cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A239507 The Lambda word generated by E-1 (A091131).

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 2, 2, 4, 5, 4, 2, 2, 4, 5, 4, 2, 4, 5, 4, 5, 4, 2, 4, 5, 4, 5, 4, 4, 5, 4, 5, 4, 5, 4, 4, 5, 4, 5, 4, 5, 6, 5, 4, 5, 4, 5, 4, 5, 6, 5, 4, 5, 4, 5, 6, 5, 5, 6, 5, 4, 5, 4, 5, 6, 5, 5, 6, 5, 4, 5, 6, 5, 5, 6, 5, 5, 6, 5, 4, 5, 6, 5, 5, 6, 5, 5, 6, 5, 6, 5, 5, 6, 5, 5, 6, 5, 5, 6, 5, 6, 5
Offset: 0

Views

Author

Norman Carey and Robert G. Wilson v, Mar 20 2014

Keywords

Comments

A Lambda word is a symbolic sequence that encodes differences in the sequence i+j*t, where t is irrational, 1 < t < 2.
First occurrence of k>0: 1, 2, 5, 11, 19, 51, 119, 303, 571, 923, 1359, 4427, 10544, ..., .

Crossrefs

Programs

  • Mathematica
    t = E - 1; mx = 20; x = Table[ Ceiling[n*1/t], {n, 0, mx}]; y = Table[ Ceiling[n*t], {n, 0, mx}]; tot[p_, q_] := Total[ Take[x, p + 1]] + (p*q) + Total[ Take[y, q + 1]]; row[r_] := Table[ tot[n, r], {n, 0, mx - 1}]; g = Grid[ Table[ row[n], {n, 0, IntegerPart[(mx - 1)/t]}]]; pos[n_] := Reverse[ Position[ g, n][[1, Range[2, 3]]] - 1]; d[n_] := (d[0] = 0; op[m_] := pos[m + 1] - pos[m]; Abs[ Total[ ContinuedFraction[ op[n][[1]] / op[n][[2]] ]]]); lst = Prepend[ Table[ d[n], {n, 0, 249}], 0]

A000027 The positive integers. Also called the natural numbers, the whole numbers or the counting numbers, but these terms are ambiguous.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Keywords

