cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 436 results. Next

A034856 a(n) = binomial(n+1, 2) + n - 1 = n*(n+3)/2 - 1.

Original entry on oeis.org

1, 4, 8, 13, 19, 26, 34, 43, 53, 64, 76, 89, 103, 118, 134, 151, 169, 188, 208, 229, 251, 274, 298, 323, 349, 376, 404, 433, 463, 494, 526, 559, 593, 628, 664, 701, 739, 778, 818, 859, 901, 944, 988, 1033, 1079, 1126, 1174, 1223, 1273, 1324, 1376, 1429, 1483
Offset: 1

Views

Author

Keywords

Comments

Number of 1's in the n X n lower Hessenberg (0,1)-matrix (i.e., the matrix having 1's on or below the superdiagonal and 0's above the superdiagonal).
If a 2-set Y and 2-set Z, having one element in common, are subsets of an n-set X then a(n-2) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 03 2007
Number of binary operations which have to be added to Moisil's algebras to obtain algebraic counterparts of n-valued Łukasiewicz logics. See the Wójcicki and Malinowski book, page 31. - Artur Jasinski, Feb 25 2010
Also (n + 1)!(-1)^(n + 1) times the determinant of the n X n matrix given by m(i,j) = i/(i+1) if i=j and otherwise 1. For example, (5+1)! * ((-1)^(5+1)) * Det[{{1/2, 1, 1, 1, 1}, {1, 2/3, 1, 1, 1}, {1, 1, 3/4, 1, 1}, {1, 1, 1, 4/5, 1}, {1, 1, 1, 1, 5/6}}] = 19 = a(5), and (6+1)! * ((-1)^(6+1)) * Det[{{1/2, 1, 1, 1, 1, 1}, {1, 2/3, 1, 1, 1, 1}, {1, 1, 3/4, 1, 1, 1}, {1, 1, 1, 4/5, 1, 1}, {1, 1, 1, 1, 5/6, 1}, {1, 1, 1, 1, 1, 6/7}}] = 26 = a(6). - John M. Campbell, May 20 2011
2*a(n-1) = n*(n+1) - 4, n>=0, with a(-1) = -2 and a(0) = -1, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 17 for b = 2*n + 1. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
a(n) is not divisible by 3, 5, 7, or 11. - Vladimir Shevelev, Feb 03 2014
With a(0) = 1 and a(1) = 2, a(n-1) is the number of distinct values of 1 +- 2 +- 3 +- ... +- n, for n > 0. - Derek Orr, Mar 11 2015
Also, numbers m such that 8*m+17 is a square. - Bruno Berselli, Sep 16 2015
Omar E. Pol's formula from Apr 23 2008 can be interpreted as the position of an element located on the third diagonal of an triangular array (read by rows) provided n > 1. - Enrique Pérez Herrero, Aug 29 2016
a(n) is the sum of the numerator and denominator of the fraction that is the sum of 2/(n-1) + 2/n; all fractions are reduced and n > 2. - J. M. Bergot, Jun 14 2017
a(n) is also the number of maximal irredundant sets in the (n+2)-path complement graph for n > 1. - Eric W. Weisstein, Apr 12 2018
From Klaus Purath, Dec 07 2020: (Start)
a(n) is not divisible by primes listed in A038890. The prime factors are given in A038889 and the prime terms of the sequence are listed in A124199.
Each odd prime factor p divides exactly 2 out of any p consecutive terms with the exception of 17, which appears only once in such an interval of terms. If a(i) and a(k) form such a pair that are divisible by p, then i + k == -3 (mod p), see examples.
If A is a sequence satisfying the recurrence t(n) = 5*t(n-1) - 2*t(n-2) with the initial values either A(0) = 1, A(1) = n + 4 or A(0) = -1, A(1) = n-1, then a(n) = (A(i)^2 - A(i-1)*A(i+1))/2^i for i>0. (End)
Mark each point on a 4^n grid with the number of points that are visible from the point; for n > 1, a(n) is the number of distinct values in the grid. - Torlach Rush, Mar 23 2021
The sequence gives the number of "ON" cells in the cellular automaton on a quadrant of a square grid after the n-th stage, where the "ON" cells lie only on the external perimeter and the perimeter of inscribed squares having the cell (1,1) as a unique common vertex. See Spezia link. - Stefano Spezia, May 28 2025

Examples

			From _Bruno Berselli_, Mar 09 2015: (Start)
By the definition (first formula):
----------------------------------------------------------------------
  1       4         8           13            19              26
----------------------------------------------------------------------
                                                              X
                                              X              X X
                                X            X X            X X X
                    X          X X          X X X          X X X X
          X        X X        X X X        X X X X        X X X X X
  X      X X      X X X      X X X X      X X X X X      X X X X X X
          X        X X        X X X        X X X X        X X X X X
----------------------------------------------------------------------
(End)
From _Klaus Purath_, Dec 07 2020: (Start)
Assuming a(i) is divisible by p with 0 < i < p and a(k) is the next term divisible by p, then from i + k == -3 (mod p) follows that k = min(p*m - i - 3) != i for any integer m.
(1) 17|a(7) => k = min(17*m - 10) != 7 => m = 2, k = 24 == 7 (mod 17). Thus every a(17*m + 7) is divisible by 17.
(2) a(9) = 53 => k = min(53*m - 12) != 9 => m = 1, k = 41. Thus every a(53*m + 9) and a(53*m + 41) is divisible by 53.
(3) 101|a(273) => 229 == 71 (mod 101) => k = min(101*m - 74) != 71 => m = 1, k = 27. Thus every a(101*m + 27) and a(101*m + 71) is divisible by 101. (End)
From _Omar E. Pol_, Aug 08 2021: (Start)
Illustration of initial terms:                             _ _
.                                           _ _           |_|_|_
.                              _ _         |_|_|_         |_|_|_|_
.                   _ _       |_|_|_       |_|_|_|_       |_|_|_|_|_
.          _ _     |_|_|_     |_|_|_|_     |_|_|_|_|_     |_|_|_|_|_|_
.   _     |_|_|    |_|_|_|    |_|_|_|_|    |_|_|_|_|_|    |_|_|_|_|_|_|
.  |_|    |_|_|    |_|_|_|    |_|_|_|_|    |_|_|_|_|_|    |_|_|_|_|_|_|
.
.   1       4         8          13            19              26
------------------------------------------------------------------------ (End)
		

References

  • A. S. Karpenko, Łukasiewicz's Logics and Prime Numbers, 2006 (English translation).
  • G. C. Moisil, Essais sur les logiques non-chrysippiennes, Ed. Academiei, Bucharest, 1972.
  • Wójcicki and Malinowski, eds., Łukasiewicz Sentential Calculi, Wrocław: Ossolineum, 1977.

Crossrefs

Subsequence of A165157.
Triangular numbers (A000217) minus two.
Third diagonal of triangle in A059317.

