1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -2, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -2, 1, 1, -2, 1, 1, 1, -1, 1, -1, -4, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -6, -1, 1, -1, 1, -1, 1
Offset: 1
Array starts:
n\k | 1 2 3 4 5 6 7 8 9 10
----+-----------------------------------------------------
1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2 | 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, ...
3 | 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, ...
4 | 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, ...
5 | 1, 1, 1, 1, -4, 1, 1, 1, 1, -4, ...
6 | 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, ...
7 | 1, 1, 1, 1, 1, 1, -6, 1, 1, 1, ...
8 | 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, ...
9 | 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, ...
10 | 1, -1, 1, -1, -4, -1, 1, -1, 1, 4, ...
A062570
a(n) = phi(2*n).
Original entry on oeis.org
1, 2, 2, 4, 4, 4, 6, 8, 6, 8, 10, 8, 12, 12, 8, 16, 16, 12, 18, 16, 12, 20, 22, 16, 20, 24, 18, 24, 28, 16, 30, 32, 20, 32, 24, 24, 36, 36, 24, 32, 40, 24, 42, 40, 24, 44, 46, 32, 42, 40, 32, 48, 52, 36, 40, 48, 36, 56, 58, 32, 60, 60, 36, 64, 48, 40, 66, 64, 44, 48, 70, 48, 72
Offset: 1
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, p. 28.
- Antti Karttunen, Table of n, a(n) for n = 1..65537 (first 1000 terms from Vincenzo Librandi)
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence).
- László Tóth, Counting solutions of quadratic congruences in several variables revisited, arXiv preprint arXiv:1404.4214 [math.NT], 2014.
- László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), Article 14.11.6.
- Wikipedia, Ramanujan's sum.
Comments