Comments

For some authors, the terms "natural numbers" and "counting numbers" include 0, i.e., refer to the nonnegative integers A001477; the term "whole numbers" frequently also designates the whole set of (signed) integers A001057.
a(n) is smallest positive integer which is consistent with sequence being monotonically increasing and satisfying a(a(n)) = n (cf. A007378).
Inverse Euler transform of A000219.
The rectangular array having A000027 as antidiagonals is the dispersion of the complement of the triangular numbers, A000217 (which triangularly form column 1 of this array). The array is also the transpose of A038722. - Clark Kimberling, Apr 05 2003
For nonzero x, define f(n) = floor(nx) - floor(n/x). Then f=A000027 if and only if x=tau or x=-tau. - Clark Kimberling, Jan 09 2005
Numbers of form (2^i)*k for odd k (i.e., n = A006519(n)*A000265(n)); thus n corresponds uniquely to an ordered pair (i,k) where i=A007814, k=A000265 (with A007814(2n)=A001511(n), A007814(2n+1)=0). - Lekraj Beedassy, Apr 22 2006
If the offset were changed to 0, we would have the following pattern: a(n)=binomial(n,0) + binomial(n,1) for the present sequence (number of regions in 1-space defined by n points), A000124 (number of regions in 2-space defined by n straight lines), A000125 (number of regions in 3-space defined by n planes), A000127 (number of regions in 4-space defined by n hyperplanes), A006261, A008859, A008860, A008861, A008862 and A008863, where the last six sequences are interpreted analogously and in each "... by n ..." clause an offset of 0 has been assumed, resulting in a(0)=1 for all of them, which corresponds to the case of not cutting with a hyperplane at all and therefore having one region. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Define a number of points on a straight line to be in general arrangement when no two points coincide. Then these are the numbers of regions defined by n points in general arrangement on a straight line, when an offset of 0 is assumed. For instance, a(0)=1, since using no point at all leaves one region. The sequence satisfies the recursion a(n) = a(n-1) + 1. This has the following geometrical interpretation: Suppose there are already n-1 points in general arrangement, thus defining the maximal number of regions on a straight line obtainable by n-1 points, and now one more point is added in general arrangement. Then it will coincide with no other point and act as a dividing wall thereby creating one new region in addition to the a(n-1)=(n-1)+1=n regions already there, hence a(n)=a(n-1)+1. Cf. the comments on A000124 for an analogous interpretation. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
The sequence a(n)=n (for n=1,2,3) and a(n)=n+1 (for n=4,5,...) gives to the rank (minimal cardinality of a generating set) for the semigroup I_n\S_n, where I_n and S_n denote the symmetric inverse semigroup and symmetric group on [n]. - James East, May 03 2007
The sequence a(n)=n (for n=1,2), a(n)=n+1 (for n=3) and a(n)=n+2 (for n=4,5,...) gives the rank (minimal cardinality of a generating set) for the semigroup PT_n\T_n, where PT_n and T_n denote the partial transformation semigroup and transformation semigroup on [n]. - James East, May 03 2007
"God made the integers; all else is the work of man." This famous quotation is a translation of "Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk," spoken by Leopold Kronecker in a lecture at the Berliner Naturforscher-Versammlung in 1886. Possibly the first publication of the statement is in Heinrich Weber's "Leopold Kronecker," Jahresberichte D.M.V. 2 (1893) 5-31. - Clark Kimberling, Jul 07 2007
Binomial transform of A019590, inverse binomial transform of A001792. - Philippe Deléham, Oct 24 2007
Writing A000027 as N, perhaps the simplest one-to-one correspondence between N X N and N is this: f(m,n) = ((m+n)^2 - m - 3n + 2)/2. Its inverse is given by I(k)=(g,h), where g = k - J(J-1)/2, h = J + 1 - g, J = floor((1 + sqrt(8k - 7))/2). Thus I(1)=(1,1), I(2)=(1,2), I(3)=(2,1) and so on; the mapping I fills the first-quadrant lattice by successive antidiagonals. - Clark Kimberling, Sep 11 2008
a(n) is also the mean of the first n odd integers. - Ian Kent, Dec 23 2008
Equals INVERTi transform of A001906, the even-indexed Fibonacci numbers starting (1, 3, 8, 21, 55, ...). - Gary W. Adamson, Jun 05 2009
These are also the 2-rough numbers: positive integers that have no prime factors less than 2. - Michael B. Porter, Oct 08 2009
Totally multiplicative sequence with a(p) = p for prime p. Totally multiplicative sequence with a(p) = a(p-1) + 1 for prime p. - Jaroslav Krizek, Oct 18 2009
Triangle T(k,j) of natural numbers, read by rows, with T(k,j) = binomial(k,2) + j = (k^2-k)/2 + j where 1 <= j <= k. In other words, a(n) = n = binomial(k,2) + j where k is the largest integer such that binomial(k,2) < n and j = n - binomial(k,2). For example, T(4,1)=7, T(4,2)=8, T(4,3)=9, and T(4,4)=10. Note that T(n,n)=A000217(n), the n-th triangular number. - Dennis P. Walsh, Nov 19 2009
Hofstadter-Conway-like sequence (see A004001): a(n) = a(a(n-1)) + a(n-a(n-1)) with a(1) = 1, a(2) = 2. - Jaroslav Krizek, Dec 11 2009
a(n) is also the dimension of the irreducible representations of the Lie algebra sl(2). - Leonid Bedratyuk, Jan 04 2010
Floyd's triangle read by rows. - Paul Muljadi, Jan 25 2010
Number of numbers between k and 2k where k is an integer. - Giovanni Teofilatto, Mar 26 2010
Generated from a(2n) = r*a(n), a(2n+1) = a(n) + a(n+1), r = 2; in an infinite set, row 2 of the array shown in A178568. - Gary W. Adamson, May 29 2010
1/n = continued fraction [n]. Let barover[n] = [n,n,n,...] = 1/k. Then k - 1/k = n. Example: [2,2,2,...] = (sqrt(2) - 1) = 1/k, with k = (sqrt(2) + 1). Then 2 = k - 1/k. - Gary W. Adamson, Jul 15 2010
Number of n-digit numbers the binary expansion of which contains one run of 1's. - Vladimir Shevelev, Jul 30 2010
From Clark Kimberling, Jan 29 2011: (Start)
Let T denote the "natural number array A000027":
1 2 4 7 ...
3 5 8 12 ...
6 9 13 18 ...
10 14 19 25 ...
T(n,k) = n+(n+k-2)*(n+k-1)/2. See A185787 for a list of sequences based on T, such as rows, columns, diagonals, and sub-arrays. (End)
The Stern polynomial B(n,x) evaluated at x=2. See A125184. - T. D. Noe, Feb 28 2011
The denominator in the Maclaurin series of log(2), which is 1 - 1/2 + 1/3 - 1/4 + .... - Mohammad K. Azarian, Oct 13 2011
As a function of Bernoulli numbers B_n (cf. A027641: (1, -1/2, 1/6, 0, -1/30, 0, 1/42, ...)): let V = a variant of B_n changing the (-1/2) to (1/2). Then triangle A074909 (the beheaded Pascal's triangle) * [1, 1/2, 1/6, 0, -1/30, ...] = the vector [1, 2, 3, 4, 5, ...]. - Gary W. Adamson, Mar 05 2012
Number of partitions of 2n+1 into exactly two parts. - Wesley Ivan Hurt, Jul 15 2013
Integers n dividing u(n) = 2u(n-1) - u(n-2); u(0)=0, u(1)=1 (Lucas sequence A001477). - Thomas M. Bridge, Nov 03 2013
For this sequence, the generalized continued fraction a(1)+a(1)/(a(2)+a(2)/(a(3)+a(3)/(a(4)+...))), evaluates to 1/(e-2) = A194807. - Stanislav Sykora, Jan 20 2014
Engel expansion of e-1 (A091131 = 1.71828...). - Jaroslav Krizek, Jan 23 2014
a(n) is the number of permutations of length n simultaneously avoiding 213, 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
a(n) is also the number of permutations simultaneously avoiding 213, 231 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl, Aug 07 2014
a(n) = least k such that 2*Pi - Sum_{h=1..k} 1/(h^2 - h + 3/16) < 1/n. - Clark Kimberling, Sep 28 2014
a(n) = least k such that Pi^2/6 - Sum_{h=1..k} 1/h^2 < 1/n. - Clark Kimberling, Oct 02 2014
Determinants of the spiral knots S(2,k,(1)). a(k) = det(S(2,k,(1))). These knots are also the torus knots T(2,k). - Ryan Stees, Dec 15 2014
As a function, the restriction of the identity map on the nonnegative integers {0,1,2,3...}, A001477, to the positive integers {1,2,3,...}. - M. F. Hasler, Jan 18 2015
See also A131685(k) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^k+ k) / k! takes integral values for all i>=0: For k=1, A131685(k)=1, which implies that this is a well defined integer sequence. - Alexander R. Povolotsky, Apr 24 2015
a(n) is the number of compositions of n+2 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
Does not satisfy Benford's law [Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
Parametrization for the finite multisubsets of the positive integers, where, for p_j the j-th prime, n = Product_{j} p_j^(e_j) corresponds to the multiset containing e_j copies of j ('Heinz encoding' -- see A056239, A003963, A289506, A289507, A289508, A289509). - Christopher J. Smyth, Jul 31 2017
The arithmetic function v_1(n,1) as defined in A289197. - Robert Price, Aug 22 2017
For n >= 3, a(n)=n is the least area that can be obtained for an irregular octagon drawn in a square of n units side, whose sides are parallel to the axes, with 4 vertices that coincide with the 4 vertices of the square, and the 4 remaining vertices having integer coordinates. See Affaire de Logique link. - Michel Marcus, Apr 28 2018
a(n+1) is the order of rowmotion on a poset defined by a disjoint union of chains of length n. - Nick Mayers, Jun 08 2018
Number of 1's in n-th generation of 1-D Cellular Automata using Rules 50, 58, 114, 122, 178, 186, 206, 220, 238, 242, 250 or 252 in the Wolfram numbering scheme, started with a single 1. - Frank Hollstein, Mar 25 2019
(1, 2, 3, 4, 5, ...) is the fourth INVERT transform of (1, -2, 3, -4, 5, ...). - Gary W. Adamson, Jul 15 2019

