cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 215 results. Next

A006128 Total number of parts in all partitions of n. Also, sum of largest parts of all partitions of n.

Original entry on oeis.org

0, 1, 3, 6, 12, 20, 35, 54, 86, 128, 192, 275, 399, 556, 780, 1068, 1463, 1965, 2644, 3498, 4630, 6052, 7899, 10206, 13174, 16851, 21522, 27294, 34545, 43453, 54563, 68135, 84927, 105366, 130462, 160876, 198014, 242812, 297201, 362587, 441546, 536104, 649791, 785437, 947812, 1140945, 1371173, 1644136, 1968379, 2351597, 2805218, 3339869, 3970648, 4712040, 5584141, 6606438, 7805507, 9207637
Offset: 0

Views

Author

Keywords

Comments

a(n) = degree of Kac determinant at level n as polynomial in the conformal weight (called h). (Cf. C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Vol. 2, p. 533, eq.(98); reference p. 643, Cambridge University Press, (1989).) - Wolfdieter Lang
Also the number of one-element transitions from the integer partitions of n to the partitions of n-1 for labeled parts with the assumption that from any part z > 1 one can take an element of amount 1 in one way only. That means z is composed of z unlabeled parts of amount 1, i.e. z = 1 + 1 + ... + 1. E.g., for n=3 to n=2 we have a(3) = 6 and [111] --> [11], [111] --> [11], [111] --> [11], [12] --> [11], [12] --> [2], [3] --> [2]. For the case of z composed by labeled elements, z = 1_1 + 1_2 + ... + 1_z, see A066186. - Thomas Wieder, May 20 2004
Number of times a derivative of any order (not 0 of course) appears when expanding the n-th derivative of 1/f(x). For instance (1/f(x))'' = (2 f'(x)^2-f(x) f''(x)) / f(x)^3 which makes a(2) = 3 (by counting k times the k-th power of a derivative). - Thomas Baruchel, Nov 07 2005
Starting with offset 1, = the partition triangle A008284 * [1, 2, 3, ...]. - Gary W. Adamson, Feb 13 2008
Starting with offset 1 equals A000041: (1, 1, 2, 3, 5, 7, 11, ...) convolved with A000005: (1, 2, 2, 3, 2, 4, ...). - Gary W. Adamson, Jun 16 2009
Apart from initial 0 row sums of triangle A066633, also the Möbius transform is A085410. - Gary W. Adamson, Mar 21 2011
More generally, the total number of parts >= k in all partitions of n equals the sum of k-th largest parts of all partitions of n. In this case k = 1. Apart from initial 0 the first column of A181187. - Omar E. Pol, Feb 14 2012
Row sums of triangle A221530. - Omar E. Pol, Jan 21 2013
From Omar E. Pol, Feb 04 2021: (Start)
a(n) is also the total number of divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned divisors are also all parts of all partitions of n.
Apart from initial zero this is also as follows:
Convolution of A000005 and A000041.
Convolution of A006218 and A002865.
Convolution of A341062 and A000070.
Row sums of triangles A221531, A245095, A339258, A340525, A340529. (End)
Number of ways to choose a part index of an integer partition of n, i.e., partitions of n with a selected position. Selecting a part value instead of index gives A000070. - Gus Wiseman, Apr 19 2021

Examples

			For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. The total number of parts is 12. On the other hand, the sum of the largest parts of all partitions is 4 + 2 + 3 + 2 + 1 = 12, equaling the total number of parts, so a(4) = 12. - _Omar E. Pol_, Oct 12 2018
		

References

  • S. M. Luthra, On the average number of summands in partitions of n, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A210485.
Column k=1 of A256193.
The version for normal multisets is A001787.
The unordered version is A001792.
The strict case is A015723.
The version for factorizations is A066637.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A336875 counts compositions with a selected part.
A339564 counts factorizations with a selected factor.

