cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 915 results. Next

A059841 Period 2: Repeat [1,0]. a(n) = 1 - (n mod 2); Characteristic function of even numbers.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Alford Arnold, Feb 25 2001

Keywords

Comments

When viewed as a triangular array, the row sum values are 0 1 1 1 2 3 3 3 4 5 5 5 6 ... (A004525).
This is the r=0 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found.
Successive binomial transforms of this sequence: A011782, A007051, A007582, A081186, A081187, A081188, A081189, A081190, A060531, A081192.
Characteristic function of even numbers: a(A005843(n))=1, a(A005408(n))=0. - Reinhard Zumkeller, Sep 29 2008
This sequence is the Euler transformation of A185012. - Jason Kimberley, Oct 14 2011
a(n) is the parity of n+1. - Omar E. Pol, Jan 17 2012
Read as partial sequences, we get to A000975. - Jon Perry, Nov 11 2014
Elementary Cellular Automata rule 77 produces this sequence. See Wolfram, Weisstein and Index links below. - Robert Price, Jan 30 2016
Column k = 1 of A051159. - John Keith, Jun 28 2021
When read as a constant: decimal expansion of 10/99, binary expansion of 2/3. - Jason Bard, Aug 25 2025

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 0;
  1, 0, 1, 0;
  1, 0, 1, 0, 1;
  0, 1, 0, 1, 0, 1;
  0, 1, 0, 1, 0, 1, 0;
  1, 0, 1, 0, 1, 0, 1, 0;
  1, 0, 1, 0, 1, 0, 1, 0, 1;
  0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
  0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0;
  ...
		

Crossrefs

One's complement of A000035 (essentially the same, but shifted once).
Cf. A033999 (first differences), A008619 (partial sums), A004525, A011782 (binomial transf.), A000975.
Characteristic function of multiples of g: A000007 (g=0), A000012 (g=1), this sequence (g=2), A079978 (g=3), A121262 (g=4), A079998 (g=5), A079979 (g=6), A082784 (g=7).

Programs

  • Haskell
    a059841 n = (1 -) . (`mod` 2)
    a059841_list = cycle [1,0]
    -- Reinhard Zumkeller, May 05 2012, Dec 30 2011
    
  • Magma
    [0^(n mod 2): n in  [0..100]]; // Vincenzo Librandi, Nov 09 2014
    
  • Maple
    seq(1-modp(n,2), n=0..150); # Muniru A Asiru, Apr 05 2018
  • Mathematica
    CoefficientList[Series[1/(1 - x^2), {x, 0, 104}], x] (* or *)
    Array[1/2 + (-1)^#/2 &, 105, 0] (* Michael De Vlieger, Feb 19 2019 *)
    Table[QBinomial[n, 1, -1], {n, 1, 74}] (* John Keith, Jun 28 2021 *)
    PadRight[{},120,{1,0}] (* Harvey P. Dale, Mar 06 2023 *)
  • PARI
    a(n)=(n+1)%2; \\ or 1-n%2 as in NAME.
    
  • PARI
    A059841(n)=!bittest(n,0) \\ M. F. Hasler, Jan 13 2012
    
  • Python
    def A059841(n): return 1 - (n & 1) # Chai Wah Wu, May 25 2022

Formula

a(n) = 1 - A000035(n). - M. F. Hasler, Jan 13 2012
From Paul Barry, Mar 11 2003: (Start)
G.f.: 1/(1-x^2).
E.g.f.: cosh(x).
a(n) = (n+1) mod 2.
a(n) = 1/2 + (-1)^n/2. (End)
Additive with a(p^e) = 1 if p = 2, 0 otherwise.
a(n) = Sum_{k=0..n} (-1)^k*A038137(n, k). - Philippe Deléham, Nov 30 2006
a(n) = Sum_{k=1..n} (-1)^(n-k) for n > 0. - William A. Tedeschi, Aug 05 2011
E.g.f.: cosh(x) = 1 + x^2/(Q(0) - x^2); Q(k) = 8k + 2 + x^2/(1 + (2k + 1)*(2k + 2)/Q(k + 1)); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
E.g.f.: cosh(x) = 1/2*Q(0); Q(k) = 1 + 1/(1 - x^2/(x^2 + (2k + 1)*(2k + 2)/Q(k + 1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
E.g.f.: cosh(x) = E(0)/(1-x) where E(k) = 1 - x/(1 - x/(x - (2*k+1)*(2*k+2)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013
For the general case: the characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = A000035(n+1) = A008619(n) - A110654(n). - Wesley Ivan Hurt, Jul 20 2013

Extensions

Better definition from M. F. Hasler, Jan 13 2012
Reinhard Zumkeller's Sep 29 2008 description added as a secondary name by Antti Karttunen, May 03 2022

A139251 First differences of toothpicks numbers A139250.

Original entry on oeis.org

0, 1, 2, 4, 4, 4, 8, 12, 8, 4, 8, 12, 12, 16, 28, 32, 16, 4, 8, 12, 12, 16, 28, 32, 20, 16, 28, 36, 40, 60, 88, 80, 32, 4, 8, 12, 12, 16, 28, 32, 20, 16, 28, 36, 40, 60, 88, 80, 36, 16, 28, 36, 40, 60, 88, 84, 56, 60, 92, 112, 140, 208, 256, 192, 64, 4, 8, 12, 12, 16, 28, 32, 20, 16, 28
Offset: 0

Views

Author

Omar E. Pol, Apr 24 2008

Keywords

Comments

Number of toothpicks added to the toothpick structure at the n-th step (see A139250).
It appears that if n is equal to 1 plus a power of 2 with positive exponent then a(n) = 4. (For proof see the second Applegate link.)
It appears that there is a relation between this sequence, even superperfect numbers, Mersenne primes and even perfect numbers. Conjecture: The sum of the toothpicks added to the toothpick structure between the stage A061652(k) and the stage A000668(k) is equal to the k-th even perfect number, for k >= 1. For example: A000396(1) = 2+4 = 6. A000396(2) = 4+4+8+12 = 28. A000396(3) = 16+4+8+12+12+16+28+32+20+16+28+36+40+60+88+80 = 496. - Omar E. Pol, May 04 2009
Concerning this conjecture, see David Applegate's comments on the conjectures in A153006. - N. J. A. Sloane, May 14 2009
In the triangle (See example lines), the sum of row k is equal to A006516(k), for k >= 1. - Omar E. Pol, May 15 2009
Equals (1, 2, 2, 2, ...) convolved with A160762: (1, 0, 2, -2, 2, 2, 2, -6, ...). - Gary W. Adamson, May 25 2009
Convolved with the Jacobsthal sequence A001045 = A160704: (1, 3, 9, 19, 41, ...). - Gary W. Adamson, May 24 2009
It appears that the sums of two successive terms of A160552 give the positive terms of this sequence. - Omar E. Pol, Feb 19 2015
From Omar E. Pol, Feb 28 2019: (Start)
The study of the toothpick automaton on triangular grid (A296510), and other C.A. of the same family, reveals that some cellular automata that have recurrent periods can be represented in general by irregular triangles (of first differences) whose row lengths are the terms of A011782 multiplied by k, where k >= 1, is the length of an internal cycle. This internal cycle is called "word" of a cellular automaton. For example: A160121 has word "a", so k = 1. This sequence has word "ab", so k = 2. A296511 has word "abc", so k = 3. A299477 has word "abcb" so k = 4. A299479 has word "abcbc", so k = 5.
The structure of this triangle (with word "ab" and k = 2) for the nonzero terms is as follows:
a,b;
a,b;
a,b,a,b;
a,b,a,b,a,b,a,b;
a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b;
...
The row lengths are the terms of A011782 multiplied by 2, equaling the column 2 of the square array A296612: 2, 2, 4, 8, 16, ...
This arrangement has the property that the odd-indexed columns (a) contain numbers of the toothpicks that are parallel to initial toothpick, and the even-indexed columns (b) contain numbers of the toothpicks that are orthogonal to the initial toothpick (see the third triangle in the Example section).
An associated sound to the animation could be (tick, tock), (tick, tock), ..., the same as the ticking clock sound.
For further information about the "word" of a cellular automaton see A296612. (End)

