cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 396 results. Next

A242091 a(n) = r * (n-1)! where r is the rational number that satisfies the equation Sum_{k>=n} (-1)^(k + n)/C(k,n) = n*2^(n-1)*log(2) - r.

Original entry on oeis.org

0, 2, 15, 128, 1310, 15864, 222936, 3572736, 64354608, 1287495360, 28328889600, 679936896000, 17678878214400, 495015296025600, 14850552286080000, 475219068007219200, 16157470542709708800, 581669316147767500800, 22103440771676298854400
Offset: 1

Views

Author

Richard R. Forberg, Aug 14 2014

Keywords

Comments

The sum of the terms of the inverse of the binomial coefficients, 1/C(k,n), with alternating signs, equals an irrational number which is expressed as m * log(2) - r, where m is the integer n*2^(n-1) = A001787(n), n>=1, and r is rational. a(n) = r * (n-1)!.

Examples

			Sum_{k>=1} (-1)^(k + 1)/C(k,1) = Sum_{k>=1} (-1)^(k + 1)/k = log(2) where m = 1 and r = 0. (See A002162.)
Sum_{k>=2} (-1)^(k + 2)/C(k,2) = 4*log(2) - 2. (See A000217.)
Sum_{k>=3} (-1)^(k + 3)/C(k,3) = 12*log(2) - 15/2. (See A000292.)
Sum_{k>=4} (-1)^(k + 4)/C(k,4) = 30*log(2) - 64/3. (See A000332.)
Sum_{k>=5} (-1)^(k + 5)/C(k,5) = 80*log(2) - 655/12. (See A000389.)
		

Crossrefs

Programs

  • Magma
    [n le 1 select 0 else 2*(n)*Self(n-1)+(Factorial(n) div (n-1)): n in [1..20]]; // Vincenzo Librandi, Sep 22 2015
    
  • Maple
    seq(add(2^(n-j-1)*n!/j, j=1..n-1), n=1..100); # Robert Israel, Aug 14 2014
  • Mathematica
    Table[Sum[2^(n - j - 1)*n!/j, {j, n - 1}], {n, 20}] (* Wesley Ivan Hurt, Aug 14 2014 *)
    FullSimplify[Table[-1/2*n!*(LerchPhi[1/2, 1, n] - 2^n*Log[2]),{n, 1, 20}]] (* Vaclav Kotesovec, Aug 15 2014 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(serlaplace(x*log(1-x)/(2*x-1)))) \\ G. C. Greubel, Nov 25 2017

Formula

From Robert Israel, Aug 14 2014: (Start)
a(n) = n * A068102(n-1).
a(n) = n! * Sum_{j=1..(n-1)} 2^(n-j-1)/j.
a(n) = n! * (2^(n-1)*log(2)-(1/2)*LerchPhi(1/2, 1, n)).
a(n+1) = 2*(n+1)*a(n) + (n+1)!/n.
E.g.f.: x*log(1-x)/(2*x-1).
(End)
Recurrence: (n-1)*a(n) = n*(3*n-4)*a(n-1) - 2*(n-2)*(n-1)*n*a(n-2). - Vaclav Kotesovec, Aug 15 2014

A000580 a(n) = binomial coefficient C(n,7).

Original entry on oeis.org

1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 11440, 19448, 31824, 50388, 77520, 116280, 170544, 245157, 346104, 480700, 657800, 888030, 1184040, 1560780, 2035800, 2629575, 3365856, 4272048, 5379616, 6724520, 8347680, 10295472
Offset: 7

Views

Author

Keywords

Comments

Figurate numbers based on 7-dimensional regular simplex. According to Hyun Kwang Kim, it appears that every nonnegative integer can be represented as the sum of g = 15 of these numbers. - Jonathan Vos Post, Nov 28 2004
a(n) is the number of terms in the expansion of (Sum_{i=1..8} a_i)^n. - Sergio Falcon, Feb 12 2007
Product of seven consecutive numbers divided by 7!. - Artur Jasinski, Dec 02 2007
In this sequence there are no primes. - Artur Jasinski, Dec 02 2007
For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 6 elements, which is 3*C(n+1,7) (for n>=6), hence a(n) = 3*C(n+1,7) = 3*A000580(n+1). - Serhat Bulut, Mar 13 2015
Partial sums of A000579. In general, the iterated sums S(m, n) = Sum_{j=1..n} S(m-1, j) with input S(1, n) = A000217(n) = 1 + 2 + ... + n are S(m, n) = risefac(n, m+1)/(m+1)! = binomial(n+m, m+1) = Sum_{k = 1..n} risefac(k, m)/m!, with the rising factorials risefac(x, m):= Product_{j=0..m-1} (x+j), for m >= 1. Such iterated sums of arithmetic progressions have been considered by Narayana Pandit (see The MacTutor History of Mathematics archive link, and the Gottwald et al. reference, p. 338, where the name Narayana Daivajna is also used). - Wolfdieter Lang, Mar 20 2015
a(n) = fallfac(n,7)/7! = binomial(n, 7) is also the number of independent components of an antisymmetric tensor of rank 7 and dimension n >= 7 (for n=1..6 this becomes 0). Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
From Juergen Will, Jan 02 2016: (Start)
Number of compositions (ordered partitions) of n+1 into exactly 8 parts.
Number of weak compositions (ordered weak partitions) of n-7 into exactly 8 parts. (End)

Examples

			For A={1,2,3,4,5,6,7}, subsets with 6 elements are {1,2,3,4,5,6}, {1,2,3,4,5,7}, {1,2,3,4,6,7}, {1,2,3,5,6,7}, {1,2,4,5,6,7}, {1,3,4,5,6,7}, {2,3,4,5,6,7}.
Sum of 2 smallest elements of each subset: a(7) = (1+2)+(1+2)+(1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 24 = 3*C(7+1,7) = 3*A000580(7+1). - _Serhat Bulut_, Mar 13 2015
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • S. Gottwald, H.-J. Ilgauds and K.-H. Schlote (eds.), Lexikon bedeutender Mathematiker (in German), Bibliographisches Institut Leipzig, 1990.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Binomial(n,7): n in [7..40]]; // Vincenzo Librandi, Mar 21 2015
    