Programs

  • GAP
    List([0..60],n->Length(Flat(Partitions(n)))); # Muniru A Asiru, Oct 12 2018
  • Haskell
    a006128 = length . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
    
  • Maple
    g:= add(n*x^n*mul(1/(1-x^k), k=1..n), n=1..61):
    a:= n-> coeff(series(g,x,62),x,n):
    seq(a(n), n=0..61);
    # second Maple program:
    a:= n-> add(combinat[numbpart](n-j)*numtheory[tau](j), j=1..n):
    seq(a(n), n=0..61);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    a[n_] := Sum[DivisorSigma[0, m] PartitionsP[n - m], {m, 1, n}]; Table[ a[n], {n, 0, 41}]
    CoefficientList[ Series[ Sum[n*x^n*Product[1/(1 - x^k), {k, n}], {n, 100}], {x, 0, 100}], x]
    a[n_] := Plus @@ Max /@ IntegerPartitions@ n; Array[a, 45] (* Robert G. Wilson v, Apr 12 2011 *)
    Join[{0}, ((Log[1 - x] + QPolyGamma[1, x])/(Log[x] QPochhammer[x]) + O[x]^60)[[3]]] (* Vladimir Reshetnikov, Nov 17 2016 *)
    Length /@ Table[IntegerPartitions[n] // Flatten, {n, 50}] (* Shouvik Datta, Sep 12 2021 *)
  • PARI
    f(n)= {local(v,i,k,s,t);v=vector(n,k,0);v[n]=2;t=0;while(v[1]1,i--;s+=i*(v[i]=(n-s)\i));t+=sum(k=1,n,v[k]));t } /* Thomas Baruchel, Nov 07 2005 */
    
  • PARI
    a(n) = sum(m=1, n, numdiv(m)*numbpart(n-m)) \\ Michel Marcus, Jul 13 2013
    
  • Python
    from sympy import divisor_count, npartitions
    def a(n): return sum([divisor_count(m)*npartitions(n - m) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 25 2017
    

Formula

G.f.: Sum_{n>=1} n*x^n / Product_{k=1..n} (1-x^k).
G.f.: Sum_{k>=1} x^k/(1-x^k) / Product_{m>=1} (1-x^m).
a(n) = Sum_{k=1..n} k*A008284(n, k).
a(n) = Sum_{m=1..n} of the number of divisors of m * number of partitions of n-m.
Note that the formula for the above comment is a(n) = Sum_{m=1..n} d(m)*p(n-m) = Sum_{m=1..n} A000005(m)*A000041(n-m), if n >= 1. - Omar E. Pol, Jan 21 2013
Erdős and Lehner show that if u(n) denotes the average largest part in a partition of n, then u(n) ~ constant*sqrt(n)*log n.
a(n) = A066897(n) + A066898(n), n>0. - Reinhard Zumkeller, Mar 09 2012
a(n) = A066186(n) - A196087(n), n >= 1. - Omar E. Pol, Apr 22 2012
a(n) = A194452(n) + A024786(n+1). - Omar E. Pol, May 19 2012
a(n) = A000203(n) + A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{m=1..p(n)} A194446(m) = Sum_{m=1..p(n)} A141285(m), where p(n) = A000041(n), n >= 1. - Omar E. Pol, May 12 2013
a(n) = A198381(n) + A026905(n), n >= 1. - Omar E. Pol, Aug 10 2013
a(n) = O(sqrt(n)*log(n)*p(n)), where p(n) is the partition function A000041(n). - Peter Bala, Dec 23 2013
a(n) = Sum_{m=1..n} A006218(m)*A002865(n-m), n >= 1. - Omar E. Pol, Jul 14 2014
From Vaclav Kotesovec, Jun 23 2015: (Start)
Asymptotics (Luthra, 1957): a(n) = p(n) * (C*N^(1/2) + C^2/2) * (log(C*N^(1/2)) + gamma) + (1+C^2)/4 + O(N^(-1/2)*log(N)), where N = n - 1/24, C = sqrt(6)/Pi, gamma is the Euler-Mascheroni constant A001620 and p(n) is the partition function A000041(n).
The formula a(n) = p(n) * (sqrt(3*n/(2*Pi)) * (log(n) + 2*gamma - log(Pi/6)) + O(log(n)^3)) in the abstract of the article by Kessler and Livingston (cited also in the book by Sandor, p. 495) is incorrect!
Right is: a(n) = p(n) * (sqrt(3*n/2)/Pi * (log(n) + 2*gamma - log(Pi^2/6)) + O(log(n)^3))
or a(n) ~ exp(Pi*sqrt(2*n/3)) * (log(6*n/Pi^2) + 2*gamma) / (4*Pi*sqrt(2*n)).
(End)
a(n) = Sum_{m=1..n} A341062(m)*A000070(n-m), n >= 1. - Omar E. Pol, Feb 05 2021 2014

