. 17, p. 821-827.
- Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, and Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- R. Jovanovic, First 2500 Pyramidal numbers.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 9, 13-15, 24.
- R. P. Loh, A. G. Shannon, and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
- Toufik Mansour, Restricted permutations by patterns of type 2-1, arXiv:math/0202219 [math.CO], 2002.
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
- Cleve Moler, LINPACK subroutine sgefa.f, University of New Mexico, Argonne National Lab, 1978.
- Michael Penn, Counting on a chessboard., YouTube video, 2021.
- Claudio de J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Torsten Sillke, Square Counting.
- Think Twice, Sum of n squares | explained visually |, video (2017).
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- G. N. Watson, The problem of the square pyramid, Messenger of Mathematics 48 (1918), pp. 1-22.
- Eric Weisstein's World of Mathematics, Faulhaber's Formula.
- Eric Weisstein's World of Mathematics, Square Pyramidal Number.
- Eric Weisstein's World of Mathematics, Square Tiling.
- Eric Weisstein's World of Mathematics, Power Sum.
- Wikipedia, Faulhaber's formula.
- G. Xiao, Sigma Server, Operate on"n^2".
- Index entries for "core" sequences.
- Index to sequences related to pyramidal numbers.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
- Index entries for two-way infinite sequences.
Cf.
A000217,
A000292,
A000537,
A005408,
A006003,
A006331,
A033994,
A033999,
A046092,
A050409,
A050446,
A050447,
A060493,
A100157,
A132124,
A132112,
A156921,
A157702,
A258708,
A351105,
A351830.
Sums of 2 consecutive terms give
A005900.
Cf.
A253903 (characteristic function).
Cf.
A034705 (differences of any two terms).
-
List([0..30], n-> n*(n+1)*(2*n+1)/6); # G. C. Greubel, Dec 31 2019
-
a000330 n = n * (n + 1) * (2 * n + 1) `div` 6
a000330_list = scanl1 (+) a000290_list
-- Reinhard Zumkeller, Nov 11 2012, Feb 03 2012
-
[n*(n+1)*(2*n+1)/6: n in [0..50]]; // Wesley Ivan Hurt, Jun 28 2014
-
[0] cat [((2*n+3)*Binomial(n+2,2))/3: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
-
A000330 := n -> n*(n+1)*(2*n+1)/6;
a := n->(1/6)*n*(n+1)*(2*n+1): seq(a(n),n=0..53); # Emeric Deutsch
with(combstruct): ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*2), m=1..45) ; # Zerinvary Lajos, Jan 02 2008
nmax := 44; for n from 0 to nmax do fz(n) := product( (1-(2*m-1)*z)^(n+1-m) , m=1..n); c(n) := abs(coeff(fz(n),z,1)); end do: a := n-> c(n): seq(a(n), n=0..nmax); # Johannes W. Meijer, Mar 07 2009
-
Table[Binomial[w+2, 3] + Binomial[w+1, 3], {w, 0, 30}]
CoefficientList[Series[x(1+x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
Accumulate[Range[0,50]^2] (* Harvey P. Dale, Sep 25 2014 *)
-
A000330(n):=binomial(n+2,3)+binomial(n+1,3)$
makelist(A000330(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
-
{a(n) = n * (n+1) * (2*n+1) / 6};
-
upto(n) = [x*(x+1)*(2*x+1)/6 | x<-[0..n]] \\ Cino Hilliard, Jun 18 2007, edited by M. F. Hasler, Jan 02 2024
-
a=lambda n: (n*(n+1)*(2*n+1))//6 # Indranil Ghosh, Jan 04 2017
-
[n*(n+1)*(2*n+1)/6 for n in (0..30)] # G. C. Greubel, Dec 31 2019
A000447
a(n) = 1^2 + 3^2 + 5^2 + 7^2 + ... + (2*n-1)^2 = n*(4*n^2 - 1)/3.
Original entry on oeis.org
0, 1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680, 47905, 52394, 57155, 62196, 67525, 73150, 79079, 85320, 91881, 98770, 105995, 113564, 121485
Offset: 0
G.f. = x + 10*x^2 + 35*x^3 + 84*x^4 + 165*x^5 + 286*x^6 + 455*x^7 + 680*x^8 + ...
a(2) = 10 since (-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, 0), (-1, 0, 1), (-1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) are the 10 solutions (x, y, z) of -1 <= x <= y <= z <= 1.
a(0) = 0, which corresponds to the empty sum.
- G. Chrystal, Textbook of Algebra, Vol. 1, A. & C. Black, 1886, Chap. XX, Sect. 10, Example 2.