Examples

			From _Omar E. Pol_, Dec 16 2008: (Start)
Triangle begins:
1;
2;
4,4;
4,8,12,8;
4,8,12,12,16,28,32,16;
4,8,12,12,16,28,32,20,16,28,36,40,60,88,20,32;
(End)
From _David Applegate_, Apr 29 2009: (Start)
The layout of the triangle was adjusted to reveal that the columns become constant as shown below:
. 0;
. 1;
. 2,4;
. 4,4,8,12;
. 8,4,8,12,12,16,28,32;
.16,4,8,12,12,16,28,32,20,16,28,36,40,60,88,80;
.32,4,8,12,12,16,28,32,20,16,28,36,40,60,88,80,36,16,28,36,40,60,88,84,56,...
...
The row sums give A006516.
(End)
From _Omar E. Pol_, Feb 28 2018: (Start)
Also the nonzero terms can write as an irregular triangle in which the row lengths are the terms of A011782 multiplied by 2 as shown below:
1,2;
4,4;
4,8,12,8;
4,8,12,12,16,28,32,16;
4,8,12,12,16,28,32,20,16,28,36,40,60,88,20,32;
...
(End)
		

Crossrefs

Equals 2*A152968 and 4*A152978 (if we ignore the first couple of terms).
See A147646 for the limiting behavior of the rows. See also A006516.
Row lengths in A011782.
Cf. A160121 (word "a"), A296511 (word "abc"), A299477 (word "abcb"), A299479 (word "abcbc").

Programs

  • Maple
    G := (x/(1+2*x)) * (1 + 2*x*mul(1+x^(2^k-1)+2*x^(2^k),k=0..20)); # N. J. A. Sloane, May 20 2009, Jun 05 2009
    # A139250 is T, A139251 is a.
    a:=[0,1,2,4]; T:=[0,1,3,7]; M:=10;
    for k from 1 to M do
    a:=[op(a),2^(k+1)];
    T:=[op(T),T[nops(T)]+a[nops(a)]];
    for j from 1 to 2^(k+1)-1 do
    a:=[op(a), 2*a[j+1]+a[j+2]];
    T:=[op(T),T[nops(T)]+a[nops(a)]];
    od: od: a; T;
    # N. J. A. Sloane, Dec 25 2009
  • Mathematica
    CoefficientList[Series[((x - x^2)/((1 - x) (1 + 2 x))) (1 + 2 x Product[1 + x^(2^k - 1) + 2 x^(2^k), {k, 0, 20}]), {x, 0, 60}], x] (* Vincenzo Librandi, Aug 22 2014 *)

Formula

Recurrence from N. J. A. Sloane, Jul 20 2009: a(0) = 0; a(2^i)=2^i for all i; otherwise write n=2^i+j, 0 < j < 2^i, then a(n) = 2a(j)+a(j+1). Proof: This is a simplification of the following recurrence of David Applegate. QED
Recurrence from David Applegate, Apr 29 2009: (Start)
Write n=2^(i+1)+j, where 0 <= j < 2^(i+1). Then, for n > 3:
for j=0, a(n) = 2*a(n-2^i) (= n = 2^(i+1))
for 1 <= j <= 2^i - 1, a(n) = a(n-2^i)
for j=2^i, a(n) = a(n-2^i)+4 (= 2^(i+1)+4)
for 2^i+1 <= j <= 2^(i+1)-2, a(n) = 2*a(n-2^i) + a(n-2^i+1)
for j=2^(i+1)-1, a(n) = 2*a(n-2^i) + a(n-2^i+1)-4
and a(n) = 2^(n-1) for n=1,2,3. (End)
G.f.: (x/(1+2*x)) * (1 + 2*x*Product_{k>=0} (1 + x^(2^k-1) + 2*x^(2^k))). - N. J. A. Sloane, May 20 2009, Jun 05 2009
With offset 0 (which would be more natural, but offset 1 is now entrenched): a(0) = 1, a(1) = 2; for i >= 1, a(2^i) = 4; otherwise write n = 2^i +j, 0 < j < 2^i, then a(n) = 2 * Sum_{ k >= 0 } 2^(wt(j+k)-k)*binomial(wt(j+k),k). - N. J. A. Sloane, Jun 03 2009
It appears that a(n) = A187221(n+1)/2. - Omar E. Pol, Mar 08 2011
It appears that a(n) = A160552(n-1) + A160552(n), n >= 1. - Omar E. Pol, Feb 18 2015

Extensions

Partially edited by Omar E. Pol, Feb 28 2019

A032020 Number of compositions (ordered partitions) of n into distinct parts.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 11, 13, 19, 27, 57, 65, 101, 133, 193, 351, 435, 617, 851, 1177, 1555, 2751, 3297, 4757, 6293, 8761, 11305, 15603, 24315, 30461, 41867, 55741, 74875, 98043, 130809, 168425, 257405, 315973, 431065, 558327, 751491, 958265, 1277867, 1621273
Offset: 0

Views

Author

Christian G. Bower, Apr 01 1998

Keywords

Comments

Compositions into distinct parts are equivalent to (1,1)-avoiding compositions. - Gus Wiseman, Jun 25 2020
All terms are odd. - Alois P. Heinz, Apr 09 2021

Examples

			a(6) = 11 because 6 = 5+1 = 4+2 = 3+2+1 = 3+1+2 = 2+4 = 2+3+1 = 2+1+3 = 1+5 = 1+3+2 = 1+2+3.
From _Gus Wiseman_, Jun 25 2020: (Start)
The a(0) = 1 through a(7) = 13 strict compositions:
  ()  (1)  (2)  (3)    (4)    (5)    (6)      (7)
                (1,2)  (1,3)  (1,4)  (1,5)    (1,6)
                (2,1)  (3,1)  (2,3)  (2,4)    (2,5)
                              (3,2)  (4,2)    (3,4)
                              (4,1)  (5,1)    (4,3)
                                     (1,2,3)  (5,2)
                                     (1,3,2)  (6,1)
                                     (2,1,3)  (1,2,4)
                                     (2,3,1)  (1,4,2)
                                     (3,1,2)  (2,1,4)
                                     (3,2,1)  (2,4,1)
                                              (4,1,2)
                                              (4,2,1)
(End)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.

Crossrefs

Row sums of A241719.
Main diagonal of A261960.
Dominated by A003242 (anti-run compositions).
These compositions are ranked by A233564.
(1,1)-avoiding patterns are counted by A000142.
Numbers with strict prime signature are A130091.
(1,1,1)-avoiding compositions are counted by A232432.
(1,1)-matching compositions are counted by A261982.
Inseparable partitions are counted by A325535.
Patterns matched by compositions are counted by A335456.
Strict permutations of prime indices are counted by A335489.