  • Maple
    ZL := [S, {S=Prod(B,B,B,B,B,B,B,B), B=Set(Z, 1 <= card)}, unlabeled]: seq(combstruct[count](ZL, size=n), n=8..38); # Zerinvary Lajos, Mar 13 2007
    A000580:=1/(z-1)**8; # Simon Plouffe in his 1992 dissertation, offset 0.
    seq(binomial(n+7,7)*1^n,n=0..30); # Zerinvary Lajos, Jun 23 2008
    G(x):=x^7*exp(x): f[0]:=G(x): for n from 1 to 38 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/7!,n=7..37); # Zerinvary Lajos, Apr 05 2009
  • Mathematica
    Table[n(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)/7!, {n, 1, 100}] (* Artur Jasinski, Dec 02 2007 *)
    Binomial[Range[7,40],7] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{1,8,36,120,330,792,1716,3432},40] (* Harvey P. Dale, Nov 28 2011 *)
    CoefficientList[Series[1 / (1-x)^8, {x, 0, 33}], x] (* Vincenzo Librandi, Mar 21 2015 *)
  • PARI
    a(n)=binomial(n,7) \\ Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: x^7/(1-x)^8.
a(n) = (n^7 - 21*n^6 + 175*n^5 - 735*n^4 + 1624*n^3 - 1764*n^2 + 720*n)/5040.
a(n) = -A110555(n+1,7). - Reinhard Zumkeller, Jul 27 2005
Convolution of the nonnegative numbers (A001477) with the sequence A000579. Also convolution of the triangular numbers (A000217) with the sequence A000332. Also convolution of the sequence {1,1,1,1,...} (A000012) with the sequence A000579. Also self-convolution of the tetrahedral numbers (A000292). - Sergio Falcon, Feb 12 2007
a(n+4) = (1/3!)*(d^3/dx^3)S(n,x)|A049310.%20-%20_Wolfdieter%20Lang">{x=2}, n >= 3. One sixth of third derivative of Chebyshev S-polynomials evaluated at x=2. See A049310. - _Wolfdieter Lang, Apr 04 2007
a(n) = n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)/7!. - Artur Jasinski, Dec 02 2007, R. J. Mathar, Jul 07 2009
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) with a(7)=1, a(8)=8, a(9)=36, a(10)=120, a(11)=330, a(12)=792, a(13)=1716, a(14)=3432. - Harvey P. Dale, Nov 28 2011
a(n) = 3*C(n+1,7) = 3*A000580(n+1). - Serhat Bulut, Mar 13 2015
From Wolfdieter Lang, Mar 21 2015: (Start)
a(n) = A104712(n, 7), n >= 7.
a(n+6) = sum(A000579(j+5), j = 1..n), n >= 1. See the Mar 20 2015 comment above. (End)
Sum_{k >= 7} 1/a(k) = 7/6. - Tom Edgar, Sep 10 2015
Sum_{n>=7} (-1)^(n+1)/a(n) = A001787(7)*log(2) - A242091(7)/6! = 448*log(2) - 9289/30 = 0.8966035575... - Amiram Eldar, Dec 10 2020

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 17 2000
Some formulas that referred to other offsets corrected by R. J. Mathar, Jul 07 2009

A002295 Number of dissections of a polygon: binomial(6n,n)/(5n+1).

Original entry on oeis.org

1, 1, 6, 51, 506, 5481, 62832, 749398, 9203634, 115607310, 1478314266, 19180049928, 251857119696, 3340843549855, 44700485049720, 602574657427116, 8175951659117794, 111572030260242090, 1530312970340384580, 21085148778264281865, 291705220704719165526
Offset: 0

Views

Author

Keywords

Comments

From Wolfdieter Lang, Sep 14 2007: (Start)
a(n), n >= 1, enumerates sextic (6-ary) trees (rooted, ordered, incomplete) with n vertices (including the root).
Pfaff-Fuss-Catalan sequence C^{m}_n for m=6. See the Graham et al. reference, p. 347. eq. 7.66. See also the Pólya-Szegő reference.
Also 6-Raney sequence. See the Graham et al. reference, p. 346-7. (End)
This is instance k = 6 of the generalized Catalan family {C(k, n)}A130564.%20-%20_Wolfdieter%20Lang">{n>=0} given in a comment of A130564. - _Wolfdieter Lang, Feb 05 2024

Examples

			There are a(2)=6 sextic trees (vertex degree <= 6 and 6 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these 6 trees yields 6*6 + binomial(6,2) = 51 = a(3) such trees.
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 23.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, pp. 200, 347.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.
  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nürnberg, Jul 27 1994
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Editor's note: "Über die Bestimmung der Anzahl der verschiedenen Arten, auf welche sich ein n-Eck durch Diagonalen in lauter m-Ecke zerlegen laesst, mit Bezug auf einige Abhandlungen der Herren Lamé, Rodrigues, Binet, Catalan und Duhamel in dem Journal de Mathématiques pures et appliquées, publié par Joseph Liouville. T. III. IV.", Archiv der Mathematik u. Physik, 1 (1841), pp. 193ff; see especially p. 198.

Crossrefs

Fifth column of triangle A062993.

Programs

Formula

O.g.f.: A(x) = 1 + x*A(x)^6 = 1/(1-x*A(x)^5).
a(n) = binomial(6*n,n-1)/n, n >= 1, a(0)=1. From the Lagrange series of the o.g.f. A(x) with its above given implicit equation.
a(n) = upper left term in M^n, M = the production matrix:
1, 1
5, 5, 1
15, 15, 5, 1
35, 35, 15, 5, 1
...
where (1, 5, 15, 35, ...) = A000332 starting with 1. - Gary W. Adamson, Jul 08 2011
a(n) are special values of Jacobi polynomials, in Maple notation:
a(n) = JacobiP(n-1, 5*n+1, -n, 1)/n, n=1, 2, ... . - Karol A. Penson, Mar 17 2015
a(n) = binomial(6*n+1, n)/(6*n+1) = A062993(n+4,4). - Robert FERREOL, Apr 03 2015
a(0) = 1; a(n) = Sum_{i1+i2+...+i6=n-1} a(i1)*a(i2)*...*a(i6) for n>=1. - Robert FERREOL, Apr 03 2015
D-finite with recurrence: 5*n*(5*n+1)*(5*n-3)*(5*n-2)*(5*n-1)*a(n) - 72*(6*n-5)*(6*n-1)*(3*n-1)*(2*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Sep 06 2016
From Ilya Gutkovskiy, Jan 15 2017: (Start)
O.g.f.: 5F4(1/6,1/3,1/2,2/3,5/6; 2/5,3/5,4/5,6/5; 46656*x/3125).
E.g.f.: 5F5(1/6,1/3,1/2,2/3,5/6; 2/5,3/5,4/5,1,6/5; 46656*x/3125).
a(n) ~ 3^(6*n+1/2)*64^n/(sqrt(Pi)*5^(5*n+3/2)*n^(3/2)). (End)
x*A'(x)/A(x) = (A(x) - 1)/(- 5*A(x) + 6) = x + 11*x^2 + 136*x^3 + 1771*x^4 + ... = (1/6)*Sum_{n >= 1} binomial(6*n,n)*x^n. Cf. A001764 and A002293 - A002296. - Peter Bala, Feb 04 2022
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^11). - Seiichi Manyama, Jun 16 2025

Extensions

More terms from Stefan Steinerberger, Apr 06 2006
Edited by M. F. Hasler, Apr 08 2015

A002817 Doubly triangular numbers: a(n) = n*(n+1)*(n^2+n+2)/8.

Original entry on oeis.org

0, 1, 6, 21, 55, 120, 231, 406, 666, 1035, 1540, 2211, 3081, 4186, 5565, 7260, 9316, 11781, 14706, 18145, 22155, 26796, 32131, 38226, 45150, 52975, 61776, 71631, 82621, 94830, 108345, 123256, 139656, 157641, 177310, 198765, 222111, 247456, 274911, 304590
Offset: 0