- F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- C. V. Durell, Advanced Algebra, Volume 1, G. Bell & Son, 1932, Exercise IIIe, No. 4.
- L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]
- Valentin Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, Vol. 275 (2004), pp. 17-41. - _Valentin Bakoev_, Mar 03 2009
- F. E. Croxton and D. J. Cowden, Applied General Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1955 [Annotated scans of just pages 742-743]
- Milan Janjic, Two Enumerative Functions.
- T. P. Martin, Shells of atoms, Phys. Reports, Vol. 273 (1996), pp. 199-241, eq. (11).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Haüy Construction.
- Eric Weisstein's World of Mathematics, Square Pyramid.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
A000447 is related to partitions of 2^n into powers of 2, as it is shown in the formula, example and cross-references of
A002577. -
Valentin Bakoev, Mar 03 2009
-
a000447 n = a000447_list !! n
a000447_list = scanl1 (+) a016754_list
-- Reinhard Zumkeller, Apr 02 2012
-
[n*(4*n^2-1)/3: n in [0..50]]; // Vincenzo Librandi, Jan 12 2016
-
A000447:=z*(1+6*z+z**2)/(z-1)**4; # Simon Plouffe, 1992 dissertation.
A000447:=n->n*(4*n^2 - 1)/3; seq(A000447(n), n=0..50); # Wesley Ivan Hurt, Mar 30 2014
-
Table[n (4 n^2 - 1)/3, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 10, 35}, 80] (* Harvey P. Dale, May 25 2012 *)
Join[{0}, Accumulate[Range[1, 81, 2]^2]] (* Harvey P. Dale, Jul 18 2013 *)
CoefficientList[Series[x (1 + 6 x + x^2)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
-
A000447(n):=n*(4*n^2 - 1)/3$ makelist(A000447(n),n,0,20); /* Martin Ettl, Jan 07 2013 */
-
{a(n) = n * (4*n^2 - 1) / 3};
-
concat(0, Vec(x*(1+6*x+x^2)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 11 2016
-
def A000447(n): return n*((n**2<<2)-1)//3 # Chai Wah Wu, Feb 12 2023
Chrystal and Durell references from
R. K. Guy, Apr 02 2004
A000538
Sum of fourth powers: 0^4 + 1^4 + ... + n^4.
Original entry on oeis.org
0, 1, 17, 98, 354, 979, 2275, 4676, 8772, 15333, 25333, 39974, 60710, 89271, 127687, 178312, 243848, 327369, 432345, 562666, 722666, 917147, 1151403, 1431244, 1763020, 2153645, 2610621, 3142062, 3756718, 4463999, 5273999, 6197520, 7246096, 8432017, 9768353
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 222.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991, p. 275.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359.
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]
- Bruno Berselli, A description of the transform in Comments lines: website Matem@ticamente (in Italian).
- Stefano Capparelli, Notes on Discrete Math, Società Editrice Esculapio SRL (2019) 3-4.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein, MathWorld: Faulhaber's Formula
- Wikipedia, Faulhaber's formula
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Cf.
A000217,
A000330,
A000537,
A000539,
A000540,
A000541,
A000542,
A007487,
A023002,
A064538,
A101089.
-
a000538 n = (3 * n * (n + 1) - 1) * (2 * n + 1) * (n + 1) * n `div` 30
-- Reinhard Zumkeller, Nov 11 2012
-
[n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30: n in [0..35]]; // Vincenzo Librandi, Apr 04 2015
-
A000538 := n-> n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30;
-
Accumulate[Range[0,40]^4] (* Harvey P. Dale, Jan 13 2011 *)
CoefficientList[Series[x (1 + 11 x + 11 x^2 + x^3)/(1 - x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 07 2015 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 17, 98, 354, 979}, 35] (* Jean-François Alcover, Feb 09 2016 *)
Table[x^5/5+x^4/2+x^3/3-x/30,{x,40}] (* Harvey P. Dale, Jun 06 2021 *)
-
A000538(n):=n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30$
makelist(A000538(n),n,0,30); /* Martin Ettl, Nov 12 2012 */
-
a(n) = n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30 \\ Charles R Greathouse IV, Nov 20 2012
-
concat(0, Vec(x*(1+11*x+11*x^2+x^3)/(1-x)^6 + O(x^100))) \\ Altug Alkan, Dec 07 2015
-
A000538_list, m = [0], [24, -36, 14, -1, 0, 0]
for _ in range(10**2):
for i in range(5):
m[i+1] += m[i]
A000538_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
-
def A000538(n): return n*(n**2*(n*(6*n+15)+10)-1)//30 # Chai Wah Wu, Oct 03 2024
-
[bernoulli_polynomial(n,5)/5 for n in range(1, 35)] # Zerinvary Lajos, May 17 2009
The general V. Jovovic formula has been slightly changed after his approval by
Wolfdieter Lang, Nov 03 2011
A006331
a(n) = n*(n+1)*(2*n+1)/3.