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
          -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0))) end:
    a:= proc(n) local l; l:=b(n, n): add((i-1)! *l[i], i=1..nops(l)) end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 12 2012
    # second Maple program:
    T:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
          `if`(k=0, `if`(n=0, 1, 0), T(n-k, k) +k*T(n-k, k-1)))
        end:
    a:= n-> add(T(n, k), k=0..floor((sqrt(8*n+1)-1)/2)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 04 2015
  • Mathematica
    f[list_]:=Length[list]!; Table[Total[Map[f, Select[IntegerPartitions[n], Sort[#] == Union[#] &]]], {n, 0,30}]
    T[n_, k_] := T[n, k] = If[k<0 || n<0, 0, If[k==0, If[n==0, 1, 0], T[n-k, k] + k*T[n-k, k-1]]]; a[n_] := Sum[T[n, k], {k, 0, Floor[(Sqrt[8*n + 1] - 1) / 2]}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Sep 22 2015, after Alois P. Heinz *)
  • PARI
    N=66;  q='q+O('q^N);
    gf=sum(n=0,N, n!*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );
    Vec(gf)
    /* Joerg Arndt, Oct 20 2012 */
    
  • PARI
    Q(N) = { \\ A008289
      my(q = vector(N)); q[1] = [1, 0, 0, 0];
      for (n = 2, N,
        my(m = (sqrtint(8*n+1) - 1)\2);
        q[n] = vector((1 + (m>>2)) << 2); q[n][1] = 1;
        for (k = 2, m, q[n][k] = q[n-k][k] + q[n-k][k-1]));
      return(q);
    };
    seq(N) = concat(1, apply(q -> sum(k = 1, #q, q[k] * k!), Q(N)));
    seq(43) \\ Gheorghe Coserea, Sep 09 2018

Formula

"AGK" (ordered, elements, unlabeled) transform of 1, 1, 1, 1, ...
G.f.: Sum_{k>=0} k! * x^((k^2+k)/2) / Product_{j=1..k} (1-x^j). - David W. Wilson May 04 2000
a(n) = Sum_{m=1..n} A008289(n,m)*m!. - Geoffrey Critzer, Sep 07 2012

A053120 Triangle of coefficients of Chebyshev's T(n,x) polynomials (powers of x in increasing order).

Original entry on oeis.org

1, 0, 1, -1, 0, 2, 0, -3, 0, 4, 1, 0, -8, 0, 8, 0, 5, 0, -20, 0, 16, -1, 0, 18, 0, -48, 0, 32, 0, -7, 0, 56, 0, -112, 0, 64, 1, 0, -32, 0, 160, 0, -256, 0, 128, 0, 9, 0, -120, 0, 432, 0, -576, 0, 256, -1, 0, 50, 0, -400, 0, 1120, 0, -1280, 0, 512, 0, -11, 0, 220, 0, -1232, 0, 2816, 0, -2816, 0, 1024
Offset: 0

Views

Author

Keywords

Comments

Row sums (signed triangle): A000012 (powers of 1). Row sums (unsigned triangle): A001333(n).
From Wolfdieter Lang, Oct 21 2013: (Start)
The row polynomials T(n,x) equal (S(n,2*x) - S(n-2,2*x))/2, n >= 0, with the row polynomials S from A049310, with S(-1,x) = 0, and S(-2,x) = -1.
The zeros of T(n,x) are x(n,k) = cos((2*k+1)*Pi/(2*n)), k = 0, 1, ..., n-1, n >= 1. (End)
From Wolfdieter Lang, Jan 03 2020 and Paul Weisenhorn: (Start)
The (sub)diagonal sequences {D_{2*k}(m)}{m >= 0}, for k >= 0, have o.g.f. GD{2*k}(x) = (-1)^k*(1-x)/(1-2*x)^(k+1), for k >= 0, and GD_{2*k+1}(x) = 0, for k >= 0. This follows from their o.g.f. GGD(z, x) := Sum_{k>=0} GD_k(x)*z^n which is obtained from the o.g.f. of the T-triangle GT(z, x) = (1-x*z)/(1 - 2*x + z^2) (see the formula section) by GGD(z, x) = GT(z, x/z).
The explicit form is then D_{2*k}(m) = (-1)^k, for m = 0, and
(-1)^k*(2*k+m)*2^(m-1)*risefac(k+1, m-1)/m!, for m >= 1, with the rising factorial risefac(x, n). (End)

Examples

			The triangle a(n,m) begins:
n\m  0  1   2    3     4    5     6     7      8    9   10...
0:   1
1:   0  1
2:  -1  0   2
3:   0 -3   0    4
4:   1  0  -8    0     8
5:   0  5   0  -20     0   16
6:  -1  0  18    0   -48    0    32
7:   0 -7   0   56     0 -112     0    64
8:   1  0 -32    0   160    0  -256     0    128
9:   0  9   0 -120     0  432     0  -576      0  256
10: -1  0  50    0  -400    0  1120     0  -1280    0  512
... Reformatted and extended - _Wolfdieter Lang_, Oct 21 2013
E.g., the fourth row (n=3) corresponds to the polynomial T(3,x) = -3*x + 4*x^3.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964. Tenth printing, Wiley, 2002 (also electronically available), p. 795.
  • F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg 1994 pp. 77, 105.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 22, page 196.
  • TableCurve 2D, Automated curve fitting and equation discovery, Version 5.01 for Windows, User's Manual, Chebyshev Series Polynomials and Rationals, pages 12-21 - 12-24, SYSTAT Software, Inc., Richmond, WA, 2002.

Crossrefs

The first nonzero (sub)diagonal sequences are A011782, -A001792, A001793(n+1), -A001794, A006974, -A006975, A006976, -A209404.

Programs

  • Julia
    using Nemo
    function A053120Row(n)
        R, x = PolynomialRing(ZZ, "x")
        p = chebyshev_t(n, x)
        [coeff(p, j) for j in 0:n] end
    for n in 0:6 A053120Row(n) |> println end # Peter Luschny, Mar 13 2018
    
  • Magma
    &cat[ Coefficients(ChebyshevT(n)): n in [0..11] ]; // Klaus Brockhaus, Mar 08 2008
    
  • Maple
    with(orthopoly) ;
    A053120 := proc(n,k)
        T(n,x) ;
        coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, Jun 30 2013
    T := (n, x) -> `if`(n = 0, 1, add((-1)^(n - k) * (n/(2*k))*binomial(k, n - k) *(2*x)^(2*k - n), k = 1 ..n)):
    seq(seq(coeff(T(n, x), x, k), k = 0..n), n = 0..11); # Peter Luschny, Sep 20 2022
  • Mathematica
    t[n_, k_] := Coefficient[ ChebyshevT[n, x], x, k]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, Jan 16 2012 *)
  • PARI
    for(n=0,5,P=polchebyshev(n);for(k=0,n,print1(polcoeff(P,k)", "))) \\ Charles R Greathouse IV, Jan 16 2012
    
  • SageMath
    def f(n,k): # f = A039991
        if (n<2 and k==0): return 1
        elif (k<0 or k>n): return 0
        else: return 2*f(n-1, k) - f(n-2, k-2)
    def A053120(n,k): return f(n, n-k)
    flatten([[A053120(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 10 2022

Formula

T(n, m) = A039991(n, n-m).
G.f. for row polynomials T(n,x) (signed triangle): (1-x*z)/(1-2*x*z+z^2). If unsigned: (1-x*z)/(1-2*x*z-z^2).
T(n, m) := 0 if n < m or n+m odd; T(n, m) = (-1)^(n/2) if m=0 (n even); otherwise T(n, m) = ((-1)^((n+m)/2 + m))*(2^(m-1))*n*binomial((n+m)/2-1, m-1)/m.
Recursion for n >= 2: T(n, m) = T*a(n-1, m-1) - T(n-2, m), T(n, m)=0 if n < m, T(n, -1) := 0, T(0, 0) = T(1, 1) = 1.
G.f. for m-th column (signed triangle): 1/(1+x^2) if m=0, otherwise (2^(m-1))*(x^m)*(1-x^2)/(1+x^2)^(m+1).
From G. C. Greubel, Aug 10 2022: (Start)
Sum_{k=0..floor(n/2)} T(n-k, k) = A000007(n).
T(2*n, n) = i^n * A036909(n/2) * (1+(-1)^n)/2 + [n=0]/3. (End)
T(n, k) = [x^k] T(n, x) for n >= 1, where T(n, x) = Sum_{k=1..n}(-1)^(n - k)*(n/ (2*k))*binomial(k, n - k)*(2*x)^(2*k - n). - Peter Luschny, Sep 20 2022

A007051 a(n) = (3^n + 1)/2.