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 1.
  • T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 25.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 22.
  • W. Fulton and J. Harris, Representation theory: a first course, (1991), page 149. [From Leonid Bedratyuk, Jan 04 2010]
  • I. S. Gradstein and I. M. Ryshik, Tables of series, products, and integrals, Volume 1, Verlag Harri Deutsch, 1981.
  • R. E. Schwartz, You Can Count on Monsters: The First 100 numbers and Their Characters, A. K. Peters and MAA, 2010.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A001477 = nonnegative numbers.
Partial sums of A000012.
Cf. A026081 = integers in reverse alphabetical order in U.S. English, A107322 = English name for number and its reverse have the same number of letters, A119796 = zero through ten in alphabetical order of English reverse spelling, A005589, etc. Cf. A185787 (includes a list of sequences based on the natural number array A000027).
Cf. Boustrophedon transforms: A000737, A231179;
Cf. A038722 (mirrored when seen as triangle), A056011 (boustrophedon).
Cf. A048993, A048994, A000110 (see the Feb 03 2015 formula).

Programs

Formula

a(2k+1) = A005408(k), k >= 0, a(2k) = A005843(k), k >= 1.
Multiplicative with a(p^e) = p^e. - David W. Wilson, Aug 01 2001
Another g.f.: Sum_{n>0} phi(n)*x^n/(1-x^n) (Apostol).
When seen as an array: T(k, n) = n+1 + (k+n)*(k+n+1)/2. Main diagonal is 2n*(n+1)+1 (A001844), antidiagonal sums are n*(n^2+1)/2 (A006003). - Ralf Stephan, Oct 17 2004
Dirichlet generating function: zeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
G.f.: x/(1-x)^2. E.g.f.: x*exp(x). a(n)=n. a(-n)=-a(n).
Series reversion of g.f. A(x) is x*C(-x)^2 where C(x) is the g.f. of A000108. - Michael Somos, Sep 04 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 4*u*v. - Michael Somos, Oct 03 2006
Convolution of A000012 (the all-ones sequence) with itself. - Tanya Khovanova, Jun 22 2007
a(n) = 2*a(n-1)-a(n-2); a(1)=1, a(2)=2. a(n) = 1+a(n-1). - Philippe Deléham, Nov 03 2008
a(n) = A000720(A000040(n)). - Juri-Stepan Gerasimov, Nov 29 2009
a(n+1) = Sum_{k=0..n} A101950(n,k). - Philippe Deléham, Feb 10 2012
a(n) = Sum_{d | n} phi(d) = Sum_{d | n} A000010(d). - Jaroslav Krizek, Apr 20 2012
G.f.: x * Product_{j>=0} (1+x^(2^j))^2 = x * (1+2*x+x^2) * (1+2*x^2+x^4) * (1+2*x^4+x^8) * ... = x + 2x^2 + 3x^3 + ... . - Gary W. Adamson, Jun 26 2012
a(n) = det(binomial(i+1,j), 1 <= i,j <= n). - Mircea Merca, Apr 06 2013
E.g.f.: x*E(0), where E(k) = 1 + 1/(x - x^3/(x^2 + (k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 03 2013
From Wolfdieter Lang, Oct 09 2013: (Start)
a(n) = Product_{k=1..n-1} 2*sin(Pi*k/n), n > 1.
a(n) = Product_{k=1..n-1} (2*sin(Pi*k/(2*n)))^2, n > 1.
These identities are used in the calculation of products of ratios of lengths of certain lines in a regular n-gon. For the first identity see the Gradstein-Ryshik reference, p. 62, 1.392 1., bringing the first factor there to the left hand side and taking the limit x -> 0 (L'Hôpital). The second line follows from the first one. Thanks to Seppo Mustonen who led me to consider n-gon lengths products. (End)
a(n) = Sum_{j=0..k} (-1)^(j-1)*j*binomial(n,j)*binomial(n-1+k-j,k-j), k>=0. - Mircea Merca, Jan 25 2014
a(n) = A052410(n)^A052409(n). - Reinhard Zumkeller, Apr 06 2014
a(n) = Sum_{k=1..n^2+2*n} 1/(sqrt(k)+sqrt(k+1)). - Pierre CAMI, Apr 25 2014
a(n) = floor(1/sin(1/n)) = floor(cot(1/(n+1))) = ceiling(cot(1/n)). - Clark Kimberling, Oct 08 2014
a(n) = floor(1/(log(n+1)-log(n))). - Thomas Ordowski, Oct 10 2014
a(k) = det(S(2,k,1)). - Ryan Stees, Dec 15 2014
a(n) = 1/(1/(n+1) + 1/(n+1)^2 + 1/(n+1)^3 + ...). - Pierre CAMI, Jan 22 2015
a(n) = Sum_{m=0..n-1} Stirling1(n-1,m)*Bell(m+1), for n >= 1. This corresponds to Bell(m+1) = Sum_{k=0..m} Stirling2(m, k)*(k+1), for m >= 0, from the fact that Stirling2*Stirling1 = identity matrix. See A048993, A048994 and A000110. - Wolfdieter Lang, Feb 03 2015
a(n) = Sum_{k=1..2n-1}(-1)^(k+1)*k*(2n-k). In addition, surprisingly, a(n) = Sum_{k=1..2n-1}(-1)^(k+1)*k^2*(2n-k)^2. - Charlie Marion, Jan 05 2016
G.f.: x/(1-x)^2 = (x * r(x) *r(x^3) * r(x^9) * r(x^27) * ...), where r(x) = (1 + x + x^2)^2 = (1 + 2x + 3x^2 + 2x^3 + x^4). - Gary W. Adamson, Jan 11 2017
a(n) = floor(1/(Pi/2-arctan(n))). - Clark Kimberling, Mar 11 2020
a(n) = Sum_{d|n} mu(n/d)*sigma(d). - Ridouane Oudra, Oct 03 2020
a(n) = Sum_{k=1..n} phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021
a(n) = S(n-1, 2), with the Chebyshev S-polynomials A049310. - Wolfdieter Lang, Mar 09 2023
From Peter Bala, Nov 02 2024: (Start)
For positive integer m, a(n) = (1/m)* Sum_{k = 1..2*m*n-1} (-1)^(k+1) * k * (2*m*n - k) = (1/m) * Sum_{k = 1..2*m*n-1} (-1)^(k+1) * k^2 * (2*m*n - k)^2 (the case m = 1 is given above).
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * k * binomial(3*n+k, 2*k). (End)