Programs

  • Haskell
    a034856 = subtract 1 . a000096 -- Reinhard Zumkeller, Feb 20 2015
    
  • Magma
    [Binomial(n + 1, 2) + n - 1: n in [1..60]]; // Vincenzo Librandi, May 21 2011
    
  • Maple
    a := n -> hypergeom([-2, n-1], [1], -1);
    seq(simplify(a(n)), n=1..53); # Peter Luschny, Aug 02 2014
  • Mathematica
    f[n_] := n (n + 3)/2 - 1; Array[f, 55] (* or *) k = 2; NestList[(k++; # + k) &, 1, 55] (* Robert G. Wilson v, Jun 11 2010 *)
    Table[Binomial[n + 1, 2] + n - 1, {n, 53}] (* or *)
    Rest@ CoefficientList[Series[x (1 + x - x^2)/(1 - x)^3, {x, 0, 53}], x] (* Michael De Vlieger, Aug 29 2016 *)
  • Maxima
    A034856(n) := block(
            n-1+(n+1)*n/2
    )$ /* R. J. Mathar, Mar 19 2012 */
    
  • PARI
    A034856(n)=(n+3)*n\2-1 \\ M. F. Hasler, Jan 21 2015
    
  • Python
    def A034856(n): return n*(n+3)//2 -1 # G. C. Greubel, Jun 15 2025

Formula

G.f.: A(x) = x*(1 + x - x^2)/(1 - x)^3.
a(n) = A049600(3, n-2).
a(n) = binomial(n+2, 2) - 2. - Paul Barry, Feb 27 2003
With offset 5, this is binomial(n, 0) - 2*binomial(n, 1) + binomial(n, 2), the binomial transform of (1, -2, 1, 0, 0, 0, ...). - Paul Barry, Jul 01 2003
Row sums of triangle A131818. - Gary W. Adamson, Jul 27 2007
Binomial transform of (1, 3, 1, 0, 0, 0, ...). Also equals A130296 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
Row sums of triangle A134225. - Gary W. Adamson, Oct 14 2007
a(n) = A000217(n+1) - 2. - Omar E. Pol, Apr 23 2008
From Jaroslav Krizek, Sep 05 2009: (Start)
a(n) = a(n-1) + n + 1 for n >= 1.
a(n) = n*(n-1)/2 + 2*n - 1.
a(n) = A000217(n-1) + A005408(n-1) = A005843(n-1) + A000124(n-1). (End)
a(n) = Hyper2F1([-2, n-1], [1], -1). - Peter Luschny, Aug 02 2014
a(n) = floor[1/(-1 + Sum_{m >= n+1} 1/S2(m,n+1))], where S2 is A008277. - Richard R. Forberg, Jan 17 2015
a(n) = A101881(2*(n-1)). - Reinhard Zumkeller, Feb 20 2015
a(n) = A253909(n+3) - A000217(n+3). - David Neil McGrath, May 23 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. - David Neil McGrath, May 23 2015
For n > 1, a(n) = 4*binomial(n-1,1) + binomial(n-2,2), comprising the third column of A267633. - Tom Copeland, Jan 25 2016
From Klaus Purath, Dec 07 2020: (Start)
a(n) = A024206(n) + A024206(n+1).
a(2*n-1) = -A168244(n+1).
a(2*n) = A091823(n). (End)
Sum_{n>=1} 1/a(n) = 3/2 + 2*Pi*tan(sqrt(17)*Pi/2)/sqrt(17). - Amiram Eldar, Jan 06 2021
a(n) + a(n+1) = A028347(n+2). - R. J. Mathar, Mar 13 2021
a(n) = A000290(n) - A161680(n-1). - Omar E. Pol, Mar 26 2021
E.g.f.: 1 + exp(x)*(x^2 + 4*x - 2)/2. - Stefano Spezia, Jun 05 2021
a(n) = A024916(n) - A244049(n). - Omar E. Pol, Aug 01 2021
a(n) = A000290(n) - A000217(n-2). - Omar E. Pol, Aug 05 2021

Extensions

More terms from Zerinvary Lajos, May 12 2006

A058331 a(n) = 2*n^2 + 1.

Original entry on oeis.org

1, 3, 9, 19, 33, 51, 73, 99, 129, 163, 201, 243, 289, 339, 393, 451, 513, 579, 649, 723, 801, 883, 969, 1059, 1153, 1251, 1353, 1459, 1569, 1683, 1801, 1923, 2049, 2179, 2313, 2451, 2593, 2739, 2889, 3043, 3201, 3363, 3529, 3699, 3873, 4051
Offset: 0

Views

Author

Erich Friedman, Dec 12 2000

Keywords

Comments

Maximal number of regions in the plane that can be formed with n hyperbolas.
Also the number of different 2 X 2 determinants with integer entries from 0 to n.
Number of lattice points in an n-dimensional ball of radius sqrt(2). - David W. Wilson, May 03 2001
Equals A112295(unsigned) * [1, 2, 3, ...]. - Gary W. Adamson, Oct 07 2007
Binomial transform of A166926. - Gary W. Adamson, May 03 2008
a(n) = longest side a of all integer-sided triangles with sides a <= b <= c and inradius n >= 1. Triangle has sides (2n^2 + 1, 2n^2 + 2, 4n^2 + 1).
{a(k): 0 <= k < 3} = divisors of 9. - Reinhard Zumkeller, Jun 17 2009
Number of ways to partition a 3*n X 2 grid into 3 connected equal-area regions. - R. H. Hardin, Oct 31 2009
Let A be the Hessenberg matrix of order n defined by: A[1, j] = 1, A[i, i] := 2, (i > 1), A[i, i - 1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 3, a(n - 1) = coeff(charpoly(A, x), x^(n - 2)). - Milan Janjic, Jan 26 2010
Except for the first term of [A002522] and [A058331] if X = [A058331], Y = [A087113], A = [A002522], we have, for all other terms, Pell's equation: [A058331]^2 - [A002522]*[A087113]^2 = 1; (X^2 - A*Y^2 = 1); e.g., 3^2 -2*2^2 = 1; 9^2 - 5*4^2 = 1; 129^2 - 65*16^2 = 1, and so on. - Vincenzo Librandi, Aug 07 2010
Niven (1961) gives this formula as an example of a formula that does not contain all odd integers, in contrast to 2n + 1 and 2n - 1. - Alonso del Arte, Dec 05 2012
Numbers m such that 2*m-2 is a square. - Vincenzo Librandi, Apr 10 2015
Number of n-tuples from the set {1,0,-1} where at most two elements are nonzero. - Michael Somos, Oct 19 2022
a(n) gives the x-value of the integral solution (x,y) of the Pellian equation x^2 - (n^2 + 1)*y^2 = 1. The y-value is given by 2*n (see Tattersall). - Stefano Spezia, Jul 23 2025

Examples

			a(1) = 3 since (0 0 / 0 0), (1 0 / 0 1) and (0 1 / 1 0) have different determinants.
G.f. = 1 + 3*x + 9*x^2 + 19*x^3 + 33*x^4 + 51*x^5 + 73*x^6 + ... - _Michael Somos_, Oct 19 2022
		

References

  • Ivan Niven, Numbers: Rational and Irrational, New York: Random House for Yale University (1961): 17.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 256.