Original entry on oeis.org

1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574, 265721, 797162, 2391485, 7174454, 21523361, 64570082, 193710245, 581130734, 1743392201, 5230176602, 15690529805, 47071589414, 141214768241, 423644304722, 1270932914165, 3812798742494, 11438396227481
Offset: 0

Views

Author

Keywords

Comments

Number of ordered trees with n edges and height at most 4.
Number of palindromic structures using a maximum of three different symbols. - Marks R. Nester
Number of compositions of all even natural numbers into n parts <= 2 (0 is counted as a part), see example. - Adi Dani, May 14 2011
Consider the mapping f(a/b) = (a + 2*b)/(2*a + b). Taking a = 1, b = 2 to start with, and carrying out this mapping repeatedly on each new (reduced) rational number gives the sequence 1/2, 4/5, 13/14, 40/41, ... converging to 1. The sequence contains the denominators = (3^n+1)/2. The same mapping for N, i.e., f(a/b) = (a + N*b)/(a+b) gives fractions converging to N^(1/2). - Amarnath Murthy, Mar 22 2003
Second binomial transform of the expansion of cosh(x). - Paul Barry, Apr 05 2003
The sequence (1, 1, 2, 5, ...) = 3^n/6 + 1/2 + 0^n/3 has binomial transform A007581. - Paul Barry, Jul 20 2003
Number of (s(0), s(1), ..., s(2n+2)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2n+2, s(0) = 1, s(2n+2) = 1. - Herbert Kociemba, Jun 10 2004
Density of regular language L over {1,2,3}^* (i.e., number of strings of length n in L) described by regular expression 11*+11*2(1+2)*+11*2(1+2)*3(1+2+3)*. - Nelma Moreira, Oct 10 2004
Sums of rows of the triangle in A119258. - Reinhard Zumkeller, May 11 2006
Number of n-words from the alphabet A = {a,b,c} which contain an even number of a's. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 30 2006
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x = y. - Ross La Haye, Jan 10 2008
a(n+1) gives the number of primitive periodic multiplex juggling sequences of length n with base state <2>. - Steve Butler, Jan 21 2008
a(n) is also the number of idempotent order-preserving and order-decreasing partial transformations (of an n-chain). - Abdullahi Umar, Oct 02 2008
Equals row sums of triangle A147292. - Gary W. Adamson, Nov 05 2008
Equals leftmost column of A071919^3. - Gary W. Adamson, Apr 13 2009
A010888(a(n))=5 for n >= 2, that is, the digital root of the terms >= 5 equals 5. - Parthasarathy Nambi, Jun 03 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,2). - Milan Janjic, Jan 27 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=6, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^(n-1)*charpoly(A,3). - Milan Janjic, Feb 21 2010
It appears that if s(n) is a rational sequence of the form s(1)=2, s(n)= (2*s(n-1)+1)/(s(n-1)+2), n>1 then s(n)=a(n)/(a(n-1)-1).
Form an array with m(1,n)=1 and m(i,j) = Sum_{k=1..i-1} m(k,j) + Sum_{k=1..j-1} m(i,k), which is the sum of the terms to the left of m(i,j) plus the sum above m(i,j). The sum of the terms in antidiagonal(n-1) = a(n). - J. M. Bergot, Jul 16 2013
From Peter Bala, Oct 29 2013: (Start)
An Engel expansion of 3 to the base b := 3/2 as defined in A181565, with the associated series expansion 3 = b + b^2/2 + b^3/(2*5) + b^4/(2*5*14) + .... Cf. A034472.
More generally, for a positive integer n >= 3, the sequence [1, n - 1, n^2 - n - 1, ..., ( (n - 2)*n^k + 1 )/(n - 1), ...] is an Engel expansion of n/(n - 2) to the base n/(n - 1). Cases include A007583 (n = 4), A083065 (n = 5) and A083066 (n = 6). (End)
Diagonal elements (and one more than antidiagonal elements) of the matrix A^n where A=(2,1;1,2). - David Neil McGrath, Aug 17 2014
From M. Sinan Kul, Sep 07 2016: (Start)
a(n) is equal to the number of integer solutions to the following equation when x is equal to the product of n distinct primes: 1/x = 1/y + 1/z where 0 < x < y <= z.
If z = k*y where k is a fraction >= 1 then the solutions can be given as: y = ((k+1)/k)*x and z = (k+1)*x.
Here k can be equal to any divisor of x or to the ratio of two divisors.
For example for x = 2*3*5 = 30 (product of three distinct primes), k would have the following 14 values: 1, 6/5, 3/2, 5/3, 2, 5/2, 3, 10/3, 5, 6, 15/2, 10, 15, 30.
As an example for k = 10/3, we would have y=39, z=130 and 1/39 + 1/130 = 1/30.
Here finding the number of fractions would be equivalent to distributing n balls (distinct primes) to two bins (numerator and denominator) with no empty bins which can be found using Stirling numbers of the second kind. So another definition for a(n) is: a(n) = 2^n + Sum_{i=2..n} Stirling2(i,2)*binomial(n,i).
(End)
a(n+1) is the smallest i for which the Catalan number C(i) (see A000108) is divisible by 3^n for n > 0. This follows from the rule given by Franklin T. Adams-Watters for determining the multiplicity with which a prime divides C(n). We need to find the smallest number in base 3 to achieve a given count. Applied to prime 3, 1 is the smallest digit that counts but requires to be followed by 2 which cannot be at the end to count. Therefore the number in base 3 of the form 1{n-1 times}20 = (3^(n+1) + 1)/2 + 1 = a(n+1)+1 is the smallest number to achieve count n which implies the claim. - Peter Schorn, Mar 06 2020
Let A be a Toeplitz matrix of order n, defined by: A[i,j]=1, if ij; A[i,i]=2. Then, for n>=1, a(n) = det A. - Dmitry Efimov, Oct 28 2021
a(n) is the least number k such that A065363(k) = -(n-1), for n > 0. - Amiram Eldar, Sep 03 2022

Examples

			From _Adi Dani_, May 14 2011: (Start)
a(3)=14 because all compositions of even natural numbers into 3 parts <=2 are
for 0: (0,0,0)
for 2: (0,1,1), (1,0,1), (1,1,0), (0,0,2), (0,2,0), (2,0,0)
for 4: (0,2,2), (2,0.2), (2,2,0), (1,1,2), (1,2,1), (2,1,1)
for 6: (2,2,2).
(End)
		