Original entry on oeis.org
0, 2, 10, 28, 60, 110, 182, 280, 408, 570, 770, 1012, 1300, 1638, 2030, 2480, 2992, 3570, 4218, 4940, 5740, 6622, 7590, 8648, 9800, 11050, 12402, 13860, 15428, 17110, 18910, 20832, 22880, 25058, 27370, 29820, 32412, 35150, 38038, 41080, 44280
Offset: 0
For n=2, a(2)=10 since there are 10 non-monotonic functions f from {0,1,2} to {0,1,2}, namely, functions f = <f(1),f(2),f(3)> given by <0,1,0>, <0,2,0>, <0,2,1>, <1,0,1>, <1,0,2>, <1,2,0>, <1,2,1>, <2,0,1>, <2,0,2>, and <2,1,2>. - _Dennis P. Walsh_, Apr 25 2011
Let n=4, 2*n+1 = 9. Since 9 = 1+8 = 3+6 = 5+4 = 7+2, a(4) = 1*8 + 3*6 + 5*4 + 7*2 = 60. - _Vladimir Shevelev_, May 11 2012
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359.
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]
- Rowan Beckworth, Basic atomic information.
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- P. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes, Electron. J. Combin. 13 (2006), #R85, p. 11.
- Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 25.
- N. S. S. Gu, H. Prodinger and S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat., Vol. 31 (2010), pp. 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2 at n=3.
- JBMO 2025, 29th Junior Balkan Mathematical Olympiad, Problem 4, author: Boris Mihov
- Germain Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, Vol. 6 (1965), circa p. 82.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Dennis Walsh, Notes on finite monotonic and non-monotonic functions.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a006331 n = sum $ zipWith (*) [2*n-1, 2*n-3 .. 1] [2, 4 ..]
-- Reinhard Zumkeller, Feb 11 2012
-
[n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
-
A006331 := proc(n)
n*(n+1)*(2*n+1)/3 ;
end proc:
seq(A006331(n),n=0..80) ; # R. J. Mathar, Sep 27 2013
-
Table[n(n+1)(2n+1)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,2,10,28},50] (* Harvey P. Dale, Apr 12 2013 *)
-
a(n)=if(n<0,0,n*(n+1)*(2*n+1)/3)
A000540
Sum of 6th powers: 0^6 + 1^6 + 2^6 + ... + n^6.
Original entry on oeis.org
0, 1, 65, 794, 4890, 20515, 67171, 184820, 446964, 978405, 1978405, 3749966, 6735950, 11562759, 19092295, 30482920, 47260136, 71397705, 105409929, 152455810, 216455810, 302221931, 415601835, 563637724, 754740700, 998881325, 1307797101, 1695217590
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
- J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, (2008), p. 289.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]
- B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1)
-
a000540 n = a000540_list !! n
a000540_list = scanl1 (+) a001014_list -- Reinhard Zumkeller, Dec 04 2011
-
[n*(n+1)*(2*n+1)*(3*n^4+6*n^3-3*n+1)/42: n in [0..30]]; // Vincenzo Librandi, Apr 04 2015
-
a:=n->sum (j^6,j=0..n): seq(a(n),n=0..27); # Zerinvary Lajos, Jun 27 2007
A000540:=(z+1)*(z**4+56*z**3+246*z**2+56*z+1)/(z-1)**8; # g.f. by Simon Plouffe in his 1992 dissertation, without the leading 0.
A000540 := proc(n) n^7/7+n^6/2+n^5/2-n^3/6+n/42 ; end proc: # R. J. Mathar
-
Accumulate[Range[0,30]^6] (* Harvey P. Dale, Jul 30 2009 *)
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 1, 65, 794, 4890, 20515, 67171, 184820}, 31] (* Jean-François Alcover, Feb 09 2016 *)
-
a(n)=n*(n+1)*(2*n+1)*(3*n^4+6*n^3-3*n+1)/42 \\ Edward Jiang, Sep 10 2014
-
a(n)=sum(i=1, n, i^6); \\ Michel Marcus, Sep 11 2014
-
A000540_list, m = [0], [720, -1800, 1560, -540, 62, -1, 0, 0]
for _ in range(10**2):
for i in range(7):
m[i+1] += m[i]
A000540_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
-
[bernoulli_polynomial(n,7)/7 for n in range(1, 29)]# Zerinvary Lajos, May 17 2009
A002593
a(n) = n^2*(2*n^2 - 1); also Sum_{k=0..n-1} (2k+1)^3.