Views

Author

Keywords

Comments

Number of inequivalent ways to color vertices of a square using <= n colors, allowing rotations and reflections. Group is dihedral group D_8 of order 8 with cycle index (1/8)*(x1^4 + 2*x4 + 3*x2^2 + 2*x1^2*x2); setting all x_i = n gives the formula a(n) = (1/8)*(n^4 + 2*n + 3*n^2 + 2*n^3).
Number of semi-magic 3 X 3 squares with a line sum of n-1. That is, 3 X 3 matrices of nonnegative integers such that row sums and column sums are all equal to n-1. - [Gupta, 1968, page 653; Bell, 1970, page 279]. - Peter Bertok (peter(AT)bertok.com), Jan 12 2002. See A005045 for another version.
Also the coefficient h_2 of x^{n-3} in the shelling polynomial h(x)=h_0*x^n-1 + h_1*x^n-2 + h_2*x^n-3 + ... + h_n-1 for the independence complex of the cycle matroid of the complete graph K_n on n vertices (n>=2) - Woong Kook (andrewk(AT)math.uri.edu), Nov 01 2006
If X is an n-set and Y a fixed 3-subset of X then a(n-4) is equal to the number of 5-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
Starting with offset 1 = binomial transform of [1, 5, 10, 9, 3, 0, 0, 0, ...]. - Gary W. Adamson, Aug 05 2009
Starting with "1" = row sums of triangle A178238. - Gary W. Adamson, May 23 2010
The equation n*(n+1)*(n^2 + n + 2)/8 may be arrived at by solving for x in the following equality: (n^2+n)/2 = (sqrt(8x+1)-1)/2. - William A. Tedeschi, Aug 18 2010
Partial sums of A006003. - Jeremy Gardiner, Jun 23 2013
Doubly triangular numbers are revealed in the sums of row sums of Floyd's triangle.
1, 1+5, 1+5+15, ...
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
- Tony Foster III, Nov 14 2015
From Jaroslav Krizek, Mar 04 2017: (Start)
For n>=1; a(n) = sum of the different sums of elements of all the nonempty subsets of the sets of numbers from 1 to n.
Example: for n = 6; nonempty subsets of the set of numbers from 1 to 3: {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}; sums of elements of these subsets: 1, 2, 3, 3, 4, 5, 6; different sums of elements of these subsets: 1, 2, 3, 4, 5, 6; a(3) = (1+2+3+4+5+6) = 21, ... (End)
a(n) is also the number of 4-cycles in the (n+4)-path complement graph. - Eric W. Weisstein, Apr 11 2018

Examples

			G.f. = x + 6*x^2 + 21*x^3 + 55*x^4 + 120*x^5 + 231*x^6 + 406*x^7 + 666*x^8 + ...
		

References

  • A. Björner, The homology and shellability of matroids and geometric lattices, in Matroid Applications (ed. N. White), Encyclopedia of Mathematics and Its Applications, 40, Cambridge Univ. Press 1992.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 124, #25, Q(3,r).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics I, p. 292.

Crossrefs

Cf. A006003 (first differences), A165211 (mod 2).
Multiple triangular: A000217, A064322, A066370.
Cf. A006528 (square colorings).
Cf. A236770 (see crossrefs).
Row n=3 of A257493 and row n=2 of A331436 and A343097.
Cf. A000332.
Cf. A000292 (3-cycle count of \bar P_{n+4}), A060446 (5-cycle count of \bar P_{n+3}), A302695 (6-cycle count of \bar P_{n+5}).

Programs

  • Maple
    A002817 := n->n*(n+1)*(n^2+n+2)/8;
  • Mathematica
    a[ n_] := n (n + 1) (n^2 + n + 2) / 8; (* Michael Somos, Jul 24 2002 *)
    LinearRecurrence[{5,-10,10,-5,1}, {0,1,6,21,55},40] (* Harvey P. Dale, Jul 18 2011 *)
    nn=50;Join[{0},With[{c=(n(n+1))/2},Flatten[Table[Take[Accumulate[Range[ (nn(nn+1))/2]], {c,c}],{n,nn}]]]] (* Harvey P. Dale, Mar 19 2013 *)
  • PARI
    {a(n) = n * (n+1) * (n^2 + n + 2) / 8}; /* Michael Somos, Jul 24 2002 */
    
  • PARI
    concat(0, Vec(x*(1+x+x^2)/(1-x)^5 + O(x^50))) \\ Altug Alkan, Nov 15 2015
    
  • Python
    def A002817(n): return (m:=n*(n+1))*(m+2)>>3 # Chai Wah Wu, Aug 30 2024

Formula

a(n) = 3*binomial(n+2, 4) + binomial(n+1, 2).
G.f.: x*(1 + x + x^2)/(1-x)^5. - Simon Plouffe (in his 1992 dissertation); edited by N. J. A. Sloane, May 13 2008
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 3. - Warut Roonguthai, Dec 13 1999
a(n) = 5a(n-1) - 10a(n-2) + 10a(n-3) - 5a(n-4) + a(n-5) = A000217(A000217(n)). - Ant King, Nov 18 2010
a(n) = Sum(Sum(1 + Sum(3*n))). - Xavier Acloque, Jan 21 2003
a(n) = A000332(n+1) + A000332(n+2) + A000332(n+3), with A000332(n) = binomial(n, 4). - Mitch Harris, Oct 17 2006 and Bruce J. Nicholson, Oct 22 2017
a(n) = Sum_{i=1..C(n,2)} i = C(C(n,2) + 1, 2) = A000217(A000217(n+1)). - Enrique Pérez Herrero, Jun 11 2012
Euler transform of length 3 sequence [6, 0, -1]. - Michael Somos, Nov 19 2015
E.g.f.: x*(8 + 16*x + 8*x^2 + x^3)*exp(x)/8. - Ilya Gutkovskiy, Apr 26 2016
Sum_{n>=1} 1/a(n) = 6 - 4*Pi*tanh(sqrt(7)*Pi/2)/sqrt(7) = 1.25269064911978447... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(n)*A000124(n)/2.
a(n) = ((n-1)^4 + 3*(n-1)^3 + 2*(n-1)^2 + 2*n))/8. - Bruce J. Nicholson, Apr 05 2017
a(n) = (A016754(n)+ A007204(n)- 2) / 32. - Bruce J. Nicholson, Apr 14 2017
a(n) = a(-1-n) for all n in Z. - Michael Somos, Apr 17 2017
a(n) = T(T(n)) where T are the triangular numbers A000217. - Albert Renshaw, Jan 05 2020
a(n) = 2*n^2 - n + 6*binomial(n, 3) + 3*binomial(n, 4). - Ryan Jean, Mar 20 2021
a(n) = (A008514(n) - 1)/16. - Charlie Marion, Dec 20 2024

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999

A068239 1/2 the number of colorings of a 3 X 3 square array with n colors.

Original entry on oeis.org

1, 123, 4806, 71410, 583455, 3232341, 13675228, 47502036, 141991245, 377162335, 910842306, 2033854758, 4253012491, 8411348505, 15856955640, 28673921896, 49991146713, 84387303171, 138412872190, 221253017370, 345558093111, 528471784093, 792890261076
Offset: 2

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (79+(-323+(594+(-648+(459+(-216+(66+(-12+n)*n)*n) *n)*n)*n)*n)*n) *n/2:
    seq(a(n), n=2..30); # Alois P. Heinz, Apr 27 2012

Formula

From Alois P. Heinz, Apr 27 2012: (Start)
G.f.: x^2*(1199*x^7 +16567*x^6 +60099*x^5 +71075*x^4 +28765*x^3 +3621*x^2 +113*x+1) / (x-1)^10.
a(n) = (79*n -323*n^2 +594*n^3 -648*n^4 +459*n^5 -216*n^6 +66*n^7 -12*n^8 +n^9) / 2.
(End)

A068305 1/16 the number of colorings of an n X n octagonal array with 16 colors.

Original entry on oeis.org

1, 2730, 1097599230, 65013773510046270, 567344965666217922692546310, 729405912578031916581095228654013174510, 138156586653036397048665899068285784224754055444205830, 3855264256604335001270711977271948484283006596889356139648293174199350
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Extensions

a(5)-a(8) from Alois P. Heinz, May 04 2012

A005917 Rhombic dodecahedral numbers: a(n) = n^4 - (n - 1)^4.