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 47.
  • Adi Dani, Quasicompositions of natural numbers, Proceedings of III congress of mathematicians of Macedonia, Struga Macedonia 29 IX -2 X 2005 pages 225-238.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E11.
  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 60.
  • P. Ribenboim, The Little Book of Big Primes, Springer-Verlag, NY, 1991, p. 53.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) - 1.
Binomial transform of Chebyshev coefficients A011782. - Paul Barry, Mar 16 2003
From Paul Barry, Mar 16 2003: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 1, a(0)=1, a(1)=2.
G.f.: (1 - 2*x)/((1 - x)*(1 - 3*x)). (End)
E.g.f.: exp(2*x)*cosh(x). - Paul Barry, Apr 05 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^(n-2*k). - Paul Barry, May 08 2003
This sequence is also the partial sums of the first 3 Stirling numbers of second kind: a(n) = S(n+1, 1) + S(n+1, 2) + S(n+1, 3) for n >= 0; alternatively it is the number of partitions of [n+1] into 3 or fewer parts. - Mike Zabrocki, Jun 21 2004
For c=3, a(n) = (c^n)/c! + Sum_{k=1..c-2}((k^n)/k!*(Sum_{j=2..c-k}(((-1)^j)/j!))) or = Sum_{k=1..c} g(k, c)*k^n where g(1, 1) = 1, g(1, c) = g(1, c-1) + ((-1)^(c-1))/(c-1)! for c > 1, and g(k, c) = g(k-1, c-1)/k for c > 1 and 2 <= k <= c. - Nelma Moreira, Oct 10 2004
The i-th term of the sequence is the entry (1, 1) in the i-th power of the 2 X 2 matrix M = ((2, 1), (1, 2)). - Simone Severini, Oct 15 2005
If p[i]=fibonacci(2i-3) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
INVERT transform of A001519: [1, 1, 2, 5, 13, 34, ...]. - Gary W. Adamson, Jun 13 2011
a(n) = M^n*[1,1,1,0,0,0,...], leftmost column term; where M = an infinite bidiagonal matrix with all 1's in the superdiagonal and (1,2,3,...) in the main diagonal and the rest zeros. - Gary W. Adamson, Jun 23 2011
a(n) = M^n*[1,1,1,0,0,0,...], top entry term; where M is an infinite bidiagonal matrix with all 1's in the superdiagonal, (1,2,3,...) as the main diagonal, and the rest zeros. - Gary W. Adamson, Jun 24 2011
a(n) = A201730(n,0). - Philippe Deléham, Dec 05 2011
a(n) = A006342(n) + A006342(n-1). - Yuchun Ji, Sep 19 2018
From Dmitry Efimov, Oct 29 2021: (Start)
a(2*m+1) = Product_{k=-m..m} (2+i*tan(Pi*k/(2*m+1))),
a(2*m) = Product_{k=-m..m-1} (2+i*tan(Pi*(2*k+1)/(4*m))),
where i is the imaginary unit. (End)

A000740 Number of 2n-bead balanced binary necklaces of fundamental period 2n, equivalent to reversed complement; also Dirichlet convolution of b_n=2^(n-1) with mu(n); also number of components of Mandelbrot set corresponding to Julia sets with an attractive n-cycle.

Original entry on oeis.org

1, 1, 3, 6, 15, 27, 63, 120, 252, 495, 1023, 2010, 4095, 8127, 16365, 32640, 65535, 130788, 262143, 523770, 1048509, 2096127, 4194303, 8386440, 16777200, 33550335, 67108608, 134209530, 268435455, 536854005, 1073741823, 2147450880
Offset: 1

Views

Author

Keywords

Comments

Also number of compositions of n into relatively prime parts (that is, the gcd of all the parts is 1). Also number of subsets of {1,2,..,n} containing n and consisting of relatively prime numbers. - Vladeta Jovovic, Aug 13 2003
Also number of perfect parity patterns that have exactly n columns (see A118141). - Don Knuth, May 11 2006
a(n) is odd if and only if n is squarefree (Tim Keller). - Emeric Deutsch, Apr 27 2007
a(n) is a multiple of 3 for all n>=3 (see Problem 11161 link). - Emeric Deutsch, Aug 13 2008
Row sums of triangle A143424. - Gary W. Adamson, Aug 14 2008
a(n) is the number of monic irreducible polynomials with nonzero constant coefficient in GF(2)[x] of degree n. - Michel Marcus, Oct 30 2016
a(n) is the number of aperiodic compositions of n, the number of compositions of n with relatively prime parts, and the number of compositions of n with relatively prime run-lengths. - Gus Wiseman, Dec 21 2017

Examples

			For n=4, there are 6 compositions of n into coprime parts: <3,1>, <2,1,1>, <1,3>, <1,2,1>, <1,1,2>, and <1,1,1,1>.
From _Gus Wiseman_, Dec 19 2017: (Start)
The a(6) = 27 aperiodic compositions are:
  (11112), (11121), (11211), (12111), (21111),
  (1113), (1122), (1131), (1221), (1311), (2112), (2211), (3111),
  (114), (123), (132), (141), (213), (231), (312), (321), (411),
  (15), (24), (42), (51),
  (6).
The a(6) = 27 compositions into relatively prime parts are:
  (111111),
  (11112), (11121), (11211), (12111), (21111),
  (1113), (1122), (1131), (1212), (1221), (1311), (2112), (2121), (2211), (3111),
  (114), (123), (132), (141), (213), (231), (312), (321), (411),
  (15), (51).
The a(6) = 27 compositions with relatively prime run-lengths are:
  (11112), (11121), (11211), (12111), (21111),
  (1113), (1131), (1212), (1221), (1311), (2112), (2121), (3111),
  (114), (123), (132), (141), (213), (231), (312), (321), (411),
  (15), (24), (42), (51),
  (6).
(End)
		

References

  • H. O. Peitgen and P. H. Richter, The Beauty of Fractals, Springer-Verlag; contribution by A. Douady, p. 165.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A027375/2.
See A056278 for a variant.
First differences of A085945.
Column k=2 of A143325.
Row sums of A101391.

Programs

  • Maple
    with(numtheory): a[1]:=1: a[2]:=1: for n from 3 to 32 do div:=divisors(n): a[n]:=2^(n-1)-sum(a[n/div[j]],j=2..tau(n)) od: seq(a[n],n=1..32); # Emeric Deutsch, Apr 27 2007
    with(numtheory); A000740:=n-> add(mobius(n/d)*2^(d-1), d in divisors(n)); # N. J. A. Sloane, Oct 18 2012
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d]*2^(d - 1), {d, Divisors[n]}]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Feb 03 2012, after PARI *)
  • PARI
    a(n) = sumdiv(n,d,moebius(n/d)*2^(d-1))
    
  • Python
    from sympy import mobius, divisors
    def a(n): return sum([mobius(n // d) * 2**(d - 1) for d in divisors(n)])
    [a(n) for n in range(1, 101)]  # Indranil Ghosh, Jun 28 2017

Formula

a(n) = Sum_{d|n} mu(n/d)*2^(d-1), Mobius transform of A011782. Furthermore, Sum_{d|n} a(d) = 2^(n-1).
a(n) = A027375(n)/2 = A038199(n)/2.
a(n) = Sum_{k=0..n} A051168(n,k)*k. - Max Alekseyev, Apr 09 2013
Recurrence relation: a(n) = 2^(n-1) - Sum_{d|n,d>1} a(n/d). (Lafayette College Problem Group; see the Maple program and Iglesias eq (6)). - Emeric Deutsch, Apr 27 2007
G.f.: Sum_{k>=1} mu(k)*x^k/(1 - 2*x^k). - Ilya Gutkovskiy, Oct 24 2018
G.f. satisfies Sum_{n>=1} A( (x/(1 + 2*x))^n ) = x. - Paul D. Hanna, Apr 02 2025

Extensions

Connection with Mandelbrot set discovered by Warren D. Smith and proved by Robert Munafo, Feb 06 2000
Ambiguous term a(0) removed by Max Alekseyev, Jan 02 2012

A097805 Number of compositions of n with k parts, T(n, k) = binomial(n-1, k-1) for n, k >= 1 and T(n, 0) = 0^n, triangle read by rows for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0