A053120 Triangle of coefficients of Chebyshev's T(n,x) polynomials (powers of x in increasing order).

Original entry on oeis.org

1, 0, 1, -1, 0, 2, 0, -3, 0, 4, 1, 0, -8, 0, 8, 0, 5, 0, -20, 0, 16, -1, 0, 18, 0, -48, 0, 32, 0, -7, 0, 56, 0, -112, 0, 64, 1, 0, -32, 0, 160, 0, -256, 0, 128, 0, 9, 0, -120, 0, 432, 0, -576, 0, 256, -1, 0, 50, 0, -400, 0, 1120, 0, -1280, 0, 512, 0, -11, 0, 220, 0, -1232, 0, 2816, 0, -2816, 0, 1024
Offset: 0

Views

Author

Keywords

Comments

Row sums (signed triangle): A000012 (powers of 1). Row sums (unsigned triangle): A001333(n).
From Wolfdieter Lang, Oct 21 2013: (Start)
The row polynomials T(n,x) equal (S(n,2*x) - S(n-2,2*x))/2, n >= 0, with the row polynomials S from A049310, with S(-1,x) = 0, and S(-2,x) = -1.
The zeros of T(n,x) are x(n,k) = cos((2*k+1)*Pi/(2*n)), k = 0, 1, ..., n-1, n >= 1. (End)
From Wolfdieter Lang, Jan 03 2020 and Paul Weisenhorn: (Start)
The (sub)diagonal sequences {D_{2*k}(m)}{m >= 0}, for k >= 0, have o.g.f. GD{2*k}(x) = (-1)^k*(1-x)/(1-2*x)^(k+1), for k >= 0, and GD_{2*k+1}(x) = 0, for k >= 0. This follows from their o.g.f. GGD(z, x) := Sum_{k>=0} GD_k(x)*z^n which is obtained from the o.g.f. of the T-triangle GT(z, x) = (1-x*z)/(1 - 2*x + z^2) (see the formula section) by GGD(z, x) = GT(z, x/z).
The explicit form is then D_{2*k}(m) = (-1)^k, for m = 0, and
(-1)^k*(2*k+m)*2^(m-1)*risefac(k+1, m-1)/m!, for m >= 1, with the rising factorial risefac(x, n). (End)

Examples

			The triangle a(n,m) begins:
n\m  0  1   2    3     4    5     6     7      8    9   10...
0:   1
1:   0  1
2:  -1  0   2
3:   0 -3   0    4
4:   1  0  -8    0     8
5:   0  5   0  -20     0   16
6:  -1  0  18    0   -48    0    32
7:   0 -7   0   56     0 -112     0    64
8:   1  0 -32    0   160    0  -256     0    128
9:   0  9   0 -120     0  432     0  -576      0  256
10: -1  0  50    0  -400    0  1120     0  -1280    0  512
... Reformatted and extended - _Wolfdieter Lang_, Oct 21 2013
E.g., the fourth row (n=3) corresponds to the polynomial T(3,x) = -3*x + 4*x^3.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964. Tenth printing, Wiley, 2002 (also electronically available), p. 795.
  • F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg 1994 pp. 77, 105.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 22, page 196.
  • TableCurve 2D, Automated curve fitting and equation discovery, Version 5.01 for Windows, User's Manual, Chebyshev Series Polynomials and Rationals, pages 12-21 - 12-24, SYSTAT Software, Inc., Richmond, WA, 2002.