Crossrefs

Cf. A000124.
Second row of array A099597.
See A120062 for sequences related to integer-sided triangles with integer inradius n.
Cf. A112295.
Column 2 of array A188645.
Cf. A001105 and A247375. - Bruno Berselli, Sep 16 2014

Programs

  • Haskell
    a058331 = (+ 1) . a001105  -- Reinhard Zumkeller, Dec 13 2014
    
  • Magma
    [2*n^2 + 1 : n in [0..100]]; // Wesley Ivan Hurt, Feb 02 2017
  • Mathematica
    b[g_] := Length[Union[Map[Det, Flatten[ Table[{{i, j}, {k, l}}, {i, 0, g}, {j, 0, g}, {k, 0, g}, {l, 0, g}], 3]]]] Table[b[g], {g, 0, 20}]
    2*Range[0, 49]^2 + 1 (* Alonso del Arte, Dec 05 2012 *)
  • PARI
    a(n)=2*n^2+1 \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

G.f.: (1 + 3x^2)/(1 - x)^3. - Paul Barry, Apr 06 2003
a(n) = M^n * [1 1 1], leftmost term, where M = the 3 X 3 matrix [1 1 1 / 0 1 4 / 0 0 1]. a(0) = 1, a(1) = 3; a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). E.g., a(4) = 33 since M^4 *[1 1 1] = [33 17 1]. - Gary W. Adamson, Nov 11 2004
a(n) = cosh(2*arccosh(n)). - Artur Jasinski, Feb 10 2010
a(n) = 4*n + a(n-1) - 2 for n > 0, a(0) = 1. - Vincenzo Librandi, Aug 07 2010
a(n) = (((n-1)^2 + n^2))/2 + (n^2 + (n+1)^2)/2. - J. M. Bergot, May 31 2012
a(n) = A251599(3*n) for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n) = sqrt(8*(A000217(n-1)^2 + A000217(n)^2) + 1). - J. M. Bergot, Sep 03 2015
E.g.f.: (2*x^2 + 2*x + 1)*exp(x). - G. C. Greubel, Jul 14 2017
a(n) = A002378(n) + A002061(n). - Bruce J. Nicholson, Aug 06 2017
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(2))*coth(Pi/sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(2))*csch(Pi/sqrt(2)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(2))*sinh(Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(2))*csch(Pi/sqrt(2)). (End)
From Leo Tavares, May 23 2022: (Start)
a(n) = A000384(n+1) - 3*n.
a(n) = 3*A000217(n) + A000217(n-2). (End)
a(n) = a(-n) for all n in Z and A037235(n) = Sum_{k=0..n-1} a(k). - Michael Somos, Oct 19 2022

Extensions

Revised description from Noam Katz (noamkj(AT)hotmail.com), Jan 28 2001

A008406 Triangle T(n,k) read by rows, giving number of graphs with n nodes (n >= 1) and k edges (0 <= k <= n(n-1)/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1, 1, 1, 2, 5, 9, 15, 21, 24, 24, 21, 15, 9, 5, 2, 1, 1, 1, 1, 2, 5, 10, 21, 41, 65, 97, 131, 148, 148, 131, 97, 65, 41, 21, 10, 5, 2, 1, 1, 1, 1, 2, 5, 11, 24, 56, 115, 221, 402, 663, 980, 1312, 1557, 1646, 1557
Offset: 1

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

T(n,k)=1 for n>=2 with k=0, k=1, k=n*(n-1)/2-1 and k=n*(n-1)/2 (therefore the quadruple {1,1,1,1} marks the transition to the next sublist for a given number of vertices (n>2)). [Edited by Peter Munn, Mar 20 2021]

Examples

			Triangle begins:
1,
1,1,
1,1,1,1,
1,1,2,3,2,1,1, [graphs with 4 nodes and from 0 to 6 edges]
1,1,2,4,6,6,6,4,2,1,1,
1,1,2,5,9,15,21,24,24,21,15,9,5,2,1,1,
1,1,2,5,10,21,41,65,97,131,148,148,131,97,65,41,21,10,5,2,1,1,
...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 264.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 519.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 240.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums give A000088.
Cf. also A039735, A002905, A054924 (connected), A084546 (labeled graphs).
Row lengths: A000124; number of connected graphs for given number of vertices: A001349; number of graphs for given number of edges: A000664.
Cf. also A000055.

Programs

  • Maple
    seq(seq(GraphTheory:-NonIsomorphicGraphs(v,e),e=0..v*(v-1)/2),v=1..9); # Robert Israel, Dec 22 2015
  • Mathematica
    << Combinatorica`; Table[CoefficientList[GraphPolynomial[n, x], x], {n, 8}] // Flatten (* Eric W. Weisstein, Mar 20 2013 *)
    << Combinatorica`; Table[NumberOfGraphs[v, e], {v, 8}, {e, 0, Binomial[v, 2]}] // Flatten (* Eric W. Weisstein, May 17 2017 *)
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/ g]^g,{j, 1, i-1}], {i, 2, Length[v]}]*Product[c = v[[i]]; t[c]^Quotient[ c-1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
    row[n_] := Module[{s = 0}, Do[s += permcount[p]*edges[p, 1 + x^#&], {p, IntegerPartitions[n]}]; s/n!] // Expand // CoefficientList[#, x]&;
    Array[row, 8] // Flatten (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n, A=0) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i+A)); s/n!}
    { for(n=1, 7, print(Vecrev(G(n)))) } \\ Andrew Howroyd, Oct 22 2019, updated  Jan 09 2024
  • Sage
    def T(n,k):
        return len(list(graphs(n, size=k)))
    # Ralf Stephan, May 30 2014
    

Formula

O.g.f. for n-th row: 1/n! Sum_g det(1-g z^2)/det(1-g z) where g runs through the natural matrix representation of the pair group A^2_n (for A^2_n see F. Harary and E. M. Palmer, Graphical Enumeration, page 83). - Leonid Bedratyuk, Sep 23 2014

Extensions

Additional comments from Arne Ring (arne.ring(AT)epost.de), Oct 03 2002
Text belonging in a different sequence deleted by Peter Munn, Mar 20 2021

A000125 Cake numbers: maximal number of pieces resulting from n planar cuts through a cube (or cake): C(n+1,3) + n + 1.