Views

Author

Paul Barry, Aug 25 2004

Keywords

Comments

Previous name was: Riordan array (1, 1/(1-x)) read by rows.
Note this Riordan array would be denoted (1, x/(1-x)) by some authors.
Columns have g.f. (x/(1-x))^k. Reverse of A071919. Row sums are A011782. Antidiagonal sums are Fibonacci(n-1). Inverse as Riordan array is (1, 1/(1+x)). A097805=B*A059260*B^(-1), where B is the binomial matrix.
(0,1)-Pascal triangle. - Philippe Deléham, Nov 21 2006
(n+1) * each term of row n generates triangle A127952: (1; 0, 2; 0, 3, 3; 0, 4, 8, 4; ...). - Gary W. Adamson, Feb 09 2007
Triangle T(n,k), 0<=k<=n, read by rows, given by [0,1,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2008
From Paul Weisenhorn, Feb 09 2011: (Start)
Triangle read by rows: T(r,c) is the number of unordered partitions of n=r*(r+1)/2+c into (r+1) parts < (r+1) and at most pairs of equal parts and parts in neighboring pairs have difference 2.
Triangle read by rows: T(r,c) is the number of unordered partitions of the number n=r*(r+1)/2+(c-1) into r parts < (r+1) and at most pairs of equal parts and parts in neighboring pairs have difference 2. (End)
Triangle read by rows: T(r,c) is the number of ordered partitions (compositions) of r into c parts. - Juergen Will, Jan 04 2016
From Tom Copeland, Oct 25 2012: (Start)
Given a basis composed of a sequence of polynomials p_n(x) characterized by ladder (creation / annihilation, or raising / lowering) operators defined by R p_n(x) = p_(n+1)(x) and L p_n(x) = n p_(n-1)(x) with p_0(x)=1, giving the number operator # p_n(x) = RL p_n(x) = n p_n(x), the lower triangular padded Pascal matrix Pd (A097805) serves as a matrix representation of the operator exp(R^2*L) = exp(R#) =
1) exp(x^2D) for the set x^n and
2) D^(-1) exp(t*x)D for the set x^n/n! (see A218234).
(End)
From James East, Apr 11 2014: (Start)
Square array a(m,n) with m,n=0,1,2,... read by off-diagonals.
a(m,n) gives the number of order-preserving functions f:{1,...,m}->{1,...,n}. Order-preserving means that x
a(n,n)=A088218(n) is the size of the semigroup O_n of all order-preserving transformations of {1,...,n}.
Read as a triangle, this sequence may be obtained by augmenting Pascal's triangle by appending the column 1,0,0,0,... on the left.
(End)
A formula based on the partitions of n with largest part k is given as a Sage program below. The 'conjugate' formula leads to A048004. - Peter Luschny, Jul 13 2015
From Wolfdieter Lang, Feb 17 2017: (Start)
The transposed of this lower triangular Riordan matrix of the associated type T provides the transition matrix between the monomial basis {x^n}, n >= 0, and the basis {y^n}, n >= 0, with y = x/(1-x): x^0 = 1 = y^0, x^n = Sum_{m >= n} Ttrans(n,m) y^m, for n >= 1, with Ttrans(n,m) = binomial(m-1,n-1).
Therefore, if a transformation with this Riordan matrix from a sequence {a} to the sequence {b} is given by b(n) = Sum_{m=0..n} T(n, m)*a(m), with T(n, m) = binomial(n-1, m-1), for n >= 1, then Sum_{n >= 0} a(n)*x^n = Sum_{n >= 0} b(n)*y^n, with y = x/(1-x) and vice versa. This is a modified binomial transformation; the usual one belongs to the Pascal Riordan matrix A007318. (End)
From Gus Wiseman, Jan 23 2022: (Start)
Also the number of compositions of n with alternating sum k, with k ranging from -n to n in steps of 2. For example, row n = 6 counts the following compositions (empty column indicated by dot):
. (15) (24) (33) (42) (51) (6)
(141) (132) (123) (114)
(1113) (231) (222) (213)
(1212) (1122) (321) (312)
(1311) (1221) (1131) (411)
(2112) (2121)
(2211) (3111)
(11121) (11112)
(12111) (11211)
(111111) (21111)
The reverse-alternating version is the same. Counting compositions by all three parameters (sum, length, alternating sum) gives A345197. Compositions of 2n with alternating sum 2k with k ranging from -n + 1 to n are A034871. (End)
Also the convolution triangle of A000012. - Peter Luschny, Oct 07 2022
From Sergey Kitaev, Nov 18 2023: (Start)
Number of permutations of length n avoiding simultaneously the patterns 123 and 132 with k right-to-left maxima. A right-to-left maximum in a permutation a(1)a(2)...a(n) is position i such that a(j) < a(i) for all i < j.
Number of permutations of length n avoiding simultaneously the patterns 231 and 312 with k right-to-left minima (resp., left-to-right maxima). A right-to-left minimum (resp., left-to-right maximum) in a permutation a(1)a(2)...a(n) is position i such that a(j) > a(i) for all j > i (resp., a(j) < a(i) for all j < i).
Number of permutations of length n avoiding simultaneously the patterns 213 and 312 with k right-to-left maxima (resp., left-to-right maxima).
Number of permutations of length n avoiding simultaneously the patterns 213 and 231 with k right-to-left maxima (resp., right-to-left minima). (End)

Examples

			G.f. = 1 + x * (x + x^3 * (1 + x) + x^6 * (1 + x)^2 + x^10 * (1 + x)^3 + ...). - _Michael Somos_, Aug 20 2006
The triangle T(n, k) begins:
n\k  0 1 2  3  4   5   6  7  8 9 10 ...
0:   1
1:   0 1
2:   0 1 1
3:   0 1 2  1
4:   0 1 3  3  1
5:   0 1 4  6  4   1
6:   0 1 5 10 10   5   1
7:   0 1 6 15 20  15   6  1
8:   0 1 7 21 35  35  21  7  1
9:   0 1 8 28 56  70  56 28  8 1
10:  0 1 9 36 84 126 126 84 36 9  1
... reformatted _Wolfdieter Lang_, Jul 31 2017
From _Paul Weisenhorn_, Feb 09 2011: (Start)
T(r=5,c=3) = binomial(4,2) = 6 unordered partitions of the number n = r*(r+1)/2+c = 18 with (r+1)=6 summands: (5+5+4+2+1+1), (5+5+3+3+1+1), (5+4+4+3+1+1), (5+5+3+2+2+1), (5+4+4+2+2+1), (5+4+3+3+2+1).
T(r=5,c=3) = binomial(4,2) = 6 unordered partitions of the number n = r*(r+1)/2+(c-1) = 17 with r=5 summands: (5+5+4+2+1), (5+5+3+3+1), (5+5+3+2+2), (5+4+4+3+1), (5+4+4+2+2), (5+4+3+3+2).  (End)
From _James East_, Apr 11 2014: (Start)
a(0,0)=1 since there is a unique (order-preserving) function {}->{}.
a(m,0)=0 for m>0 since there is no function from a nonempty set to the empty set.
a(3,2)=4 because there are four order-preserving functions {1,2,3}->{1,2}: these are [1,1,1], [2,2,2], [1,1,2], [1,2,2]. Here f=[a,b,c] denotes the function defined by f(1)=a, f(2)=b, f(3)=c.
a(2,3)=6 because there are six order-preserving functions {1,2}->{1,2,3}: these are [1,1], [1,2], [1,3], [2,2], [2,3], [3,3].
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Part 1, Section 7.2.1.3, 2011.