Extensions

Links edited by Daniel Forgues, Oct 07 2009.

A002627 a(n) = n*a(n-1) + 1, a(0) = 0.

Original entry on oeis.org

0, 1, 3, 10, 41, 206, 1237, 8660, 69281, 623530, 6235301, 68588312, 823059745, 10699776686, 149796873605, 2246953104076, 35951249665217, 611171244308690, 11001082397556421, 209020565553572000, 4180411311071440001, 87788637532500240022
Offset: 0

Views

Author

Keywords

Comments

This sequence shares divisibility properties with A000522; each of the primes in A072456 divide only a finite number of terms of this sequence. - T. D. Noe, Jul 07 2005
Sum of the lengths of the first runs in all permutations of [n]. Example: a(3)=10 because the lengths of the first runs in the permutation (123),(13)2,(3)12,(2)13,(23)1 and (3)21 are 3,2,1,1,2 and 1, respectively (first runs are enclosed between parentheses). Number of cells in the last columns of all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. a(n) = Sum_{k=1..n} k*A092582(n,k). - Emeric Deutsch, Aug 16 2006
Starting with offset 1 = eigensequence of an infinite lower triangular matrix with (1, 2, 3, ...) as the right border, (1, 1, 1, ...) as the left border, and the rest zeros. - Gary W. Adamson, Apr 27 2009
Sums of rows of the triangle in A173333, n > 0. - Reinhard Zumkeller, Feb 19 2010
if s(n) is a sequence defined as s(0) = x, s(n) = n*s(n-1)+k, n > 0 then s(n) = n!*x + a(n)*k. - Gary Detlefs, Feb 20 2010
Number of arrangements of proper subsets of n distinct objects, i.e., arrangements which are not permutations (where the empty set is considered a proper subset of any nonempty set); see example. - Daniel Forgues, Apr 23 2011
For n >= 0, A002627(n+1) is the sequence of sums of Pascal-like triangle with one side 1,1,..., and the other side A000522. - Vladimir Shevelev, Feb 06 2012
a(n) = q(n,1) for n >= 1, where the polynomials q are defined at A248669. - Clark Kimberling, Oct 11 2014
a(n) is the number of quasilinear weak orderings on {1,...,n}. - J. Devillet, Dec 22 2017

Examples

			[a(0), a(1), ...] = GAMMA(m+1,1)*exp(1) - GAMMA(m+1) = [exp(-1)*exp(1)-1, 2*exp(-1)*exp(1)-1, 5*exp(-1)*exp(1)-2, 16*exp(-1)*exp(1)-6, 65*exp(-1)*exp(1)-24, 326*exp(-1)*exp(1)-120, ...]. - _Stephen Crowley_, Jul 24 2009
From _Daniel Forgues_, Apr 25 2011: (Start)
  n=0: {}: #{} = 0
  n=1: {1}: #{()} = 1
  n=2: {1,2}: #{(),(1),(2)} = 3
  n=3: {1,2,3}: #{(),(1),(2),(3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)} = 10
(End)
x + 3*x^2 + 10*x^3 + 41*x^4 + 206*x^5 + 1237*x^6 + 8660*x^7 + 69281*x^8 + ...
		

References

  • D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Second diagonal of A059922, cf. A056542.
Conjectured to give records in A130147.

Programs

  • Haskell
    a002627 n = a002627_list !! n
    a002627_list = 0 : map (+ 1) (zipWith (*) [1..] a002627_list)
    -- Reinhard Zumkeller, Mar 24 2013
    
  • Magma
    I:=[1]; [0] cat [n le 1 select I[n] else n*Self(n-1)+1:n in [1..21]]; // Marius A. Burtea, Aug 07 2019
  • Maple
    A002627 := proc(n)
        add( (n-j)!*binomial(n,j), j=1..n) ;
    end proc:
    seq(A002627(n),n=0..21) ; # Zerinvary Lajos, Jul 31 2006
  • Mathematica
    FoldList[ #1*#2 + 1 &, 0, Range[21]] (* Robert G. Wilson v, Oct 11 2005 *)
    RecurrenceTable[{a[0]==0,a[n]==n*a[n-1]+1},a,{n,30}] (* Harvey P. Dale, Mar 29 2015 *)
  • Maxima
    makelist(sum(n!/k!,k,1,n),n,0,40); /* Emanuele Munarini, Jun 20 2014 */
    