Original entry on oeis.org

1, 15, 65, 175, 369, 671, 1105, 1695, 2465, 3439, 4641, 6095, 7825, 9855, 12209, 14911, 17985, 21455, 25345, 29679, 34481, 39775, 45585, 51935, 58849, 66351, 74465, 83215, 92625, 102719, 113521, 125055, 137345, 150415, 164289, 178991
Offset: 1

Views

Author

Keywords

Comments

Final digits of a(n), i.e., a(n) mod 10, are repeated periodically with period of length 5 {1,5,5,5,9}. There is a symmetry in this list since the sum of two numbers equally distant from the ends is equal to 10 = 1 + 9 = 5 + 5 = 2*5. Last two digits of a(n), i.e., a(n) mod 100, are repeated periodically with period of length 50. - Alexander Adamchuk, Aug 11 2006
a(n) = VarScheme(n,2) in the scheme displayed in A128195. - Peter Luschny, Feb 26 2007
If Y is a 3-subset of a 2n-set X then, for n >= 2, a(n-2) is the number of 4-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
The numbers are the constant number found in magic squares of order n, where n is an odd number, see the comment in A006003. A Magic Square of side 1 is 1; 3 is 15; 5 is 65 and so on. - David Quentin Dauthier, Nov 07 2008
Two times the area of the triangle with vertices at (0,0), ((n - 1)^2, n^2), and (n^2, (n - 1)^2). - J. M. Bergot, Jun 25 2013
Bisection of A006003. - Omar E. Pol, Sep 01 2018
Construct an array M with M(0,n) = 2*n^2 + 4*n + 1 = A056220(n+1), M(n,0) = 2*n^2 + 1 = A058331(n) and M(n,n) = 2*n*(n+1) + 1 = A001844(n). Row(n) begins with all the increasing odd numbers from A058331(n) to A001844(n) and column(n) begins with all the decreasing odd numbers from A056220(n+1) to A001844(n). The sum of the terms in row(n) plus those in column(n) minus M(n,n) equals a(n+1). The first five rows of array M are [1, 7, 17, 31, 49, ...]; [3, 5, 15, 29, 47, ...]; [9, 11, 13, 27, 45, ...]; [19, 21, 23, 25, 43, ...]; [33, 35, 37, 39, 41, ...]. - J. M. Bergot, Jul 16 2013 [This contribution was moved here from A047926 by Petros Hadjicostas, Mar 08 2021.]
For n>=2, these are the primitive sides s of squares of type 2 described in A344332. - Bernard Schott, Jun 04 2021
(a(n) + 1) / 2 = A212133(n) is the number of cells in the n-th rhombic-dodecahedral polycube. - George Sicherman, Jan 21 2024

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, p. 53.
  • E. Deza and M. M. Deza, Figurate Numbers, World Scientific Publishing, 2012, pp. 123-124.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A063493, A063494, A063495, A063496.
Column k=3 of A047969.

Programs

  • Haskell
    a005917 n = a005917_list !! (n-1)
    a005917_list = map sum $ f 1 [1, 3 ..] where
       f x ws = us : f (x + 2) vs where (us, vs) = splitAt x ws
    -- Reinhard Zumkeller, Nov 13 2014
    
  • Magma
    [n^4 - (n-1)^4: n in [1..50]]; // Vincenzo Librandi, Aug 01 2011
    
  • Mathematica
    Table[n^4-(n-1)^4,{n,40}]  (* Harvey P. Dale, Apr 01 2011 *)
    #[[2]]-#[[1]]&/@Partition[Range[0,40]^4,2,1] (* More efficient than the above Mathematica program because it only has to calculate each 4th power once *) (* Harvey P. Dale, Feb 07 2015 *)
    Differences[Range[0,40]^4] (* Harvey P. Dale, Aug 11 2023 *)
  • PARI
    a(n)=n^4-(n-1)^4 \\ Charles R Greathouse IV, Jul 31 2011
    
  • Python
    A005917_list, m = [], [24, -12, 2, 1]
    for _ in range(10**2):
        A005917_list.append(m[-1])
        for i in range(3):
            m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015

Formula

a(n) = (2*n - 1)*(2*n^2 - 2*n + 1).
Sum_{i=1..n} a(i) = n^4 = A000583(n). First differences of A000583.
G.f.: x*(1+x)*(1+10*x+x^2)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
More generally, g.f. for n^m - (n - 1)^m is Euler(m, x)/(1 - x)^m, where Euler(m, x) is Eulerian polynomial of degree m (cf. A008292). E.g.f.: x*(exp(y/(1 - x)) - exp(x*y/(1 - x)))/(exp(x*y/(1 - x))-x*exp(y/(1 - x))). - Vladeta Jovovic, May 08 2002
a(n) = sum of the next (2*n - 1) odd numbers; i.e., group the odd numbers so that the n-th group contains (2*n - 1) elements like this: (1), (3, 5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27, 29, 31), ... E.g., a(3) = 65 because 9 + 11 + 13 + 15 + 17 = 65. - Xavier Acloque, Oct 11 2003
a(n) = 2*n - 1 + 12*Sum_{i = 1..n} (i - 1)^2. - Xavier Acloque, Oct 16 2003
a(n) = (4*binomial(n,2) + 1)*sqrt(8*binomial(n,2) + 1). - Paul Barry, Mar 14 2004
Binomial transform of [1, 14, 36, 24, 0, 0, 0, ...], if the offset is 0. - Gary W. Adamson, Dec 20 2007
Sum_{i=1..n-1}(a(i) + a(i+1)) = 8*Sum_{i=1..n}(i^3 + i) = 16*A002817(n-1) for n > 1. - Bruno Berselli, Mar 04 2011
a(n+1) = a(n) + 2*(6*n^2 + 1) = a(n) + A005914(n). - Vincenzo Librandi, Mar 16 2011
a(n) = -a(-n+1). a(n) = (1/6)*(A181475(n) - A181475(n-2)). - Bruno Berselli, Sep 26 2011
a(n) = A045975(2*n-1,n) = A204558(2*n-1)/(2*n - 1). - Reinhard Zumkeller, Jan 18 2012
a(n+1) = Sum_{k=0..2*n+1} (A176850(n,k) - A176850(n-1,k))*(2*k + 1), n >= 1. - L. Edson Jeffery, Nov 02 2012
a(n) = A005408(n-1) * A001844(n-1) = (2*(n - 1) + 1) * (2*(n - 1)*n + 1) = A000290(n-1)*12 + 2 + a(n-1). - Bruce J. Nicholson, May 17 2017
a(n) = A007588(n) + A007588(n-1) = A000292(2n-1) + A000292(2n-2) + A000292(2n-3) = A002817(2n-1) - A002817(2n-2). - Bruce J. Nicholson, Oct 22 2017
a(n) = A005898(n-1) + 6*A000330(n-1) (cf. Deza, Deza, 2012, p. 123, Section 2.6.2). - Felix Fröhlich, Oct 01 2018
a(n) = A300758(n-1) + A005408(n-1). - Bruce J. Nicholson, Apr 23 2020
G.f.: polylog(-4, x)*(1-x)/x. See the Simon Plouffe formula above (with expanded numerator), and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

A074909 Running sum of Pascal's triangle (A007318), or beheaded Pascal's triangle read by beheaded rows.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 6, 15, 20, 15, 6, 1, 7, 21, 35, 35, 21, 7, 1, 8, 28, 56, 70, 56, 28, 8, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11
Offset: 0