Crossrefs

Case m=0 of the polynomials defined in A278073.
Cf. A000012 (diagonal), A011782 (row sums), A088218 (central terms).
The terms just left of center in odd-indexed rows are A001791, even A002054.
The odd-indexed rows are A034871.
Row sums without the center are A058622.
The unordered version is A072233, without zeros A008284.
Right half without center has row sums A027306(n-1).
Right half with center has row sums A116406(n).
Left half without center has row sums A294175(n-1).
Left half with center has row sums A058622(n-1).
A025047 counts alternating compositions.
A098124 counts balanced compositions, unordered A047993.
A106356 counts compositions by number of maximal anti-runs.
A344651 counts partitions by sum and alternating sum.
A345197 counts compositions by sum, length, and alternating sum.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          expand(add(b(n-i*j, i-1, p+j)/j!*x^j, j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..20);  # Alois P. Heinz, May 25 2014
    # Alternatively:
    T := proc(k,n) option remember;
    if k=n then 1 elif k=0 then 0 else
    add(T(k-1,n-i), i=1..n-k+1) fi end:
    A097805 := (n,k) -> T(k,n):
    for n from 0 to 12 do seq(A097805(n,k), k=0..n) od; # Peter Luschny, Mar 12 2016
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> 1);  # Peter Luschny, Oct 07 2022
  • Mathematica
    T[0, 0] = 1; T[n_, k_] := Binomial[n-1, k-1]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 03 2014, after Paul Weisenhorn *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==k&]],{n,0,10},{k,0,n}] (* Gus Wiseman, Jan 23 2022 *)
  • PARI
    {a(n) = my(m); if( n<2, n==0, n--; m = (sqrtint(8*n + 1) - 1)\2; binomial(m-1, n - m*(m + 1)/2))}; /* Michael Somos, Aug 20 2006 */
    
  • PARI
    T(n,k) = if (k==0, 0^n, binomial(n-1, k-1)); \\ Michel Marcus, May 06 2022
    
  • PARI
    row(n) = vector(n+1, k, k--; if (k==0, 0^n, binomial(n-1, k-1))); \\ Michel Marcus, May 06 2022
    
  • Python
    from math import comb
    def T(n, k): return comb(n-1, k-1) if k != 0 else k**n  # Peter Luschny, May 06 2022
  • Sage
    # Illustrates a basic partition formula, is not efficient as a program for large n.
    def A097805_row(n):
        r = []
        for k in (0..n):
            s = 0
            for q in Partitions(n, max_part=k, inner=[k]):
                s += mul(binomial(q[j],q[j+1]) for j in range(len(q)-1))
            r.append(s)
        return r
    [A097805_row(n) for n in (0..9)] # Peter Luschny, Jul 13 2015
    

Formula

Number triangle T(n, k) defined by T(n,k) = Sum_{j=0..n} binomial(n, j)*if(k<=j, (-1)^(j-k), 0).
T(r,c) = binomial(r-1,c-1), 0 <= c <= r. - Paul Weisenhorn, Feb 09 2011
G.f.: (-1+x)/(-1+x+x*y). - R. J. Mathar, Aug 11 2015
a(0,0) = 1, a(n,k) = binomial(n-1,n-k) = binomial(n-1,k-1) Juergen Will, Jan 04 2016
G.f.: (x^1 + x^2 + x^3 + ...)^k = (x/(1-x))^k. - Juergen Will, Jan 04 2016
From Tom Copeland, Nov 15 2016: (Start)
E.g.f.: 1 + x*[e^((x+1)t)-1]/(x+1).
This padded Pascal matrix with the odd columns negated is NpdP = M*S = S^(-1)*M^(-1) = S^(-1)*M, where M(n,k) = (-1)^n A130595(n,k), the inverse Pascal matrix with the odd rows negated, S is the summation matrix A000012, the lower triangular matrix with all elements unity, and S^(-1) = A167374, a finite difference matrix. NpdP is self-inverse, i.e., (M*S)^2 = the identity matrix, and has the e.g.f. 1 - x*[e^((1-x)t)-1]/(1-x).
M = NpdP*S^(-1) follows from the well-known recursion property of the Pascal matrix, implying NpdP = M*S.
The self-inverse property of -NpdP is implied by the self-inverse relation of its embedded signed Pascal submatrix M (cf. A130595). Also see A118800 for another proof.
Let P^(-1) be A130595, the inverse Pascal matrix. Then T = A200139*P^(-1) and T^(-1) = padded P^(-1) = P*A097808*P^(-1). (End)
The center (n>0) is T(2n+1,n+1) = A000984(n) = 2*A001700(n-1) = 2*A088218(n) = A126869(2n) = 2*A138364(2n-1). - Gus Wiseman, Jan 25 2022

Extensions

Corrected by Philippe Deléham, Oct 05 2005
New name using classical terminology by Peter Luschny, Feb 05 2019

A124767 Number of level runs for compositions in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 3, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 1, 1, 2, 2, 2, 1, 3, 3, 2, 2, 3, 1, 2, 3, 4, 3, 2, 2, 3, 3, 3, 3, 3, 4, 3, 2, 3, 2, 3, 2, 3, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 4, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 4, 3, 4, 3, 4, 3, 2, 2, 3, 3, 3, 2, 4, 4, 3, 3
Offset: 0

Author

Keywords

Comments

The standard order of compositions is given by A066099.
For n > 0, a(n) is one more than the number of adjacent unequal terms in the n-th composition in standard order. Also the number of runs in the same composition. - Gus Wiseman, Apr 08 2020

Examples

			Composition number 11 is 2,1,1; the level runs are 2; 1,1; so a(11) = 2.
The table starts:
  0
  1
  1 1
  1 2 2 1
  1 2 1 2 2 3 2 1
  1 2 2 2 2 2 3 2 2 3 2 3 2 3 2 1
  1 2 2 2 1 3 3 2 2 3 1 2 3 4 3 2 2 3 3 3 3 3 4 3 2 3 2 3 2 3 2 1
The 1234567th composition in standard order is (3,2,1,2,2,1,2,5,1,1,1) with runs ((3),(2),(1),(2,2),(1),(2),(5),(1,1,1)), so a(1234567) = 8. - _Gus Wiseman_, Apr 08 2020
		

Crossrefs

Row-lengths are A011782.
Compositions counted by number of runs are A238279 or A333755.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Weakly decreasing compositions are A114994.
- Adjacent equal pairs are counted by A124762.
- Weakly decreasing runs are counted by A124765.
- Weakly increasing runs are counted by A124766.
- Equal runs are counted by A124767 (this sequence).
- Weakly increasing compositions are A225620.
- Strict compositions A233564.
- Constant compositions are A272919.
- Anti-runs are counted by A333381.
- Adjacent unequal pairs are counted by A333382.
- Anti-run compositions are A333489.
- Runs-resistance is A333628.
- Run-lengths are A333769 (triangle).

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Split[stc[n]]],{n,0,100}] (* Gus Wiseman, Apr 17 2020 *)

Formula

a(0) = 0, a(n) = 1 + Sum_{1<=i=1 0.
For n > 0, a(n) = A333382(n) + 1. - Gus Wiseman, Apr 08 2020

A025047 Number of alternating compositions, i.e., compositions with alternating increases and decreases, starting with either an increase or a decrease.

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 12, 19, 29, 48, 75, 118, 186, 293, 460, 725, 1139, 1789, 2814, 4422, 6949, 10924, 17168, 26979, 42404, 66644, 104737, 164610, 258707, 406588, 639009, 1004287, 1578363, 2480606, 3898599, 6127152, 9629623, 15134213, 23785388, 37381849, 58750468
Offset: 0

Keywords

Comments

Original name: Wiggly sums: number of sums adding to n in which terms alternately increase and decrease or vice versa.