  • PARI
    a(n)= n!*sum(k=1,n, 1/k!); \\ Joerg Arndt, Apr 24 2011
    

Formula

a(n) = n! * Sum_{k=1..n} 1/k!.
a(n) = A000522(n) - n!. - Michael Somos, Mar 26 1999
a(n) = floor( n! * (e-1) ), n >= 1. - Amarnath Murthy, Mar 08 2002
E.g.f.: (exp(x)-1)/(1-x). - Mario Catalani (mario.catalani(AT)unito.it), Feb 06 2003
Binomial transform of A002467. - Ross La Haye, Sep 21 2004
a(n) = Sum_{j=1..n} (n-j)!*binomial(n,j). - Zerinvary Lajos, Jul 31 2006
a(n) = 1 + Sum_{k=0..n-1} k*a(k). - Benoit Cloitre, Jul 26 2008
a(m) = Integral_{s=0..oo} ((1+s)^m - s^m)*exp(-s) = GAMMA(m+1,1) * exp(1) - GAMMA(m+1). - Stephen Crowley, Jul 24 2009
From Sergei N. Gladkovskii, Jul 05 2012: (Start)
a(n+1) = A000522(n) + A001339(n) - A000142(n+1);
E.g.f.: Q(0)/(1-x), where Q(k)= 1 + (x-1)*k!/(1 - x/(x + (x-1)*(k+1)!/Q(k+1))); (continued fraction). (End)
E.g.f.: x/(1-x)*E(0)/2, where E(k)= 1 + 1/(1 - x/(x + (k+2)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
1/(e - 1) = 1 - 1!/(1*3) - 2!/(3*10) - 3!/(10*41) - 4!/(41*206) - ... (see A056542 and A185108). - Peter Bala, Oct 09 2013
Conjecture: a(n) + (-n-1)*a(n-1) + (n-1)*a(n-2) = 0. - R. J. Mathar, Feb 16 2014
The e.g.f. f(x) = (exp(x)-1)/(1-x) satisfies the differential equation: (1-x)*f'(x) - (2-x)*f(x) + 1, from which we can obtain the recurrence:
a(n+1) = a(n) + n! + Sum_{k=1..n} (n!/k!)*a(k). The above conjectured recurrence can be obtained from the original recurrence or from the differential equation satisfied by f(x). - Emanuele Munarini, Jun 20 2014
Limit_{n -> oo} a(n)/n! = exp(1) - 1. - Carmine Suriano, Jul 01 2015
Product_{n>=2} a(n)/(a(n)-1) = exp(1) - 1. See A091131. - James R. Buddenhagen, Jul 21 2019
a(n) = Sum_{k=0..n-1} k!*binomial(n,k). - Ridouane Oudra, Jun 17 2025

Extensions

Comments from Michael Somos

A055881 a(n) = largest m such that m! divides n.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1
Offset: 1

Views

Author

Leroy Quet and Labos Elemer, Jul 16 2000

Keywords

Comments

Number of factorial divisors of n. - Amarnath Murthy, Oct 19 2002
The sequence may be constructed as follows. Step 1: start with 1, concatenate and add +1 to last term gives: 1,2. Step 2: 2 is the last term so concatenate twice those terms and add +1 to last term gives: 1, 2, 1, 2, 1, 3 we get 6 terms. Step 3: 3 is the last term, concatenate 3 times those 6 terms and add +1 to last term gives: 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, iterates. At k-th step we obtain (k+1)! terms. - Benoit Cloitre, Mar 11 2003
From Benoit Cloitre, Aug 17 2007, edited by M. F. Hasler, Jun 28 2016: (Start)
Another way to construct the sequence: start from an infinite series of 1's:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... Replace every second 1 by a 2 giving:
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ... Replace every third 2 by a 3 giving:
1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, ... Replace every fourth 3 by a 4 etc. (End)
This sequence is the fixed point, starting with 1, of the morphism m, where m(1) = 1, 2, and for k > 1, m(k) is the concatenation of m(k - 1), the sequence up to the first k, and k + 1. Thus m(2) = 1, 2, 1, 3; m(3) = 1, 2, 1, 3, 1, 2, 1, 2, 1, 4; m(4) = 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 5, etc. - Franklin T. Adams-Watters, Jun 10 2009
All permutations of n elements can be listed as follows: Start with the (arbitrary) permutation P(0), and to obtain P(n + 1), reverse the first a(n) + 1 elements in P(n). The last permutation is the reversal of the first, so the path is a cycle in the underlying graph. See example and fxtbook link. - Joerg Arndt, Jul 16 2011
Positions of rightmost change with incrementing rising factorial numbers, see example. - Joerg Arndt, Dec 15 2012
Records appear at factorials. - Robert G. Wilson v, Dec 21 2012
One more than the number of trailing zeros (A230403(n)) in the factorial base representation of n (A007623(n)). - Antti Karttunen, Nov 18 2013
A062356(n) and a(n) coincide quite often. - R. J. Cano, Aug 04 2014
For n>0 and 1<=j<=(n+1)!-1, (n+1)^2-1=A005563(n) is the number of times that a(j)=n-1. - R. J. Cano, Dec 23 2016