Original entry on oeis.org

1, 2, 4, 8, 15, 26, 42, 64, 93, 130, 176, 232, 299, 378, 470, 576, 697, 834, 988, 1160, 1351, 1562, 1794, 2048, 2325, 2626, 2952, 3304, 3683, 4090, 4526, 4992, 5489, 6018, 6580, 7176, 7807, 8474, 9178, 9920, 10701, 11522, 12384, 13288, 14235, 15226
Offset: 0

Views

Author

Keywords

Comments

Note that a(n) = a(n-1) + A000124(n-1). This has the following geometrical interpretation: Define a number of planes in space to be in general arrangement when
(1) no two planes are parallel,
(2) there are no two parallel intersection lines,
(3) there is no point common to four or more planes.
Suppose there are already n-1 planes in general arrangement, thus defining the maximal number of regions in space obtainable by n-1 planes and now one more plane is added in general arrangement. Then it will cut each of the n-1 planes and acquire intersection lines which are in general arrangement. (See the comments on A000124 for general arrangement with lines.) These lines on the new plane define the maximal number of regions in 2-space definable by n-1 straight lines, hence this is A000124(n-1). Each of this regions acts as a dividing wall, thereby creating as many new regions in addition to the a(n-1) regions already there, hence a(n) = a(n-1) + A000124(n-1). - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
More generally, we have: A000027(n) = binomial(n,0) + binomial(n,1) (the natural numbers), A000124(n) = binomial(n,0) + binomial(n,1) + binomial(n,2) (the Lazy Caterer's sequence), a(n) = binomial(n,0) + binomial(n,1) + binomial(n,2) + binomial(n,3) (Cake Numbers). - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
If Y is a 2-subset of an n-set X then, for n>=3, a(n-3) is the number of 3-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
a(n) is the number of compositions (ordered partitions) of n+1 into four or fewer parts or equivalently the sum of the first four terms in the n-th row of Pascal's triangle. - Geoffrey Critzer, Jan 23 2009
{a(k): 0 <= k < 4} = divisors of 8. - Reinhard Zumkeller, Jun 17 2009
a(n) is also the maximum number of different values obtained by summing n consecutive positive integers with all possible 2^n sign combinations. This maximum is first reached when summing the interval [n, 2n-1]. - Olivier Gérard, Mar 22 2010
a(n) contains only 5 perfect squares > 1: 4, 64, 576, 67600, and 75203584. The incidences of > 0 are given by A047694. - Frank M Jackson, Mar 15 2013
Given n tiles with two values - an A value and a B value - a player may pick either the A value or the B value. The particular tiles are [n, 0], [n-1, 1], ..., [2, n-2] and [1, n-1]. The sequence is the number of different final A:B counts. For example, with n=4, we can have final total [5, 3] = [4, ] + [, 1] + [, 2] + [1, ] = [, 0] + [3, ] + [2, ] + [, 3], so a(4) = 2^4 - 1 = 15. The largest and smallest final A+B counts are given by A077043 and A002620 respectively. - Jon Perry, Oct 24 2014
For n>=3, a(n) is also the number of maximal cliques in the (n+1)-triangular graph (the 4-triangular graph has a(3)=8 maximal cliques). - Andrew Howroyd, Jul 19 2017
a(n) is the number of binary words of length n matching the regular expression 1*0*1*0*. Coincidentally, A000124 counts binary words of the form 0*1*0*. See Alexandersson and Nabawanda for proof. - Per W. Alexandersson, May 15 2021
For n > 0, let the n-dimensional cube, {0,1}^n be provided with the Hamming distance, d. Given an element x in {0,1}^n, a(n) is the number of elements y in {0,1}^n such that d(x, y) <= 3. Example: n = 4. Let x = (0,0,0,0) be in {0,1}^4.
d(x,y) = 0: y in {(0,0,0,0)}.
d(x,y) = 1: y in {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}.
d(x,y) = 2: y in {(1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1)}.
d(x,y) = 3: y in {(1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1)}.
All these y are at a distance <= 3 from (0,0,0,0), so a(4) = 15. (See Peter C. Heinig's formula). - Yosu Yurramendi, Dec 14 2021
For n >= 2, a(n) is the number of distinct least squares regression lines fitted to n points (j,y_j), 1 <= j <= n, where each y_j is 0 or 1. The number of distinct lines with exactly k 1's among y_1, ..., y_n is A077028(n,k). The number of distinct slopes is A123596(n). - Pontus von Brömssen, Mar 16 2024
The only powers of 2 in this sequence are a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 8, and a(7) = 64. - Jianing Song, Jan 02 2025

Examples

			a(4)=15 because there are 15 compositions of 5 into four or fewer parts. a(6)=42 because the sum of the first four terms in the 6th row of Pascal's triangle is 1+6+15+20=42. - _Geoffrey Critzer_, Jan 23 2009
For n=5, (1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 35) and their opposite are the 26 different sums obtained by summing 5,6,7,8,9 with any sign combination. - _Olivier Gérard_, Mar 22 2010
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 26*x^5 + 42*x^6 + 64*x^7 + ... - _Michael Somos_, Jul 07 2022
		

References

  • V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_3.
  • R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 27.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 80.
  • H. E. Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 177.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. H. Stickels, Mindstretching Puzzles. Sterling, NY, 1994 p. 85.
  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 30.
  • A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #45 (First published: San Francisco: Holden-Day, Inc., 1964)

Crossrefs

Programs

Formula

a(n) = (n+1)*(n^2-n+6)/6 = (n^3 + 5*n + 6) / 6.
G.f.: (1 - 2*x + 2x^2)/(1-x)^4. - [Simon Plouffe in his 1992 dissertation.]
E.g.f.: (1 + x + x^2/2 + x^3/6)*exp(x).
a(n) = binomial(n,3) + binomial(n,2) + binomial(n,1) + binomial(n,0). - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Paraphrasing the previous comment: the sequence is the binomial transform of [1,1,1,1,0,0,0,...]. - Gary W. Adamson, Oct 23 2007
From Ilya Gutkovskiy, Jul 18 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = Sum_{k=0..n} A152947(k+1).
Inverse binomial transform of A134396.
Sum_{n>=0} a(n)/n! = 8*exp(1)/3. (End)
a(n) = -A283551(-n). - Michael Somos, Jul 07 2022
a(n) = A046127(n+1)/2 = A033547(n)/2 + 1. - Jianing Song, Jan 02 2025

Extensions

Minor typo in comments corrected by Mauro Fiorentini, Jan 02 2018

A053632 Irregular triangle read by rows giving coefficients in expansion of Product_{k=1..n} (1 + x^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 8, 8, 8, 8, 8, 7, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4
Offset: 0