Views

Author

Wouter Meeussen, Oct 01 2002

Keywords

Comments

This sequence counts the "almost triangular" partitions of n. A partition is triangular if it is of the form 0+1+2+...+k. Examples: 3=0+1+2, 6=0+1+2+3. An "almost triangular" partition is a triangular partition with at most 1 added to each of the parts. Examples: 7 = 1+1+2+3 = 0+2+2+3 = 0+1+3+3 = 0+1+2+4. Thus a(7)=4. 8 = 1+2+2+3 = 1+1+3+3 = 1+1+2+4 = 0+2+3+3 = 0+2+2+4 = 0+1+3+4 so a(8)=6. - Moshe Shmuel Newman, Dec 19 2002
The "almost triangular" partitions are the ones cycled by the operation of "Bulgarian solitaire", as defined by Martin Gardner.
Start with A007318 - I (I = Identity matrix), then delete right border of zeros. - Gary W. Adamson, Jun 15 2007
Also the number of increasing acyclic functions from {1..n-k+1} to {1..n+2}. A function f is acyclic if for every subset B of the domain the image of B under f does not equal B. For example, T(3,1)=4 since there are exactly 4 increasing acyclic functions from {1,2,3} to {1,2,3,4,5}: f1={(1,2),(2,3),(3,4)}, f2={(1,2),(2,3),(3,5)}, f3={(1,2),(2,4),(3,5)} and f4={(1,3),(2,4),(4,5)}. - Dennis P. Walsh, Mar 14 2008
Second Bernoulli polynomials are (from A164555 instead of A027641) B2(n,x) = 1; 1/2, 1; 1/6, 1, 1; 0, 1/2, 3/2, 1; -1/30, 0, 1, 2, 1; 0, -1/6, 0, 5/3, 5/2, 1; ... . Then (B2(n,x)/A002260) = 1; 1/2, 1/2; 1/6, 1/2, 1/3; 0, 1/4, 1/2, 1/4; -1/30, 0, 1/3, 1/2, 1/5; 0, -1/12, 0, 5/12, 1/2, 1/6; ... . See (from Faulhaber 1631) Jacob Bernoulli Summae Potestatum (sum of powers) in A159688. Inverse polynomials are 1; -1, 2; 1, -3, 3; -1, 4, -6, 4; ... = A074909 with negative even diagonals. Reflected A053382/A053383 = reflected B(n,x) = RB(n,x) = 1; -1/2, 1; 1/6, -1, 1; 0, 1/2, -3/2, 1; ... . A074909 is inverse of RB(n,x)/A002260 = 1; -1/2, 1/2; 1/6, -1/2, 1/3; 0, 1/4, -1/2, 1/4; ... . - Paul Curtz, Jun 21 2010
A054143 is the fission of the polynomial sequence (p(n,x)) given by p(n,x) = x^n + x^(n-1) + ... + x + 1 by the polynomial sequence ((x+1)^n). See A193842 for the definition of fission. - Clark Kimberling, Aug 07 2011
Reversal of A135278. - Philippe Deléham, Feb 11 2012
For a closed-form formula for arbitrary left and right borders of Pascal-like triangles see A228196. - Boris Putievskiy, Aug 19 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
From A238363, the operator equation d/d(:xD:)f(xD)={exp[d/d(xD)]-1}f(xD) = f(xD+1)-f(xD) follows. Choosing f(x) = x^n and using :xD:^n/n! = binomial(xD,n) and (xD)^n = Bell(n,:xD:), the Bell polynomials of A008277, it follows that the lower triangular matrix [padded A074909]
A) = [St2]*[dP]*[St1] = A048993*A132440*[padded A008275]
B) = [St2]*[dP]*[St2]^(-1)
C) = [St1]^(-1)*[dP]*[St1],
where [St1]=padded A008275 just as [St2]=A048993=padded A008277 whereas [padded A074909]=A007318-I with I=identity matrix. - Tom Copeland, Apr 25 2014
T(n,k) generated by m-gon expansions in the case of odd m with "vertex to side" version or even m with "vertex to vertes" version. Refer to triangle expansions in A061777 and A101946 (and their companions for m-gons) which are "vertex to vertex" and "vertex to side" versions respectively. The label values at each iteration can be arranged as a triangle. Any m-gon can also be arranged as the same triangle with conditions: (i) m is odd and expansion is "vertex to side" version or (ii) m is even and expansion is "vertex to vertex" version. m*Sum_{i=1..k} T(n,k) gives the total label value at the n-th iteration. See also A247976. Vertex to vertex: A061777, A247618, A247619, A247620. Vertex to side: A101946, A247903, A247904, A247905. - Kival Ngaokrajang Sep 28 2014
From Tom Copeland, Nov 12 2014: (Start)
With P(n,x) = [(x+1)^(n+1)-x^(n+1)], the row polynomials of this entry, Up(n,x) = P(n,x)/(n+1) form an Appell sequence of polynomials that are the umbral compositional inverses of the Bernoulli polynomials B(n,x), i.e., B[n,Up(.,x)] = x^n = Up[n,B(.,x)] under umbral substitution, e.g., B(.,x)^n = B(n,x).
The e.g.f. for the Bernoulli polynomials is [t/(e^t - 1)] e^(x*t), and for Up(n,x) it's exp[Up(.,x)t] = [(e^t - 1)/t] e^(x*t).
Another g.f. is G(t,x) = log[(1-x*t)/(1-(1+x)*t)] = log[1 + t /(1 + -(1+x)t)] = t/(1-t*Up(.,x)) = Up(0,x)*t + Up(1,x)*t^2 + Up(2,x)*t^3 + ... = t + (1+2x)/2 t^2 + (1+3x+3x^2)/3 t^3 + (1+4x+6x^2+4x^3)/4 t^4 + ... = -log(1-t*P(.,x)), expressed umbrally.
The inverse, Ginv(t,x), in t of the g.f. may be found in A008292 from Copeland's list of formulas (Sep 2014) with a=(1+x) and b=x. This relates these two sets of polynomials to algebraic geometry, e.g., elliptic curves, trigonometric expansions, Chebyshev polynomials, and the combinatorics of permutahedra and their duals.
Ginv(t,x) = [e^((1+x)t) - e^(xt)] / [(1+x) * e^((1+x)t) - x * e^(xt)] = [e^(t/2) - e^(-t/2)] / [(1+x)e^(t/2) - x*e^(-t/2)] = (e^t - 1) / [1 + (1+x) (e^t - 1)] = t - (1 + 2 x) t^2/2! + (1 + 6 x + 6 x^2) t^3/3! - (1 + 14 x + 36 x^2 + 24 x^3) t^4/4! + ... = -exp[-Perm(.,x)t], where Perm(n,x) are the reverse face polynomials, or reverse f-vectors, for the permutahedra, i.e., the face polynomials for the duals of the permutahedra. Cf. A090582, A019538, A049019, A133314, A135278.
With L(t,x) = t/(1+t*x) with inverse L(t,-x) in t, and Cinv(t) = e^t - 1 with inverse C(t) = log(1 + t). Then Ginv(t,x) = L[Cinv(t),(1+x)] and G(t,x) = C[L[t,-(1+x)]]. Note L is the special linear fractional (Mobius) transformation.
Connections among the combinatorics of the permutahedra, simplices (cf. A135278), and the associahedra can be made through the Lagrange inversion formula (LIF) of A133437 applied to G(t,x) (cf. A111785 and the Schroeder paths A126216 also), and similarly for the LIF A134685 applied to Ginv(t,x) involving the simplicial Whitehouse complex, phylogenetic trees, and other structures. (See also the LIFs A145271 and A133932). (End)
R = x - exp[-[B(n+1)/(n+1)]D] = x - exp[zeta(-n)D] is the raising operator for this normalized sequence UP(n,x) = P(n,x) / (n+1), that is, R UP(n,x) = UP(n+1,x), where D = d/dx, zeta(-n) is the value of the Riemann zeta function evaluated at -n, and B(n) is the n-th Bernoulli number, or constant B(n,0) of the Bernoulli polynomials. The raising operator for the Bernoulli polynomials is then x + exp[-[B(n+1)/(n+1)]D]. [Note added Nov 25 2014: exp[zeta(-n)D] is abbreviation of exp(a.D) with (a.)^n = a_n = zeta(-n)]. - Tom Copeland, Nov 17 2014
The diagonals T(n, n-m), for n >= m, give the m-th iterated partial sum of the positive integers; that is A000027(n+1), A000217(n), A000292(n-1), A000332(n+1), A000389(n+1), A000579(n+1), A000580(n+1), A000581(n+1), A000582(n+1), ... . - Wolfdieter Lang, May 21 2015
The transpose gives the numerical coefficients of the Maurer-Cartan form matrix for the general linear group GL(n,1) (cf. Olver, but note that the formula at the bottom of p. 6 has an error--the 12 should be a 15). - Tom Copeland, Nov 05 2015
The left invariant Maurer-Cartan form polynomial on p. 7 of the Olver paper for the group GL^n(1) is essentially a binomial convolution of the row polynomials of this entry with those of A133314, or equivalently the row polynomials generated by the product of the e.g.f. of this entry with that of A133314, with some reindexing. - Tom Copeland, Jul 03 2018
From Tom Copeland, Jul 10 2018: (Start)
The first column of the inverse matrix is the sequence of Bernoulli numbers, which follows from the umbral definition of the Bernoulli polynomials (B.(0) + x)^n = B_n(x) evaluated at x = 1 and the relation B_n(0) = B_n(1) for n > 1 and -B_1(0) = 1/2 = B_1(1), so the Bernoulli numbers can be calculated using Cramer's rule acting on this entry's matrix and, therefore, from the ratios of volumes of parallelepipeds determined by the columns of this entry's square submatrices. - Tom Copeland, Jul 10 2018
Umbrally composing the row polynomials with B_n(x), the Bernoulli polynomials, gives (B.(x)+1)^(n+1) - (B.(x))^(n+1) = d[x^(n+1)]/dx = (n+1)*x^n, so multiplying this entry as a lower triangular matrix (LTM) by the LTM of the coefficients of the Bernoulli polynomials gives the diagonal matrix of the natural numbers. Then the inverse matrix of this entry has the elements B_(n,k)/(k+1), where B_(n,k) is the coefficient of x^k for B_n(x), and the e.g.f. (1/x) (e^(xt)-1)/(e^t-1). (End)