Examples

			a(12) = 3 because 3! is highest factorial to divide 12.
From _Joerg Arndt_, Jul 16 2011: (Start)
All permutations of 4 elements via prefix reversals:
   n:   permutation  a(n)+1
   0:   [ 0 1 2 3 ]  -
   1:   [ 1 0 2 3 ]  2
   2:   [ 2 0 1 3 ]  3
   3:   [ 0 2 1 3 ]  2
   4:   [ 1 2 0 3 ]  3
   5:   [ 2 1 0 3 ]  2
   6:   [ 3 0 1 2 ]  4
   7:   [ 0 3 1 2 ]  2
   8:   [ 1 3 0 2 ]  3
   9:   [ 3 1 0 2 ]  2
  10:   [ 0 1 3 2 ]  3
  11:   [ 1 0 3 2 ]  2
  12:   [ 2 3 0 1 ]  4
  13:   [ 3 2 0 1 ]  2
  14:   [ 0 2 3 1 ]  3
  15:   [ 2 0 3 1 ]  2
  16:   [ 3 0 2 1 ]  3
  17:   [ 0 3 2 1 ]  2
  18:   [ 1 2 3 0 ]  4
  19:   [ 2 1 3 0 ]  2
  20:   [ 3 1 2 0 ]  3
  21:   [ 1 3 2 0 ]  2
  22:   [ 2 3 1 0 ]  3
  23:   [ 3 2 1 0 ]  2
(End)
From _Joerg Arndt_, Dec 15 2012: (Start)
The first few rising factorial numbers (dots for zeros) with 4 digits and the positions of the rightmost change with incrementing are:
  [ 0]    [ . . . . ]   -
  [ 1]    [ 1 . . . ]   1
  [ 2]    [ . 1 . . ]   2
  [ 3]    [ 1 1 . . ]   1
  [ 4]    [ . 2 . . ]   2
  [ 5]    [ 1 2 . . ]   1
  [ 6]    [ . . 1 . ]   3
  [ 7]    [ 1 . 1 . ]   1
  [ 8]    [ . 1 1 . ]   2
  [ 9]    [ 1 1 1 . ]   1
  [10]    [ . 2 1 . ]   2
  [11]    [ 1 2 1 . ]   1
  [12]    [ . . 2 . ]   3
  [13]    [ 1 . 2 . ]   1
  [14]    [ . 1 2 . ]   2
  [15]    [ 1 1 2 . ]   1
  [16]    [ . 2 2 . ]   2
  [17]    [ 1 2 2 . ]   1
  [18]    [ . . 3 . ]   3
  [19]    [ 1 . 3 . ]   1
  [20]    [ . 1 3 . ]   2
  [21]    [ 1 1 3 . ]   1
  [22]    [ . 2 3 . ]   2
  [23]    [ 1 2 3 . ]   1
  [24]    [ . . . 1 ]   4
  [25]    [ 1 . . 1 ]   1
  [26]    [ . 1 . 1 ]   2
(End)
		

Crossrefs

This sequence occurs also in the next to middle diagonals of A230415 and as the second rightmost column of triangle A230417.
Other sequences related to factorial base representation (A007623): A034968, A084558, A099563, A060130, A227130, A227132, A227148, A227149, A153880.
Analogous sequence for binary (base-2) representation: A001511.

Programs

  • Mathematica
    Table[Length[Intersection[Divisors[n], Range[5]!]], {n, 125}] (* Alonso del Arte, Dec 10 2012 *)
    f[n_] := Block[{m = 1}, While[Mod[n, m!] == 0, m++]; m - 1]; Array[f, 105] (* Robert G. Wilson v, Dec 21 2012 *)
  • PARI
    See Cano link.
    
  • PARI
    n=5; f=n!; x='x+O('x^f); Vec(sum(k=1,n,x^(k!)/(1-x^(k!)))) \\ Joerg Arndt, Jan 28 2014
    
  • PARI
    a(n)=for(k=2,n+1,if(n%k, return(k-1),n/=k)) \\ Charles R Greathouse IV, May 28 2015
  • Scheme
    (define (A055881 n) (let loop ((n n) (i 2)) (cond ((not (zero? (modulo n i))) (- i 1)) (else (loop (/ n i) (+ 1 i))))))
    

Formula

G.f.: Sum_{k > 0} x^(k!)/(1 - x^(k!)). - Vladeta Jovovic, Dec 13 2002
a(n) = A230403(n)+1. - Antti Karttunen, Nov 18 2013
a(n) = A230415(n-1,n) = A230415(n,n-1) = A230417(n,n-1). - Antti Karttunen, Nov 19 2013
a(m!+n) = a(n) if 1 <= n <= m*m! - 1 = A001563(m) - 1. - R. J. Cano, Jun 27 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = e - 1 (A091131). - Amiram Eldar, Jul 23 2022

A068996 Decimal expansion of 1 - 1/e.

Original entry on oeis.org

6, 3, 2, 1, 2, 0, 5, 5, 8, 8, 2, 8, 5, 5, 7, 6, 7, 8, 4, 0, 4, 4, 7, 6, 2, 2, 9, 8, 3, 8, 5, 3, 9, 1, 3, 2, 5, 5, 4, 1, 8, 8, 8, 6, 8, 9, 6, 8, 2, 3, 2, 1, 6, 5, 4, 9, 2, 1, 6, 3, 1, 9, 8, 3, 0, 2, 5, 3, 8, 5, 0, 4, 2, 5, 5, 1, 0, 0, 1, 9, 6, 6, 4, 2, 8, 5, 2, 7, 2, 5, 6, 5, 4, 0, 8, 0, 3, 5, 6
Offset: 0

Views

Author

N. J. A. Sloane, Apr 08 2002

Keywords

Comments

From the "derangements" problem: this is the probability that if a large number of people are given their hats at random, at least one person gets their own hat.
1-1/e is the limit to which (1 - !n/n!) {= 1 - A000166(n)/A000142(n) = A002467(n)/A000142(n)} converges as n tends to infinity. - Lekraj Beedassy, Apr 14 2005
Also, this is lim_{n->inf} P(n), where P(n) is the probability that a random rooted forest on [n] is not connected. - Washington Bomfim, Nov 01 2010
Also equals the mode of a Gompertz distribution when the shape parameter is less than 1. - Jean-François Alcover, Apr 17 2013
The asymptotic density of numbers with an even number of trailing zeros in their factorial base representation (A232744). - Amiram Eldar, Feb 26 2021

Examples

			0.6321205588285576784044762...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3, pp. 12-17.
  • Anders Hald, A History of Probability and Statistics and Their Applications before 1750, Wiley, NY, 1990 (Chapter 19).
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.