Examples

			From _Joerg Arndt_, Dec 28 2012: (Start)
There are a(7)=19 such compositions of 7:
[ 1] +  [ 1 2 1 2 1 ]
[ 2] +  [ 1 2 1 3 ]
[ 3] +  [ 1 3 1 2 ]
[ 4] +  [ 1 4 2 ]
[ 5] +  [ 1 5 1 ]
[ 6] +  [ 1 6 ]
[ 7] -  [ 2 1 3 1 ]
[ 8] -  [ 2 1 4 ]
[ 9] +  [ 2 3 2 ]
[10] +  [ 2 4 1 ]
[11] +  [ 2 5 ]
[12] -  [ 3 1 2 1 ]
[13] -  [ 3 1 3 ]
[14] +  [ 3 4 ]
[15] -  [ 4 1 2 ]
[16] -  [ 4 3 ]
[17] -  [ 5 2 ]
[18] -  [ 6 1 ]
[19] 0  [ 7 ]
For A025048(7)-1=10 of these the first two parts are increasing (marked by '+'),
and for A025049(7)-1=8 the first two parts are decreasing (marked by '-').
The composition into one part is counted by both A025048 and A025049.
(End)
		

Crossrefs

Dominated by A003242 (anti-run compositions), complement A261983.
The ascending case is A025048.
The descending case is A025049.
The version allowing pairs (x,x) is A344604.
These compositions are ranked by A345167, permutations A349051.
The complement is counted by A345192, ranked by A345168.
The version for patterns is A345194 (with twins: A344605).
A001250 counts alternating permutations, complement A348615.
A011782 counts compositions.
A032020 counts strict compositions.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A274174 counts compositions with equal parts contiguous.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345164 counts alternating permutations of prime indices.
A345165 counts partitions w/o alternating permutation, ranked by A345171.
A345170 counts partitions w/ alternating permutation, ranked by A345172.

Programs

  • Maple
    b:= proc(n, l, t) option remember; `if`(n=0, 1, add(
          b(n-j, j, 1-t), j=`if`(t=1, 1..min(l-1, n), l+1..n)))
        end:
    a:= n-> 1+add(add(b(n-j, j, i), i=0..1), j=1..n-1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 31 2024
  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],wigQ]],{n,0,15}] (* Gus Wiseman, Jun 17 2021 *)
  • PARI
    D(n,f)={my(M=matrix(n,n,j,k,k>=j), s=M[,n]); for(b=1, n, f=!f; M=matrix(n,n,j,k,if(k1, M[j-k,k-1]), M[j-k,n]-M[j-k,k] ))); for(k=2, n, M[,k]+=M[,k-1]); s+=M[,n]); s~}
    seq(n) = concat([1], D(n,0) + D(n,1) - vector(n,j,1)) \\ Andrew Howroyd, Jan 31 2024

Formula

a(n) = A025048(n) + A025049(n) - 1 = sum_k[A059881(n, k)] = sum_k[S(n, k) + T(n, k)] - 1 where if n>k>0 S(n, k) = sum_j[T(n - k, j)] over j>k and T(n, k) = sum_j[S(n - k, j)] over k>j (note reversal) and if n>0 S(n, n) = T(n, n) = 1; S(n, k) = A059882(n, k), T(n, k) = A059883(n, k). - Henry Bottomley, Feb 05 2001
a(n) ~ c * d^n, where d = 1.571630806607064114100138865739690782401305155950789062725..., c = 0.82222360450823867604750473815253345888526601460811483897... . - Vaclav Kotesovec, Sep 12 2014
a(n) = A344604(n) + 1 - n mod 2. - Gus Wiseman, Jun 17 2021

Extensions

Better name using a comment of Franklin T. Adams-Watters by Peter Luschny, Oct 31 2021

A059966 a(n) = (1/n) * Sum_{ d divides n } mu(n/d) * (2^d - 1).

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594, 52377, 99858, 190557, 364722, 698870, 1342176, 2580795, 4971008, 9586395, 18512790, 35790267, 69273666, 134215680, 260300986, 505286415, 981706806
Offset: 1

Author

Roland Bacher, Mar 05 2001

Keywords

Comments

Dimensions of the homogeneous parts of the free Lie algebra with one generator in 1,2,3, etc. (Lie analog of the partition numbers).
This sequence is the Lie analog of the partition sequence (which gives the dimensions of the homogeneous polynomials with one generator in each degree) or similarly, of the partitions into distinct (or odd numbers) (which gives the dimensions of the homogeneous parts of the exterior algebra with one generator in each dimension).
The number of cycles of length n of rectangle shapes in the process of repeatedly cutting a square off the end of the rectangle. For example, the one cycle of length 1 is the golden rectangle. - David Pasino (davepasino(AT)yahoo.com), Jan 29 2009
In music, the number of distinct rhythms, at a given tempo, produced by a continuous repetition of measures with identical patterns of 1's and 0's (where 0 means no beat, and 1 means one beat), where each measure allows for n possible beats of uniform character, and when counted under these two conditions: (i) the starting and ending times for the measure are unknown or irrelevant and (ii) identical rhythms that can be produced by using a measure with fewer than n possible beats are excluded from the count. - Richard R. Forberg, Apr 22 2013
Richard R. Forberg's comment does not hold for n=1 because a(1)=1 but there are the two possible rhythms: "0" and "1". - Herbert Kociemba, Oct 24 2016
The comment does hold for n=1 as the rhythm "0" can be produced by using a measure of 0 beats and so is properly excluded from a(1)=1 by condition (ii) of the comment. - Travis Scott, May 28 2022
a(n) is also the number of Lyndon compositions (aperiodic necklaces of positive integers) with sum n. - Gus Wiseman, Dec 19 2017
Mobius transform of A008965. - Jianing Song, Nov 13 2021
a(n) is the number of cycles of length n for the map x->1 - abs(2*x-1) applied on rationals 0Michel Marcus, Jul 16 2025

Examples

			a(4)=3: the 3 elements [a,c], [a[a,b]] and d form a basis of all homogeneous elements of degree 4 in the free Lie algebra with generators a of degree 1, b of degree 2, c of degree 3 and d of degree 4.
From _Gus Wiseman_, Dec 19 2017: (Start)
The sequence of Lyndon compositions organized by sum begins:
  (1),
  (2),
  (3),(12),
  (4),(13),(112),
  (5),(14),(23),(113),(122),(1112),
  (6),(15),(24),(114),(132),(123),(1113),(1122),(11112),
  (7),(16),(25),(115),(34),(142),(124),(1114),(133),(223),(1213),(1132),(1123),(11113),(1222),(11212),(11122),(111112). (End)
		

References

  • C. Reutenauer, Free Lie algebras, Clarendon press, Oxford (1993).

Crossrefs

Apart from initial terms, same as A001037.

Programs

  • Haskell
    a059966 n = sum (map (\x -> a008683 (n `div` x) * a000225 x)
                         [d | d <- [1..n], mod n d == 0]) `div` n
    -- Reinhard Zumkeller, Nov 18 2011
    
  • Mathematica
    Table[1/n Apply[Plus, Map[(MoebiusMu[n/# ](2^# - 1)) &, Divisors[n]]], {n, 20}]
    (* Second program: *)
    Table[(1/n) DivisorSum[n, MoebiusMu[n/#] (2^# - 1) &], {n, 35}] (* Michael De Vlieger, Jul 22 2019 *)
  • Python
    from sympy import mobius, divisors
    def A059966(n): return sum(mobius(n//d)*(2**d-1) for d in divisors(n,generator=True))//n # Chai Wah Wu, Feb 03 2022

Formula

G.f.: Product_{n>0} (1-q^n)^a(n) = 1-q-q^2-q^3-q^4-... = 2-1/(1-q).
Inverse Euler transform of A011782. - Alois P. Heinz, Jun 23 2018
G.f.: Sum_{k>=1} mu(k)*log((1 - x^k)/(1 - 2*x^k))/k. - Ilya Gutkovskiy, May 19 2019
a(n) ~ 2^n / n. - Vaclav Kotesovec, Aug 10 2019
Dirichlet g.f.: f(s+1)/zeta(s+1) - 1, where f(s) = Sum_{n>=1} 2^n/n^s. - Jianing Song, Nov 13 2021

Extensions

Explicit formula from Paul D. Hanna, Apr 15 2002
Description corrected by Axel Kleinschmidt, Sep 15 2002
Previous Showing 41-50 of 915 results. Next