Examples

			T(4,2) = 0+0+1+3+6 = 10 = binomial(5, 2).
Triangle T(n,k) begins:
n\k 0  1  2   3   4   5   6   7   8   9 10 11
0:  1
1:  1  2
2:  1  3  3
3:  1  4  6   4
4:  1  5 10  10   5
5:  1  6 15  20  15   6
6:  1  7 21  35  35  21   7
7:  1  8 28  56  70  56  28   8
8:  1  9 36  84 126 126  84  36  9
9:  1 10 45 120 210 252 210 120 45   10
10: 1 11 55 165 330 462 462 330 165  55 11
11: 1 12 66 220 495 792 924 792 495 220 66 12
... Reformatted. - _Wolfdieter Lang_, Nov 04 2014
.
Can be seen as the square array A(n, k) = binomial(n + k + 1, n) read by descending antidiagonals. A(n, k) is the number of monotone nondecreasing functions f: {1,2,..,k} -> {1,2,..,n}. - _Peter Luschny_, Aug 25 2019
[0]  1,  1,   1,   1,    1,    1,     1,     1,     1, ... A000012
[1]  2,  3,   4,   5,    6,    7,     8,     9,    10, ... A000027
[2]  3,  6,  10,  15,   21,   28,    36,    45,    55, ... A000217
[3]  4, 10,  20,  35,   56,   84,   120,   165,   220, ... A000292
[4]  5, 15,  35,  70,  126,  210,   330,   495,   715, ... A000332
[5]  6, 21,  56, 126,  252,  462,   792,  1287,  2002, ... A000389
[6]  7, 28,  84, 210,  462,  924,  1716,  3003,  5005, ... A000579
[7]  8, 36, 120, 330,  792, 1716,  3432,  6435, 11440, ... A000580
[8]  9, 45, 165, 495, 1287, 3003,  6435, 12870, 24310, ... A000581
[9] 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, ... A000582
		

Crossrefs

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Binomial(n+1,k)))); # Muniru A Asiru, Jul 10 2018
    
  • Haskell
    a074909 n k = a074909_tabl !! n !! k
    a074909_row n = a074909_tabl !! n
    a074909_tabl = iterate
       (\row -> zipWith (+) ([0] ++ row) (row ++ [1])) [1]
    -- Reinhard Zumkeller, Feb 25 2012
    
  • Magma
    /* As triangle */ [[Binomial(n+1,k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 22 2018
    
  • Maple
    A074909 := proc(n,k)
        if k > n or k < 0 then
            0;
        else
            binomial(n+1,k) ;
        end if;
    end proc: # Zerinvary Lajos, Nov 09 2006
  • Mathematica
    Flatten[Join[{1}, Table[Sum[Binomial[k, m], {k, 0, n}], {n, 0, 12}, {m, 0, n}] ]] (* or *) Flatten[Join[{1}, Table[Binomial[n, m], {n, 12}, {m, n}]]]
  • PARI
    print1(1);for(n=1,10,for(k=1,n,print1(", "binomial(n,k)))) \\ Charles R Greathouse IV, Mar 26 2013
    
  • Python
    from math import comb, isqrt
    def A074909(n): return comb(r:=(m:=isqrt(k:=n+1<<1))+(k>m*(m+1)),n-comb(r,2)) # Chai Wah Wu, Nov 12 2024