Views

Author

N. J. A. Sloane, Mar 22 2000

Keywords

Comments

Or, triangle T(n,k) read by rows, giving number of subsets of {1,2,...,n} with sum k. - Roger CUCULIERE (cuculier(AT)imaginet.fr), Nov 19 2000
Row n consists of A000124(n) terms. These are also the successive vectors (their nonzero elements) when one starts with the infinite vector (of zeros) with 1 inserted somewhere and then shifts it one step (right or left) and adds to the original, then shifts the result two steps and adds, three steps and adds, etc. - Antti Karttunen, Feb 13 2002
T(n,k) = number of partitions of k into distinct parts <= n. Triangle of distribution of Wilcoxon's signed rank statistic. - Mitch Harris, Mar 23 2006
T(n,k) = number of binary words of length n in which the sum of the positions of the 0's is k. Example: T(4,5)=2 because we have 0110 (sum of the positions of the 0's is 1+4=5) and 1001 (sum of the positions of the 0's is 2+3=5). - Emeric Deutsch, Jul 23 2006
A fair coin is flipped n times. You receive i dollars for a "success" on the i-th flip, 1<=i<=n. T(n,k)/2^n is the probability that you will receive exactly k dollars. Your expectation is n(n+1)/4 dollars. - Geoffrey Critzer, May 16 2010
From Gus Wiseman, Jan 02 2023: (Start)
With offset 1, also the number of integer compositions of n whose partial sums add up to k for k = n..n(n+1)/2. For example, row n = 6 counts the following compositions:
6 15 24 33 42 51 141 231 321 411 1311 2211 3111 12111 21111 111111
114 123 132 222 312 1131 1221 2121 11121 11211
213 1113 1122 1212 2112 1111
(End)

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1, 1, 1;
  1, 1, 1, 2, 1, 1, 1;
  1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1;
  1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1;
  1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1;
  ...
Row n = 4 counts the following binary words, where k = sum of positions of zeros:
  1111  0111  1011  0011  0101  0110  0001  0010  0100  1000  0000
                    1101  1110  1001  1010  1100
Row n = 5 counts the following strict partitions of k with all parts <= n (0 is the empty partition):
  0  1  2  3  4  5  42  43  53  54  532  542  543  5431 5432 54321
           21 31 32 51  52  431 432 541  5321 5421
                 41 321 421 521 531 4321
		

References

  • A. V. Yurkin, New binomial and new view on light theory, (book), 2013, 78 pages, no publisher listed.

Crossrefs

Rows reduced modulo 2 and interpreted as binary numbers: A068052, A068053. Rows converge towards A000009.
Row sums give A000079.
Cf. A285101 (multiplicative encoding of each row), A285103 (number of odd terms on row n), A285105 (number of even terms).
Row lengths are A000124.
A reciprocal version is (A033999, A219977, A291983, A291984, A291985, ...).
A negative version is A231599.
A version for partitions is A358194, reversed partitions A264034.

Programs

  • Maple
    with(gfun,seriestolist); map(op,[seq(seriestolist(series(mul(1+(z^i), i=1..n),z,binomial(n+1,2)+1)), n=0..10)]); # Antti Karttunen, Feb 13 2002
    # second Maple program:
    g:= proc(n) g(n):= `if`(n=0, 1, expand(g(n-1)*(1+x^n))) end:
    T:= n-> seq(coeff(g(n), x, k), k=0..degree(g(n))):
    seq(T(n), n=0..10);  # Alois P. Heinz, Nov 19 2012
  • Mathematica
    Table[CoefficientList[ Series[Product[(1 + t^i), {i, 1, n}], {t, 0, 100}], t], {n, 0, 8}] // Grid (* Geoffrey Critzer, May 16 2010 *)

Formula

From Mitch Harris, Mar 23 2006: (Start)
T(n,k) = T(n-1, k) + T(n-1, k-n), T(0,0)=1, T(0,k) = 0, T(n,k) = 0 if k < 0 or k > (n+1 choose 2).
G.f.: (1+x)*(1+x^2)*...*(1+x^n). (End)
Sum_{k>=0} k * T(n,k) = A001788(n). - Alois P. Heinz, Feb 09 2017
max_{k>=0} T(n,k) = A025591(n). - Alois P. Heinz, Jan 20 2023

A052928 The even numbers repeated.

Original entry on oeis.org

0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, 64, 64, 66, 66, 68, 68, 70, 70, 72, 72
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is also the binary rank of the complete graph K(n). - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 07 2009
Let I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then, for n >= 6, a(n) is the number of (0,1) n X n matrices A <= P^(-1)+I+P having exactly two 1's in every row and column with perA=2. - Vladimir Shevelev, Apr 12 2010
a(n+2) is the number of symmetry allowed, linearly independent terms at n-th order in the series expansion of the (E+A)xe vibronic perturbation matrix, H(Q) (cf. Eisfeld & Viel). - Bradley Klee, Jul 21 2015
The arithmetic function v_2(n,1) as defined in A289187. - Robert Price, Aug 22 2017
For n > 1, also the chromatic number of the n X n white bishop graph. - Eric W. Weisstein, Nov 17 2017
For n > 2, also the maximum vertex degree of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 23 2018
For n >= 2, a(n+2) gives the minimum weight of a Boolean function of algebraic degree at most n-2 whose support contains n linearly independent elements. - Christof Beierle, Nov 25 2019

References

  • C. D. Godsil and G. Royle, Algebraic Graph Theory, Springer, 2001, page 181. - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 07 2009
  • V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19.

Crossrefs

First differences: A010673; partial sums: A007590; partial sums of partial sums: A212964(n+1).
Complement of A109613 with respect to universe A004526. - Guenther Schrack, Dec 07 2017
Is first differences of A099392. Fixed point sequence: A005843. - Guenther Schrack, May 30 2019
For n >= 3, A329822(n) gives the minimum weight of a Boolean function of algebraic degree at most n-3 whose support contains n linearly independent elements. - Christof Beierle, Nov 25 2019

Programs

  • Haskell
    a052928 = (* 2) . flip div 2
    a052928_list = 0 : 0 : map (+ 2) a052928_list
    -- Reinhard Zumkeller, Jun 20 2015
  • Magma
    [2*Floor(n/2) : n in [0..50]]; // Wesley Ivan Hurt, Sep 13 2014
    
  • Maple
    spec := [S,{S=Union(Sequence(Prod(Z,Z)),Prod(Sequence(Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Flatten[Table[{2n, 2n}, {n, 0, 39}]] (* Alonso del Arte, Jun 24 2012 *)
    With[{ev=2Range[0,40]},Riffle[ev,ev]] (* Harvey P. Dale, May 08 2021 *)
    Table[Round[n + 1/2], {n, -1, 72}] (* Ed Pegg Jr, Jul 28 2025 *)
  • PARI
    a(n)=n\2*2 \\ Charles R Greathouse IV, Nov 20 2011
    