Crossrefs

The first nonzero (sub)diagonal sequences are A011782, -A001792, A001793(n+1), -A001794, A006974, -A006975, A006976, -A209404.

Programs

  • Julia
    using Nemo
    function A053120Row(n)
        R, x = PolynomialRing(ZZ, "x")
        p = chebyshev_t(n, x)
        [coeff(p, j) for j in 0:n] end
    for n in 0:6 A053120Row(n) |> println end # Peter Luschny, Mar 13 2018
    
  • Magma
    &cat[ Coefficients(ChebyshevT(n)): n in [0..11] ]; // Klaus Brockhaus, Mar 08 2008
    
  • Maple
    with(orthopoly) ;
    A053120 := proc(n,k)
        T(n,x) ;
        coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, Jun 30 2013
    T := (n, x) -> `if`(n = 0, 1, add((-1)^(n - k) * (n/(2*k))*binomial(k, n - k) *(2*x)^(2*k - n), k = 1 ..n)):
    seq(seq(coeff(T(n, x), x, k), k = 0..n), n = 0..11); # Peter Luschny, Sep 20 2022
  • Mathematica
    t[n_, k_] := Coefficient[ ChebyshevT[n, x], x, k]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, Jan 16 2012 *)
  • PARI
    for(n=0,5,P=polchebyshev(n);for(k=0,n,print1(polcoeff(P,k)", "))) \\ Charles R Greathouse IV, Jan 16 2012
    
  • SageMath
    def f(n,k): # f = A039991
        if (n<2 and k==0): return 1
        elif (k<0 or k>n): return 0
        else: return 2*f(n-1, k) - f(n-2, k-2)
    def A053120(n,k): return f(n, n-k)
    flatten([[A053120(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 10 2022

Formula

T(n, m) = A039991(n, n-m).
G.f. for row polynomials T(n,x) (signed triangle): (1-x*z)/(1-2*x*z+z^2). If unsigned: (1-x*z)/(1-2*x*z-z^2).
T(n, m) := 0 if n < m or n+m odd; T(n, m) = (-1)^(n/2) if m=0 (n even); otherwise T(n, m) = ((-1)^((n+m)/2 + m))*(2^(m-1))*n*binomial((n+m)/2-1, m-1)/m.
Recursion for n >= 2: T(n, m) = T*a(n-1, m-1) - T(n-2, m), T(n, m)=0 if n < m, T(n, -1) := 0, T(0, 0) = T(1, 1) = 1.
G.f. for m-th column (signed triangle): 1/(1+x^2) if m=0, otherwise (2^(m-1))*(x^m)*(1-x^2)/(1+x^2)^(m+1).
From G. C. Greubel, Aug 10 2022: (Start)
Sum_{k=0..floor(n/2)} T(n-k, k) = A000007(n).
T(2*n, n) = i^n * A036909(n/2) * (1+(-1)^n)/2 + [n=0]/3. (End)
T(n, k) = [x^k] T(n, x) for n >= 1, where T(n, x) = Sum_{k=1..n}(-1)^(n - k)*(n/ (2*k))*binomial(k, n - k)*(2*x)^(2*k - n). - Peter Luschny, Sep 20 2022

A228351 Triangle read by rows in which row n lists the compositions (ordered partitions) of n (see Comments lines for definition).