Formula

T(n, k) = Sum_{i=0..n} C(i, n-k) = C(n+1, k).
Row n has g.f. (1+x)^(n+1)-x^(n+1).
E.g.f.: ((1+x)*e^t - x) e^(x*t). The row polynomials p_n(x) satisfy dp_n(x)/dx = (n+1)*p_(n-1)(x). - Tom Copeland, Jul 10 2018
T(n, k) = T(n-1, k-1) + T(n-1, k) for k: 0Reinhard Zumkeller, Apr 18 2005
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(0,0)=1, T(1,0)=1, T(1,1)=2, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 27 2013
G.f. for column k (with leading zeros): x^(k-1)*(1/(1-x)^(k+1)-1), k >= 0. - Wolfdieter Lang, Nov 04 2014
Up(n, x+y) = (Up(.,x)+ y)^n = Sum_{k=0..n} binomial(n,k) Up(k,x)*y^(n-k), where Up(n,x) = ((x+1)^(n+1)-x^(n+1)) / (n+1) = P(n,x)/(n+1) with P(n,x) the n-th row polynomial of this entry. dUp(n,x)/dx = n * Up(n-1,x) and dP(n,x)/dx = (n+1)*P(n-1,x). - Tom Copeland, Nov 14 2014
The o.g.f. GF(x,t) = x / ((1-t*x)*(1-(1+t)x)) = x + (1+2t)*x^2 + (1+3t+3t^2)*x^3 + ... has the inverse GFinv(x,t) = (1+(1+2t)x-sqrt(1+(1+2t)*2x+x^2))/(2t(1+t)x) in x about 0, which generates the row polynomials (mod row signs) of A033282. The reciprocal of the o.g.f., i.e., x/GF(x,t), gives the free cumulants (1, -(1+2t) , t(1+t) , 0, 0, ...) associated with the moments defined by GFinv, and, in fact, these free cumulants generate these moments through the noncrossing partitions of A134264. The associated e.g.f. and relations to Grassmannians are described in A248727, whose polynomials are the basis for an Appell sequence of polynomials that are umbral compositional inverses of the Appell sequence formed from this entry's polynomials (distinct from the one described in the comments above, without the normalizing reciprocal). - Tom Copeland, Jan 07 2015
T(n, k) = (1/k!) * Sum_{i=0..k} Stirling1(k,i)*(n+1)^i, for 0<=k<=n. - Ridouane Oudra, Oct 23 2022

Extensions

I added an initial 1 at the suggestion of Paul Barry, which makes the triangle a little nicer but may mean that some of the formulas will now need adjusting. - N. J. A. Sloane, Feb 11 2003
Formula section edited, checked and corrected by Wolfdieter Lang, Nov 04 2014

A000914 Stirling numbers of the first kind: s(n+2, n).

Original entry on oeis.org

0, 2, 11, 35, 85, 175, 322, 546, 870, 1320, 1925, 2717, 3731, 5005, 6580, 8500, 10812, 13566, 16815, 20615, 25025, 30107, 35926, 42550, 50050, 58500, 67977, 78561, 90335, 103385, 117800, 133672, 151096, 170170, 190995, 213675, 238317, 265031
Offset: 0

Views

Author

Keywords

Comments

Sum of product of unordered pairs of numbers from {1..n+1}.
Number of edges of a complete k-partite graph of order k*(k+1)/2 (A000217), K_1,2,3,...,k. - Roberto E. Martinez II, Oct 18 2001
This sequence holds the x^(n-2) coefficient of the characteristic polynomial of the N X N matrix A formed by MAX(i,j), where i is the row index and j is the column index of element A[i][j], 1 <= i,j <= N. Here N >= 2. - Paul Max Payton, Sep 06 2005
The sequence contains the partial sums of A006002, which represent the areas beneath lines created by the triangular numbers plotted (t(1),t(2)) connected to (t(2),t(3)) then (t(3),t(4))...(t(n-1),t(n)) and the x-axis. - J. M. Bergot, May 05 2012
Number of functions f from [n+2] to [n+2] with f(x)=x for exactly n elements x of [n+2] and f(x)>x for exactly two elements x of [n+2]. To prove this, let the two elements of [n+2] with a larger image be labeled i and j. Note both i and j must be less than n+2. Then there are (n+2-i) choices for f(i) and (n+2-j) choices for f(j). Summing the product of the number of choices over all sets {i,j} gives us "Sum of product of unordered pairs of numbers from {1..n+1}" in the first line of the Comments Section. See the example in the Example Section below. - Dennis P. Walsh, Sep 06 2017
Zhu Shijie gives in his Magnus Opus "Jade Mirror of the Four Unknowns" the problem: "Apples are piled in the form of a triangular pyramid. The top apple is worth 2 and the price of the whole is 1320. Each apple in one layer costs 1 less than an apple in the next layer below." We find the solution 9 to this problem in this sequence 1320 = a(9). Zhu Shijie gave the solution polynomial: "Let the element tian be the number of apples in a side of the base. From the statement we have 31680 for the negative shi, 10 for the positive fang, 21 for the positive first lian, 14 for the positive last lian, and 3 for the positive yu." This translates into the polynomial equation: 3*x^4 + 14*x^3 + 21*x^2 + 10*x - 31680 = 0. - Thomas Scheuerle, Feb 10 2025

Examples

			Examples include E(K_1,2,3) = s(2+2,2) = 11 and E(K_1,2,3,4,5) = s(4+2,4) = 85, where E is the function that counts edges of graphs.
For n=2 the a(2)=11 functions f:[4]->[4] with exactly two f(x)=x and two f(x)>x are given by the 11 image vectors of form <f(1),f(2),f(3),f(4)> that follow: <1,3,4,4>, <1,4,4,4>, <2,2,4,4>, <3,2,4,4>, <4,2,4,4>, <2,3,3,4>, <2,4,3,4>, <3,3,3,4>, <3,4,3,4>, <4,3,3,4>, and <4,4,3,4>. - _Dennis P. Walsh_, Sep 06 2017
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • George E. Andrews, Number Theory, Dover Publications, New York, 1971, p. 4.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • H. S. Hall and S. R. Knight, Higher Algebra, Fourth Edition, Macmillan, 1891, p. 518.
  • Zhu Shijie, Jade Mirror of the Four Unknowns (Siyuan yujian), Book III Guo Duo Die Gang (Piles of Fruit), Problem number 1, 1303.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. similar sequences listed in A241765.
Cf. A001296.
Cf. A006325(n+1) (Zhu Shijie's problem number 2 uses a pyramid with square base).

Programs

  • Haskell
    a000914 n = a000914_list !! n
    a000914_list = scanl1 (+) a006002_list
    -- Reinhard Zumkeller, Mar 25 2014
    
  • Magma
    [StirlingFirst(n+2, n): n in [0..40]]; // Vincenzo Librandi, May 28 2019
  • Maple
    A000914 := n -> 1/24*(n+1)*n*(n+2)*(3*n+5);
    A000914 := proc(n)
        combinat[stirling1](n+2,n) ;
    end proc: # R. J. Mathar, May 19 2016
  • Mathematica
    Table[StirlingS1[n+2,n],{n,0,40}] (* Harvey P. Dale, Aug 24 2011 *)
    a[ n_] := n (n + 1) (n + 2) (3 n + 5) / 24; (* Michael Somos, Sep 04 2017 *)
  • PARI
    a(n)=sum(i=1,n+1,sum(j=1,n+1,i*j*(i
    				
  • PARI
    a(n)=sum(i=1,n+1,sum(j=1,i-1,i*j)) \\ Charles R Greathouse IV, Apr 07 2015
    
  • PARI
    a(n) = binomial(n+2, 3)*(3*n+5)/4 \\ Charles R Greathouse IV, Apr 07 2015
    
  • Sage
    [stirling_number1(n+2, n) for n in range(41)] # Zerinvary Lajos, Mar 14 2009
    

Formula

a(n) = binomial(n+2, 3)*(3*n+5)/4 = (n+1)*n*(n+2)*(3*n+5)/24.
E.g.f.: exp(x)*x*(48 + 84*x + 32*x^2 + 3*x^3)/24.
G.f.: (2*x+x^2)/(1-x)^5. - Simon Plouffe in his 1992 dissertation.
a(n) = Sum_{i=1..n} i*(i+1)^2/2. - Jon Perry, Jul 31 2003
a(n) = A052149(n+1)/2. - J. M. Bergot, Jun 02 2012
-(3*n+2)*(n-1)*a(n) + (n+2)*(3*n+5)*a(n-1) = 0. - R. J. Mathar, Apr 30 2015
a(n) = a(n-1) + (n+1)*binomial(n+1,2) for n >= 1. - Dennis P. Walsh, Sep 21 2015
a(n) = A001296(-2-n) for all n in Z. - Michael Somos, Sep 04 2017
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 162*log(3)/5 - 18*sqrt(3)*Pi/5 - 384/25.
Sum_{n>=1} (-1)^(n+1)/a(n) = 36*sqrt(3)*Pi/5 - 96*log(2)/5 - 636/25. (End)
a(n) = 3*A000332(n+3) - A000292(n). - Yasser Arath Chavez Reyes, Apr 03 2024

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 17 2000
Comments from Michael Somos, Jan 29 2000
Erroneous duplicate of the polynomial formula removed by R. J. Mathar, Sep 15 2009

A050534 Tritriangular numbers: a(n) = binomial(binomial(n,2),2) = n*(n+1)*(n-1)*(n-2)/8.