Formula

a(n) = 2*floor(n/2).
G.f.: 2*x^2/((-1+x)^2*(1+x)).
a(n) + a(n+1) + 2 - 2*n = 0.
a(n) = n - 1/2 + (-1)^n/2.
a(n) = n + Sum_{k=1..n} (-1)^k. - William A. Tedeschi, Mar 20 2008
a(n) = a(n-1) + a(n-2) - a(n-3). - R. J. Mathar, Feb 19 2010
a(n) = |A123684(n) - A064455(n)| = A032766(n) - A008619(n-1). - Jaroslav Krizek, Mar 22 2011
For n > 0, a(n) = floor(sqrt(n^2+(-1)^n)). - Francesco Daddi, Aug 02 2011
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=0 and b(k)=2^k for k>0. - Philippe Deléham, Oct 19 2011
a(n) = A109613(n) - 1. - M. F. Hasler, Oct 22 2012
a(n) = n - (n mod 2). - Wesley Ivan Hurt, Jun 29 2013
a(n) = a(a(n-1)) + a(n-a(n-1)) for n>2. - Nathan Fox, Jul 24 2016
a(n) = 2*A004526(n). - Filip Zaludek, Oct 28 2016
E.g.f.: x*exp(x) - sinh(x). - Ilya Gutkovskiy, Oct 28 2016
a(-n) = -a(n+1); a(n) = A005843(A004526(n)). - Guenther Schrack, Sep 11 2018
From Guenther Schrack, May 29 2019: (Start)
a(b(n)) = b(n) + ((-1)^b(n) - 1)/2 for any sequence b(n) of offset 0.
a(a(n)) = a(n), idempotent.
a(A086970(n)) = A124356(n-1) for n > 1.
a(A000124(n)) = A192447(n+1).
a(n)*a(n+1)/2 = A007590(n), also equals partial sums of a(n).
A007590(a(n)) = 2*A008794(n). (End)

Extensions

More terms from James Sellers, Jun 05 2000
Removed duplicate of recurrence; corrected original recurrence and g.f. against offset - R. J. Mathar, Feb 19 2010

A002817 Doubly triangular numbers: a(n) = n*(n+1)*(n^2+n+2)/8.

Original entry on oeis.org

0, 1, 6, 21, 55, 120, 231, 406, 666, 1035, 1540, 2211, 3081, 4186, 5565, 7260, 9316, 11781, 14706, 18145, 22155, 26796, 32131, 38226, 45150, 52975, 61776, 71631, 82621, 94830, 108345, 123256, 139656, 157641, 177310, 198765, 222111, 247456, 274911, 304590
Offset: 0

Views

Author

Keywords

Comments

Number of inequivalent ways to color vertices of a square using <= n colors, allowing rotations and reflections. Group is dihedral group D_8 of order 8 with cycle index (1/8)*(x1^4 + 2*x4 + 3*x2^2 + 2*x1^2*x2); setting all x_i = n gives the formula a(n) = (1/8)*(n^4 + 2*n + 3*n^2 + 2*n^3).
Number of semi-magic 3 X 3 squares with a line sum of n-1. That is, 3 X 3 matrices of nonnegative integers such that row sums and column sums are all equal to n-1. - [Gupta, 1968, page 653; Bell, 1970, page 279]. - Peter Bertok (peter(AT)bertok.com), Jan 12 2002. See A005045 for another version.
Also the coefficient h_2 of x^{n-3} in the shelling polynomial h(x)=h_0*x^n-1 + h_1*x^n-2 + h_2*x^n-3 + ... + h_n-1 for the independence complex of the cycle matroid of the complete graph K_n on n vertices (n>=2) - Woong Kook (andrewk(AT)math.uri.edu), Nov 01 2006
If X is an n-set and Y a fixed 3-subset of X then a(n-4) is equal to the number of 5-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
Starting with offset 1 = binomial transform of [1, 5, 10, 9, 3, 0, 0, 0, ...]. - Gary W. Adamson, Aug 05 2009
Starting with "1" = row sums of triangle A178238. - Gary W. Adamson, May 23 2010
The equation n*(n+1)*(n^2 + n + 2)/8 may be arrived at by solving for x in the following equality: (n^2+n)/2 = (sqrt(8x+1)-1)/2. - William A. Tedeschi, Aug 18 2010
Partial sums of A006003. - Jeremy Gardiner, Jun 23 2013
Doubly triangular numbers are revealed in the sums of row sums of Floyd's triangle.
1, 1+5, 1+5+15, ...
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
- Tony Foster III, Nov 14 2015
From Jaroslav Krizek, Mar 04 2017: (Start)
For n>=1; a(n) = sum of the different sums of elements of all the nonempty subsets of the sets of numbers from 1 to n.
Example: for n = 6; nonempty subsets of the set of numbers from 1 to 3: {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}; sums of elements of these subsets: 1, 2, 3, 3, 4, 5, 6; different sums of elements of these subsets: 1, 2, 3, 4, 5, 6; a(3) = (1+2+3+4+5+6) = 21, ... (End)
a(n) is also the number of 4-cycles in the (n+4)-path complement graph. - Eric W. Weisstein, Apr 11 2018

Examples

			G.f. = x + 6*x^2 + 21*x^3 + 55*x^4 + 120*x^5 + 231*x^6 + 406*x^7 + 666*x^8 + ...
		

References

  • A. Björner, The homology and shellability of matroids and geometric lattices, in Matroid Applications (ed. N. White), Encyclopedia of Mathematics and Its Applications, 40, Cambridge Univ. Press 1992.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 124, #25, Q(3,r).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics I, p. 292.

Crossrefs

Cf. A006003 (first differences), A165211 (mod 2).
Multiple triangular: A000217, A064322, A066370.
Cf. A006528 (square colorings).
Cf. A236770 (see crossrefs).
Row n=3 of A257493 and row n=2 of A331436 and A343097.
Cf. A000332.
Cf. A000292 (3-cycle count of \bar P_{n+4}), A060446 (5-cycle count of \bar P_{n+3}), A302695 (6-cycle count of \bar P_{n+5}).

Programs

  • Maple
    A002817 := n->n*(n+1)*(n^2+n+2)/8;
  • Mathematica
    a[ n_] := n (n + 1) (n^2 + n + 2) / 8; (* Michael Somos, Jul 24 2002 *)
    LinearRecurrence[{5,-10,10,-5,1}, {0,1,6,21,55},40] (* Harvey P. Dale, Jul 18 2011 *)
    nn=50;Join[{0},With[{c=(n(n+1))/2},Flatten[Table[Take[Accumulate[Range[ (nn(nn+1))/2]], {c,c}],{n,nn}]]]] (* Harvey P. Dale, Mar 19 2013 *)
  • PARI
    {a(n) = n * (n+1) * (n^2 + n + 2) / 8}; /* Michael Somos, Jul 24 2002 */
    
  • PARI
    concat(0, Vec(x*(1+x+x^2)/(1-x)^5 + O(x^50))) \\ Altug Alkan, Nov 15 2015
    
  • Python
    def A002817(n): return (m:=n*(n+1))*(m+2)>>3 # Chai Wah Wu, Aug 30 2024