Original entry on oeis.org
0, 1, 28, 153, 496, 1225, 2556, 4753, 8128, 13041, 19900, 29161, 41328, 56953, 76636, 101025, 130816, 166753, 209628, 260281, 319600, 388521, 468028, 559153, 662976, 780625, 913276, 1062153, 1228528, 1413721, 1619100, 1846081
Offset: 0
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 169, #31.
- F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
- L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 47.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- F. E. Croxton and D. J. Cowden, Applied General Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1955. [Annotated scans of just pages 742-743]
- Neslihan Kilar, Abdelmejid Bayad, and Yilmaz Simsek, Finite sums involving trigonometric functions and special polynomials: analysis of generating functions and p-adic integrals, Appl. Anal. Disc. Math., hal-04535748, 2024. See p. 22.
- Vladimir Pletser, File Triplets (M,a,c) for M=2n^2
- Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
- G. Xiao, Sigma Server, Operate on "(2*n-1)^3".
- M. J. Zerger, Proof without words: The sum of consecutive odd cubes is a triangular number, Math. Mag., 68 (1995), 371.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[n^2*(2*n^2 - 1): n in [0..40]]; // Vincenzo Librandi, Sep 07 2011
-
A002593:=-z*(z+1)*(z**2+22*z+1)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
a:= n-> n^2*(2*n^2-1): seq(a(n), n=0..50); # Vladimir Pletser, Jan 10 2015
-
CoefficientList[Series[(-x^4-23x^3-23x^2-x)/(x-1)^5,{x,0, 80}],x] (* or *)
Table[ n^2 (2n^2-1),{n,0,80}] (* Harvey P. Dale, Mar 28 2011 *)
Join[{0},Accumulate[Range[1,91,2]^3]] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,28,153,496},40] (* Harvey P. Dale, Mar 22 2017 *)
-
a(n) = n^2*(2*n^2 - 1) \\ Charles R Greathouse IV, Feb 07 2017
Original entry on oeis.org
0, 2, 34, 196, 708, 1958, 4550, 9352, 17544, 30666, 50666, 79948, 121420, 178542, 255374, 356624, 487696, 654738, 864690, 1125332, 1445332, 1834294, 2302806, 2862488, 3526040, 4307290, 5221242, 6284124, 7513436, 8927998, 10547998, 12395040, 14492192, 16864034, 19536706
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359. See p. 357.
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
LinearRecurrence[{6,-15,20,-15,6,-1},{0,2,34,196,708,1958},40] (* Harvey P. Dale, Aug 16 2018 *)
-
concat(0, Vec(2*x*(x+1)*(x^2+10*x+1)/(x-1)^6 + O(x^100))) \\ Colin Barker, Jun 28 2015
-
def A259108(n): return n*(n**2*(n*(3*(2*n+5))+10)-1)//15 # Chai Wah Wu, Oct 03 2024
Original entry on oeis.org
0, 2, 130, 1588, 9780, 41030, 134342, 369640, 893928, 1956810, 3956810, 7499932, 13471900, 23125518, 38184590, 60965840, 94520272, 142795410, 210819858, 304911620, 432911620, 604443862, 831203670, 1127275448, 1509481400, 1997762650, 2615594202, 3390435180
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359.
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,2,130,1588,9780,41030,134342,369640},30] (* Harvey P. Dale, Jul 18 2020 *)
-
concat(0, Vec(2*x*(x+1)*(x^4+56*x^3+246*x^2+56*x+1)/(x-1)^8 + O(x^100))) \\ Colin Barker, Jun 28 2015
Original entry on oeis.org
0, 2, 20, 70, 168, 330, 572, 910, 1360, 1938, 2660, 3542, 4600, 5850, 7308, 8990, 10912, 13090, 15540, 18278, 21320, 24682, 28380, 32430, 36848, 41650, 46852, 52470, 58520, 65018, 71980, 79422, 87360, 95810, 104788, 114310, 124392, 135050, 146300, 158158, 170640, 183762, 197540, 211990, 227128, 242970
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359.
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
LinearRecurrence[{4,-6,4,-1},{0,2,20,70},50] (* Harvey P. Dale, Feb 01 2018 *)
-
concat(0, Vec(2*x*(x^2+6*x+1)/(x-1)^4 + O(x^100))) \\ Colin Barker, Jun 28 2015
Showing 1-10 of 17 results.
Comments