Crossrefs

Programs

Formula

Equals Integral_{x = 0 .. 1} exp(-x) dx. - Alonso del Arte, Jul 06 2012
Equals -Sum_{k>=1} (-1)^k/k!. - Bruno Berselli, May 13 2013
Equals Sum_{k>=0} 1/((2*k+2)*(2*k)!). - Fred Daniel Kline, Mar 03 2016
From Peter Bala, Nov 27 2019: (Start)
1 - 1/e = Sum_{n >= 0} n!/(A(n)*A(n+1)), where A(n) = A000522(n).
Continued fraction expansion: [0; 1, 1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, ...].
Related continued fraction expansions include
2*(1 - 1/e) = [1; 3, 1, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 5, 3, 1, 5, ..., 1, 3, 2*n + 1, 3, 1, 2*n + 1, ...];
(1/2)*(1 - 1/e) = [0; 3, 6, 10, 14, 18, ..., 4*n + 2, ...];
4*(1 - 1/e) = [2; 1, 1, 8, 3, 1, 1, 1, 1, 7, 1, 1, 2, 1, 1, 1, 2, 7, 1, 2, 2, 1, 1, 1, 3, ..., 7, 1, n, 2, 1, 1, 1, n+1, ...];
(1/4)*(1 - 1/e) = [0; 6, 3, 20, 7, 36, 11, 52, 15, ..., 16*n + 4, 4*n + 3, ...]. (End)
Equals Integral_{x=0..1} x * cosh(x) dx. - Amiram Eldar, Aug 14 2020
Equals A091131/e. - Hugo Pfoertner, Aug 20 2024

A227569 Decimal expansion of maximal value of function F[a(n); b(n)] for pairs of complements a(n) and b(n) of natural numbers A000027, where a(n) = odd numbers (A005408) and b(n) = even numbers (A005843); see Comments for the definition of function F[a(n); b(n)].

Original entry on oeis.org

2, 0, 5, 9, 4, 0, 7, 4, 0, 5, 3, 4, 2, 5, 7, 6, 1, 4, 4, 5, 3, 9, 4, 7, 5, 4, 9, 9, 2, 3, 3, 2, 7, 8, 6, 1, 2, 9, 7, 7, 2, 5, 4, 7, 2, 6, 3, 3, 5, 3, 4, 0, 2, 0, 9, 2, 9, 9, 7, 1, 8, 7, 7, 9, 8, 0, 5, 4, 4, 2, 8, 1, 9, 6, 8, 4, 6, 1, 3, 5, 3, 5, 7, 4, 8, 1, 8, 5, 7, 4, 4, 8, 3, 4, 9, 7, 8, 2, 8, 3, 1, 5, 0, 1, 5
Offset: 1

Views

Author

Jaroslav Krizek, Jul 16 2013

Keywords

Comments

Apart from the first digit, the same as A143280. The sum of the reciprocals of the double factorial numbers, Sum_{n>=1} 1/n!! = Sum_{n>=2} n!!/n!. - Robert G. Wilson v, Jun 27 2015
Definition of function F[a(n); b(n)]: Let a(n) and b(n) is pair of complements of natural numbers (A000027) with a(1) < a(2) < a(3) < ... and b(1) < b(2) < b(3) < ..., then F[a(n); b(n)] = F[a(n)] + F[b(n)]; where F[a(n)] = 1/a(1) + 1/a(1)a(2) + 1/a(1)a(2)a(3) + ... and F[b(n)] = 1/b(1) + 1/b(1)b(2) + 1/b(1)b(2)b(3) + ...
Value of function F[a(n); b(n)] is real number c = a + b, where a = real number whose Engel expansion is sequence a(n) and b = real number whose Engel expansion is sequence b(n). See A006784 for definition of Engel expansion.
Example for a(n) = odd numbers (A005408) and b(n) = even numbers (A005843): c = 2.059407... = a + b, where a = 1.410686... (A060196) and b = 0.648721... (A019774 - 1).
Example for a(n) = nonprime numbers (A018252) and b(n) = primes (A000040): c = 2.002747... = a + b, where a = 1.297516... and b = 0.705230... (A064648).
Conjecture: there are no pairs of complements a(n) and b(n) such that F[a(n); b(n)] = 2.
e - 1 <= F[a(n); b(n)] <= sqrt(e) + sqrt((e*Pi)/2)*erf(1/sqrt(2)) - 1.
1.71828182... (A091131) <= F[a(n); b(n)] <= 2.05940740....

Examples

			2.05940740534257614453947549923327861297725472633534020929971877980544281968...
		

Crossrefs

Cf. A000027, A005408, A005843, A091131 (e-1), A006882 (n!!), A143280 (m(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(112)); R:= RealField(); -1 + Exp(1/2)*(1 + Sqrt(Pi(R)/2)*Erf(1/Sqrt(2)) ); // G. C. Greubel, Apr 01 2019
    
  • Mathematica
    RealDigits[Sqrt[E] -1 + Sqrt[E*Pi/2]*Erf[1/Sqrt[2]], 10, 105][[1]] (* or *)
    RealDigits[Sum[1/n!!, {n, 125}], 10, 105][[1]] (* Robert G. Wilson v, Apr 09 2014 *)
  • PARI
    default(realprecision, 100); exp(1/2) - 1 + sqrt(exp(1)*Pi/2)*(1-erfc(1/sqrt(2))) \\ G. C. Greubel, Apr 01 2019
    
  • Sage
    numerical_approx(-1 + exp(1/2)*(1 + sqrt(pi/2)*erf(1/sqrt(2))), digits=112) # G. C. Greubel, Apr 01 2019

A278327 Decimal expansion of 1/e - 1/e^2.