Formula

a(n) = 3*binomial(n+2, 4) + binomial(n+1, 2).
G.f.: x*(1 + x + x^2)/(1-x)^5. - Simon Plouffe (in his 1992 dissertation); edited by N. J. A. Sloane, May 13 2008
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 3. - Warut Roonguthai, Dec 13 1999
a(n) = 5a(n-1) - 10a(n-2) + 10a(n-3) - 5a(n-4) + a(n-5) = A000217(A000217(n)). - Ant King, Nov 18 2010
a(n) = Sum(Sum(1 + Sum(3*n))). - Xavier Acloque, Jan 21 2003
a(n) = A000332(n+1) + A000332(n+2) + A000332(n+3), with A000332(n) = binomial(n, 4). - Mitch Harris, Oct 17 2006 and Bruce J. Nicholson, Oct 22 2017
a(n) = Sum_{i=1..C(n,2)} i = C(C(n,2) + 1, 2) = A000217(A000217(n+1)). - Enrique Pérez Herrero, Jun 11 2012
Euler transform of length 3 sequence [6, 0, -1]. - Michael Somos, Nov 19 2015
E.g.f.: x*(8 + 16*x + 8*x^2 + x^3)*exp(x)/8. - Ilya Gutkovskiy, Apr 26 2016
Sum_{n>=1} 1/a(n) = 6 - 4*Pi*tanh(sqrt(7)*Pi/2)/sqrt(7) = 1.25269064911978447... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(n)*A000124(n)/2.
a(n) = ((n-1)^4 + 3*(n-1)^3 + 2*(n-1)^2 + 2*n))/8. - Bruce J. Nicholson, Apr 05 2017
a(n) = (A016754(n)+ A007204(n)- 2) / 32. - Bruce J. Nicholson, Apr 14 2017
a(n) = a(-1-n) for all n in Z. - Michael Somos, Apr 17 2017
a(n) = T(T(n)) where T are the triangular numbers A000217. - Albert Renshaw, Jan 05 2020
a(n) = 2*n^2 - n + 6*binomial(n, 3) + 3*binomial(n, 4). - Ryan Jean, Mar 20 2021
a(n) = (A008514(n) - 1)/16. - Charlie Marion, Dec 20 2024

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999

A004006 a(n) = C(n,1) + C(n,2) + C(n,3), or n*(n^2 + 5)/6.

Original entry on oeis.org

0, 1, 3, 7, 14, 25, 41, 63, 92, 129, 175, 231, 298, 377, 469, 575, 696, 833, 987, 1159, 1350, 1561, 1793, 2047, 2324, 2625, 2951, 3303, 3682, 4089, 4525, 4991, 5488, 6017, 6579, 7175, 7806, 8473, 9177, 9919, 10700, 11521, 12383, 13287, 14234, 15225
Offset: 0

Views

Author

Albert D. Rich (Albert_Rich(AT)msn.com)

Keywords

Comments

3-dimensional analog of centered polygonal numbers.
The Burnside group B(3,n) has order 3^a(n).
Answer to the question: if you have a tall building and 3 plates and you need to find the highest story, a plate thrown from which does not break, what is the number of stories you can handle given n tries? - Leonid Broukhis, Oct 24 2000
Equals row sums of triangle A144329 starting with "1". - Gary W. Adamson, Sep 18 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=4, a(n-1)=-coeff(charpoly(A,x),x^(n-3)). - Milan Janjic, Jan 24 2010
From J. M. Bergot, Aug 03 2011: (Start)
If one formed the 3 X 3 square
| n | n+1 | n+2 |
| n+3 | n+4 | n+5 |
| n+6 | n+7 | n+8 |
and found the sum of the horizontal products n*(n + 1)*(n + 2) + (n + 3)*(n + 4)*(n + 5) + (n + 6)*(n + 7)*(n + 8) and added the sum of the vertical products n*(n + 3)*(n + 6) + (n + 1)*(n + 4)*(n + 7) + (n + 2)*(n + 5)(n + 8) one gets 6*n^3 + 72*n^2 + 318*n + 504. This will give 36 times the values of all the terms in this sequence. (End)
a(n) is divisible by n for n congruent to {1,5} mod 6. (see A007310). - Gary Detlefs, Dec 08 2011
From Beimar Naranjo, Feb 22 2024: (Start)
Number of compositions with at most three parts and sum at most n.
Also the number of compositions with at most one part distinct from 1 and with a sum at most n. (End)
a(n) is the number of strings of length n defined on {0, 1, 2, 3} that contain one 1 and any number of 0's, or two 2's and any number of 0's, or three 3's and any number of 0's. For example, a(6) = 41 since the strings are the 20 permutations of 333000, the 15 permutations of 220000 and the 6 permutations of 100000. - Enrique Navarrete, Jun 18 2025

Examples

			G.f. = x + 3*x^2 + 7*x^3 + 14*x^4 + 25*x^5 + 41*x^6 + 63*x^7 + 92*x^8 + ... - _Michael Somos_, Dec 29 2019
		

References

  • W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley, 1966, see p. 380.

Crossrefs

Cf. A051576, A055795, A006552. Differences give A000217 + 1 or A000124.
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Programs

Formula

G.f.: x*(1-x+x^2)/(1-x)^4.
E.g.f.: x*(1 + x/2 + x^2/6) * exp(x).
a(-n) = -a(n).
a(n) = binomial(n+2,n-1) - binomial(n,n-2). - Zerinvary Lajos, May 11 2006
Euler transform of length 6 sequence [3, 1, 1, 0, 0, -1]. - Michael Somos, May 04 2007
Starting (1, 3, 7, 14, ...) = binomial transform of [1, 2, 2, 1, 0, 0, 0, ...]. - Gary W. Adamson, Apr 24 2008
a(0)=0, a(1)=1, a(2)=3, a(3)=7, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Aug 21 2011
a(n+1) = A000292(n) + n + 1. - Reinhard Zumkeller, Mar 31 2012
a(n) = 2*a(n-1) + (n-1) - a(n-2) with a(0) = 0, a(1) = 1. - Richard R. Forberg, Jan 23 2014
a(n) = Sum_{i=1..n} binomial(n-2i,2). - Wesley Ivan Hurt, Nov 18 2017
a(n) = n + Sum_{k=0..n} k*(n-k). - Gionata Neri, May 19 2018
a(n) = Sum_{k=0..n-1} A000124(k). - Torlach Rush, Aug 05 2018
G.f.: ((1 - x^5)/(1 - x)^5 - 1)/5. - Michael Somos, Dec 29 2019
G.f.: g(f(x)), where g is g.f. of A001477 and f is g.f. of A128834. - Oboifeng Dira, Jun 21 2020
Sum_{n>0} 1/a(n) = 3*(2*gamma + polygamma(0, 1-i*sqrt(5)) + polygamma(0, 1+i*sqrt(5)))/5 = 1.6787729555834452106286261834348972248... where i denotes the imaginary unit. - Stefano Spezia, Aug 31 2023

A161680 a(n) = binomial(n,2): number of size-2 subsets of {0,1,...,n} that contain no consecutive integers.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378
Offset: 0