Original entry on oeis.org

0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990, 1485, 2145, 3003, 4095, 5460, 7140, 9180, 11628, 14535, 17955, 21945, 26565, 31878, 37950, 44850, 52650, 61425, 71253, 82215, 94395, 107880, 122760, 139128, 157080, 176715, 198135, 221445, 246753, 274170, 303810, 335790
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999

Keywords

Comments

"There are n straight lines in a plane, no two of which are parallel and no three of which are concurrent. Their points of intersection being joined, show that the number of new lines drawn is (1/8)n(n-1)(n-2)(n-3)." (Schmall, 1915).
Several different versions of this sequence are possible, beginning with either one, two or three 0's.
If Y is a 3-subset of an n-set X then, for n>=6, a(n-4) is the number of (n-6)-subsets of X which have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Number of distinct ways to select 2 pairs of objects from a set of n+1 objects, when order doesn't matter. For example, with n = 3 (4 objects), the 3 possibilities are (12)(34), (13)(24), and (14)(23). - Brian Parsonnet, Jan 03 2012
Partial sums of A027480. - J. M. Bergot, Jul 09 2013
For the set {1,2,...,n}, the sum of the 2 smallest elements of all subsets with 3 elements is a(n) (see Bulut et al. link). - Serhat Bulut, Jan 20 2015
a(n) is also the number of subgroups of S_{n+1} (the symmetric group on n+1 elements) that are isomorphic to D_4 (the dihedral group of order 8). - Geoffrey Critzer, Sep 13 2015
a(n) is the coefficient of x1^(n-3)*x2^2 in exponential Bell polynomial B_{n+1}(x1,x2,...) (number of ways to select 2 pairs among n+1 objects, see above), hence its link with A000292 and A001296 (see formula). - Cyril Damamme, Feb 26 2018
Also the number of 4-cycles in the complete graph K_{n+1}. - Eric W. Weisstein, Mar 13 2018
Number of chiral pairs of colorings of the 4 edges or vertices of a square using n or fewer colors. Each member of a chiral pair is a reflection, but not a rotation, of the other. - Robert A. Russell, Oct 20 2020

Examples

			For a(3)=3, the chiral pairs of square colorings are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. - _Robert A. Russell_, Oct 20 2020
		

References

  • Arthur T. Benjamin and Jennifer Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 154.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, Problem 1, page 72.
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5, case k=2.

Crossrefs

Cf. A000217, A000332, A033487, A107394, A034827, A210569, Second column of triangle A001498.
Cf. similar sequences listed in A241765.
Cf. (square colorings) A006528 (oriented), A002817 (unoriented), A002411 (achiral),
Row 2 of A325006 (orthoplex facets, orthotope vertices) and A337409 (orthotope edges, orthoplex ridges).
Row 4 of A293496 (cycles of n colors using k or fewer colors).

Programs

  • GAP
    List([0..40],n->3*Binomial(n+1,4)); # Muniru A Asiru, Mar 20 2018
  • Magma
    [3*Binomial(n+1, 4): n in [0..40]]; // Vincenzo Librandi, Feb 14 2015
    
  • Maple
    [seq(binomial(n+1,4)*3,n=0..40)]; # Zerinvary Lajos, Jul 18 2006
  • Mathematica
    Table[Binomial[Binomial[n, 2], 2], {n, 0, 50}] (* Stefan Steinerberger, Apr 08 2006 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 3, 15}, 40] (* Harvey P. Dale, Dec 14 2011 *)
    (* Start from Eric W. Weisstein, Mar 13 2018 *)
    Binomial[Binomial[Range[0, 20], 2], 2]
    Nest[Binomial[#, 2] &, Range[0, 20], 2]
    Nest[PolygonalNumber[# - 1] &, Range[0, 20], 2]
    CoefficientList[Series[3 x^3/(1 - x)^5, {x, 0, 20}], x]
    (* End *)
  • PARI
    a(n)=n*(n+1)*(n-1)*(n-2)/8 \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    x='x+O('x^100); concat([0, 0, 0], Vec(3*x^3/(1-x)^5)) \\ Altug Alkan, Nov 01 2015
    
  • Sage
    [(binomial(binomial(n,2),2)) for n in range(0, 39)] # Zerinvary Lajos, Nov 30 2009
    

Formula

a(n) = 3*binomial(n+1, 4) = 3*A000332(n+1).
From Vladeta Jovovic, May 03 2002: (Start)
Recurrence: a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 3*x^3 / (1-x)^5. (End)
a(n+1) = T(T(n)) - T(n); a(n+2) = T(T(n)+n) where T is A000217. - Jon Perry, Jun 11 2003
a(n+1) = T(n)^2 - T(T(n)) where T is A000217. - Jon Perry, Jul 23 2003
a(n) = T(T(n-1)-1) where T is A000217. - Jon E. Schoenfield, Dec 14 2014
a(n) = 3*C(n, 4) + 3*C(n, 3), for n>3.
From Alexander Adamchuk, Apr 11 2006: (Start)
a(n) = (1/2)*Sum_{k=1..n} k*(k-1)*(k-2).
a(n) = A033487(n-2)/2, n>1.
a(n) = C(n-1,2)*C(n+1,2)/2, n>2. (End)
a(n) = A052762(n+1)/8. - Zerinvary Lajos, Apr 26 2007
a(n) = (4x^4 - 4x^3 - x^2 + x)/2 where x = floor(n/2)*(-1)^n for n >= 0. - William A. Tedeschi, Aug 24 2010
E.g.f.: x^3*exp(x)*(4+x)/8. - Robert Israel, Nov 01 2015
a(n) = Sum_{k=1..n} Sum_{i=1..k} (n-i-1)*(n-k). - Wesley Ivan Hurt, Sep 12 2017
a(n) = A001296(n-1) - A000292(n-1). - Cyril Damamme, Feb 26 2018
Sum_{n>=3} 1/a(n) = 4/9. - Vaclav Kotesovec, May 01 2018
a(n) = A006528(n) - A002817(n) = (A006528(n) - A002411(n)) / 2 = A002817(n) - A002411(n). - Robert A. Russell, Oct 20 2020
Sum_{n>=3} (-1)^(n+1)/a(n) = 32*log(2)/3 - 64/9. - Amiram Eldar, Jan 09 2022
a(n) = Sum_{k=1..2} (-1)^(k+1)*binomial(n,2-k)*binomial(n,2+k). - Gerry Martens, Oct 09 2022

Extensions

Additional comments from Antreas P. Hatzipolakis, May 03 2002
Previous Showing 41-50 of 396 results. Next