Original entry on oeis.org

2, 3, 2, 5, 4, 4, 1, 5, 7, 9, 3, 4, 8, 2, 9, 6, 2, 9, 7, 0, 1, 5, 2, 4, 2, 7, 5, 1, 8, 8, 9, 7, 6, 4, 6, 4, 0, 3, 8, 1, 7, 9, 5, 8, 5, 1, 2, 2, 1, 9, 1, 9, 5, 3, 0, 3, 9, 6, 7, 7, 9, 2, 9, 0, 4, 3, 3, 8, 8, 1, 2, 1, 6, 4, 3, 4, 1, 2, 1, 1, 3, 4, 2, 0, 0, 4, 9, 1, 5, 1, 8, 5, 5, 2, 6, 2, 5, 9, 4, 9, 9, 1, 5, 5, 0
Offset: 0

Views

Author

Alois P. Heinz, Nov 18 2016

Keywords

Comments

The probability, as n = 2^k increases without bound, that a randomized skip list with n elements and p = 1/2 has exactly k levels.

Examples

			0.232544157934829629701524275188976464...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/E - 1/E^2, 10, 120][[1]] (* Amiram Eldar, May 27 2023 *)

Formula

Equals 1/A001113 - 1/A072334 = A068985 - A092553.

A347345 Decimal expansion of 1 / 1^1 + 1 / (1^1 * 2^2) + 1 / (1^1 * 2^2 * 3^3) + 1 / (1^1 * 2^2 * 3^3 * 4^4) + ...

Original entry on oeis.org

1, 2, 5, 9, 2, 9, 5, 4, 3, 9, 8, 1, 5, 0, 6, 2, 8, 8, 7, 6, 9, 1, 3, 5, 9, 6, 4, 9, 8, 8, 3, 7, 3, 5, 0, 9, 2, 6, 3, 1, 1, 4, 5, 7, 5, 1, 8, 4, 2, 1, 0, 4, 2, 1, 2, 9, 0, 5, 8, 0, 1, 0, 6, 4, 3, 8, 5, 6, 4, 2, 1, 8, 5, 2, 4, 7, 9, 1, 6, 7, 8, 6, 3, 0, 3, 7, 8, 4, 4, 7, 5, 5, 0, 3, 7, 2, 0, 7, 3, 8, 1, 0, 0, 9, 6, 3, 4, 2, 6, 2, 2, 3, 3, 3, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 28 2021

Keywords

Comments

This constant is irrational (Stucky, 2016). - Amiram Eldar, Apr 30 2023

Examples

			1.2592954398150628876913596498837350926311457518421...
		

Crossrefs

Programs

  • Mathematica
    With[{m = 105}, RealDigits[N[Sum[1/Hyperfactorial[n], {n, 1, Infinity}], m + 2], 10, m][[1]]] (* Amiram Eldar, Apr 30 2023 *)
    RealDigits[Total[Table[1/Times@@(Range[n]^Range[n]),{n,30}]],10,120][[1]] (* Harvey P. Dale, Oct 07 2023 *)

A373204 Decimal expansion of the imaginary part of the first zero, for real(s) >= 1/2, of the function Psi(s) = Sum_{n>=1} 1/n!^s.

Original entry on oeis.org

4, 9, 0, 6, 8, 7, 6, 4, 3, 5, 1, 4, 2, 8, 5, 1, 3, 4, 7, 5, 3, 5, 1, 0, 8, 2, 5, 8, 3, 5, 5, 8, 5, 3, 5, 3, 1, 5, 3, 2, 8, 5, 6, 4, 6, 4, 8, 9, 9, 3, 3, 7, 6, 3, 5, 2, 0, 2, 8, 8, 9, 5, 2, 4, 8, 7, 0, 0, 8, 0, 9, 6, 8, 4, 9, 1, 6, 0, 4, 0, 6, 0, 1, 1
Offset: 1

Views

Author

Roberto Trocchi, Jun 21 2024

Keywords

Comments

Defining the Psi function to be Psi(s) = Sum_{n>=1} 1/n!^s, the first zero, for real(s) >= 1/2, is approximately s1 = 0.6418158643 + 4.9068764351*i.
All the zeros of the Psi function seem (conjecturally) to be in the critical strip 0 < real(s) <= 1.
Moreover, all the zeros of the Psi function seem (conjecturally) to be in the strip 0 < real(s) <= 0.73. [There is obviously something wrong here! - N. J. A. Sloane, Dec 30 2024]
See my document on the zeros of the Psi function on the complex plane.

Examples

			4.9068764351428513475351082583558535315328564648993...
		

Crossrefs

Programs

  • Mathematica
    Psi[s_, nmax_] := ParallelSum[1/n!^s, {n, 1, nmax}]
    FindRoot[{Re[Psi[x + y*I, 2000]], Im[Psi[x + y*I, 2000]]}, {{x, 1/2}, {y, 5}}, WorkingPrecision -> 1000][[2]][[2]]

Formula

Imaginary part of the first zero for real(s) >= 1/2, Psi(s) = 0, where Psi(s) = Sum_{n>=1} 1/n!^s.

A386440 Decimal expansion of Sum_{k>=1} 1/(8k)!.

Original entry on oeis.org

0, 0, 0, 0, 2, 4, 8, 0, 1, 5, 8, 7, 3, 4, 9, 3, 8, 2, 0, 7, 4, 9, 1, 2, 7, 8, 7, 1, 7, 7, 8, 4, 7, 0, 6, 9, 2, 9, 5, 2, 3, 8, 2, 8, 0, 5, 9, 6, 8, 5, 1, 5, 6, 7, 8, 8, 2, 6, 8, 6, 4, 6, 2, 5, 3, 3, 5, 7, 8, 9, 6, 6, 5, 9, 6, 3, 1, 8, 9, 3, 2, 4, 7, 7, 1, 8, 8, 5, 9, 8, 7, 0, 5, 2, 5, 1, 8, 4, 8, 1, 1, 4, 9, 7
Offset: 0

Views

Author

Jason Bard, Aug 25 2025

Keywords

Examples

			0.00002480158734938207491278717784706929523828059685156788...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-1 + HypergeometricPFQ[{}, Range[1, 7]/8, 2^-24], 10, 100][[1]]
Showing 1-10 of 12 results. Next