Views

Author

Jaroslav Krizek, Jun 16 2009

Keywords

Comments

Essentially the same as A000217: zero followed by A000217. - Joerg Arndt, Jul 26 2015
Count of entries <= n in A003057.
a(n) is the number of size-2 subsets of [n+1] that contain no consecutive integers, a(n+1) is the n-th triangular number. - Dennis P. Walsh, Mar 30 2011
Construct the n-th row of Pascal's triangle (A007318) from the preceding row, starting with row 0 = 1. a(n) is the sequence consisting of the total number of additions required to compute the triangle in this way up to row n. Copying a term does not count as an addition. - Douglas Latimer, Mar 05 2012
a(n-1) is also the number of ordered partitions (compositions) of n >= 1 into exactly 3 parts. - Juergen Will, Jan 02 2016
a(n+2) is also the number of weak compositions (ordered weak partitions) of n into exactly 3 parts. - Juergen Will, Jan 19 2016
In other words, this is the number of relations between entities, for example between persons: Two persons (n = 2) will have one relation (a(n) = 1), whereas four persons will have six relations to each other, and 20 persons will have 190 relations between them. - Halfdan Skjerning, May 03 2017
This also describes the largest number of intersections between n lines of equal length sequentially connected at (n-1) joints. The joints themselves do not count as intersection points. - Joseph Rozhenko, Oct 05 2021
The lexicographically earliest infinite sequence of nonnegative integers with monotonically increasing differences (that are also nonnegative integers). - Joe B. Stephen, Jul 22 2023

Examples

			A003057 starts 2, 3, 3, 4, 4,..., so there are a(0)=0 numbers <= 0, a(1)=0 numbers <= 1, a(2)=1 number <= 2, a(3)=3 numbers <= 3 in A003057.
For n=4, a(4)=6 since there are exactly 6 size-2 subsets of {0,1,2,3,4} that contain no consecutive integers, namely, {0,2}, {0,3}, {0,4}, {1,3}, {1,4}, and {2,4}.
		

Crossrefs

Programs

  • Magma
    a003057:=func< n | Round(Sqrt(2*(n-1)))+1 >; S:=[]; m:=2; count:=0; for n in [2..2000] do if a003057(n) lt m then count+:=1; else Append(~S, count); m+:=1; end if; end for; S; // Klaus Brockhaus, Nov 30 2010
    
  • Maple
    seq(binomial(n,2),n=0..50);
  • Mathematica
    Join[{a = 0}, Table[a += n, {n, 0, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jun 12 2011 *)
    f[n_] := n(n-1)/2; Array[f, 54, 0] (* Robert G. Wilson v, Jul 26 2015 *)
    Binomial[Range[0,60],2] (* or *) LinearRecurrence[{3,-3,1},{0,0,1},60] (* Harvey P. Dale, Apr 14 2017 *)
  • PARI
    a(n)=n*(n-1)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = (n^2 - n)/2 = n*(n - 1)/2.
a(n) = A000124(n-1)-1 = A000217(n-1).
a(n) = a(n-1)+n-1 (with a(0)=a(1)=0). - Vincenzo Librandi, Nov 30 2010
Compositions: C(n,3) = binomial(n-1,n-3) = binomial(n-1,2), n>0. - Juergen Will, Jan 02 2015
G.f.: x^2/(1-x)^3. - Dennis P. Walsh, Mar 30 2011
G.f. with offset 1: Compositions: (x+x^2+x^3+...)^3 = (x/(1-x))^3. - Juergen Will, Jan 02 2015
a(n-1) = 6*n*s(1,n), n >= 1, where s(h,k) are the Dedekind sums. For s(1,n) see A264388(n)/A264389(n), also for references. - Wolfdieter Lang, Jan 11 2016
a(n) = A244049(n+1) + A004125(n+1). - Omar E. Pol, Mar 25 2021
a(n) = A000290(n+1) - A034856(n+1). - Omar E. Pol, Mar 30 2021
E.g.f.: exp(x)*x^2/2. - Stefano Spezia, Dec 19 2021

Extensions

Definition rephrased, offset set to 0 by R. J. Mathar, Aug 03 2010

A055998 a(n) = n*(n+5)/2.

Original entry on oeis.org

0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272
Offset: 0

Views

Author

Barry E. Williams, Jun 14 2000

Keywords

Comments

If X is an n-set and Y a fixed (n-3)-subset of X then a(n-3) is equal to the number of 2-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Bisection of A165157. - Jaroslav Krizek, Sep 05 2009
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w=x+y-1. - Clark Kimberling, Jun 02 2012
Numbers m >= 0 such that 8m+25 is a square. - Bruce J. Nicholson, Jul 26 2017
a(n-1) = 3*(n-1) + (n-1)*(n-2)/2 is the number of connected, loopless, non-oriented, multi-edge vertex-labeled graphs with n edges and 3 vertices. Labeled multigraph analog of A253186. There are 3*(n-1) graphs with the 3 vertices on a chain (3 ways to label the middle graph, n-1 ways to pack edges on one of connections) and binomial(n-1,2) triangular graphs (one way to label the graphs, pack 1 or 2 or ...n-2 on the 1-2 edge, ...). - R. J. Mathar, Aug 10 2017
a(n) is also the number of vertices of the quiver for PGL_{n+1} (see Shen). - Stefano Spezia, Mar 24 2020
Starting from a(2) = 7, this is the 4th column of the array: natural numbers written by antidiagonals downwards. See the illustration by Kival Ngaokrajang and the cross-references. - Andrey Zabolotskiy, Dec 21 2021

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.

Crossrefs

a(n) = A095660(n+1, 2): third column of (1, 3)-Pascal triangle.
Row n=2 of A255961.

Programs

Formula

G.f.: x*(3-2*x)/(1-x)^3.
a(n) = A027379(n), n > 0.
a(n) = A126890(n,2) for n > 1. - Reinhard Zumkeller, Dec 30 2006
a(n) = A000217(n) + A005843(n). - Reinhard Zumkeller, Sep 24 2008
If we define f(n,i,m) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-m-j), then a(n) = -f(n,n-1,3), for n >= 1. - Milan Janjic, Dec 20 2008
a(n) = A167544(n+8). - Philippe Deléham, Nov 25 2009
a(n) = a(n-1) + n + 2 with a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(n) = Sum_{k=1..n} (k+2). - Gary Detlefs, Aug 10 2010
a(n) = A034856(n+1) - 1 = A000217(n+2) - 3. - Jaroslav Krizek, Sep 05 2009
Sum_{n>=1} 1/a(n) = 137/150. - R. J. Mathar, Jul 14 2012
a(n) = 3*n + A000217(n-1) = 3*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=3..n+2} i. - Wesley Ivan Hurt, Jun 28 2013
a(n) = 3*A000217(n) - 2*A000217(n-1). - Bruno Berselli, Dec 17 2014
a(n) = A046691(n) + 1. Also, a(n) = A052905(n-1) + 2 = A055999(n-1) + 3 for n>0. - Andrey Zabolotskiy, May 18 2016
E.g.f.: x*(6+x)*exp(x)/2. - G. C. Greubel, Apr 05 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 47/150. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -5*cos(sqrt(33)*Pi/2)/(4*Pi).
Product_{n>=1} (1 + 1/a(n)) = 15*cos(sqrt(17)*Pi/2)/(2*Pi). (End)
Previous Showing 41-50 of 436 results. Next