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 1, 1, 4, 1, 3, 2, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 5, 1, 4, 2, 3, 1, 1, 3, 3, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 4, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 1, 1, 4
Offset: 1

Views

Author

Omar E. Pol, Aug 30 2013

Keywords

Comments

The representation of the compositions (for fixed n) is as lists of parts, the order between individual compositions (for the same n) is (list-)reversed co-lexicographic. - Joerg Arndt, Sep 02 2013
Dropping the "(list-)reversed" in the comment above gives A228525.
The equivalent sequence for partitions is A026792.
This sequence lists (without repetitions) all finite compositions, in such a way that, if [P_1, ..., P_r] denotes the composition occupying the n-th position in the list, then (((2*n/2^(P_1)-1)/2^(P_2)-1)/...)/2^(P_r)-1 = 0. - Lorenzo Sauras Altuzarra, Jan 22 2020
The k-th composition in the list is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, and taking first differences. Reversing again gives A066099, which is described as the standard ordering. Both sequences define a bijective correspondence between nonnegative integers and integer compositions. - Gus Wiseman, Apr 01 2020
It follows from the previous comment that A000120(k) is the length of the k-th composition that is listed by this sequence (recall that A000120(k) is the number of 1's in the binary expansion of k). - Lorenzo Sauras Altuzarra, Sep 29 2020

Examples

			Illustration of initial terms:
-----------------------------------
n  j     Diagram     Composition j
-----------------------------------
.         _
1  1     |_|         1;
.         _ _
2  1     |_  |       2,
2  2     |_|_|       1, 1;
.         _ _ _
3  1     |_    |     3,
3  2     |_|_  |     1, 2,
3  3     |_  | |     2, 1,
3  4     |_|_|_|     1, 1, 1;
.         _ _ _ _
4  1     |_      |   4,
4  2     |_|_    |   1, 3,
4  3     |_  |   |   2, 2,
4  4     |_|_|_  |   1, 1, 2,
4  5     |_    | |   3, 1,
4  6     |_|_  | |   1, 2, 1,
4  7     |_  | | |   2, 1, 1,
4  8     |_|_|_|_|   1, 1, 1, 1;
.
Triangle begins:
[1];
[2],[1,1];
[3],[1,2],[2,1],[1,1,1];
[4],[1,3],[2,2],[1,1,2],[3,1],[1,2,1],[2,1,1],[1,1,1,1];
[5],[1,4],[2,3],[1,1,3],[3,2],[1,2,2],[2,1,2],[1,1,1,2],[4,1],[1,3,1],[2,2,1],[1,1,2,1],[3,1,1],[1,2,1,1],[2,1,1,1],[1,1,1,1,1];
...
For example [1,2] occupies the 5th position in the corresponding list of compositions and indeed (2*5/2^1-1)/2^2-1 = 0. - _Lorenzo Sauras Altuzarra_, Jan 22 2020
12 --binary expansion--> [1,1,0,0] --reverse--> [0,0,1,1] --positions of 1's--> [3,4] --prepend 0--> [0,3,4] --first differences--> [3,1]. - _Lorenzo Sauras Altuzarra_, Sep 29 2020
		

Crossrefs

Row n has length A001792(n-1). Row sums give A001787, n >= 1.
Cf. A000120 (binary weight), A001511, A006519, A011782, A026792, A065120.
A related ranking of finite sets is A048793/A272020.
All of the following consider the k-th row to be the k-th composition, ignoring the coarser grouping by sum.
- Indices of weakly increasing rows are A114994.
- Indices of weakly decreasing rows are A225620.
- Indices of strictly decreasing rows are A333255.
- Indices of strictly increasing rows are A333256.
- Indices of reversed interval rows A164894.
- Indices of interval rows are A246534.
- Indices of strict rows are A233564.
- Indices of constant rows are A272919.
- Indices of anti-run rows are A333489.
- Row k has A124767(k) runs and A333381(k) anti-runs.
- Row k has GCD A326674(k) and LCM A333226(k).
- Row k has Heinz number A333219(k).
Equals A163510+1, termwise.
Cf. A124734 (increasing length, then lexicographic).
Cf. A296774 (increasing length, then reverse lexicographic).
Cf. A337243 (increasing length, then colexicographic).
Cf. A337259 (increasing length, then reverse colexicographic).
Cf. A296773 (decreasing length, then lexicographic).
Cf. A296772 (decreasing length, then reverse lexicographic).
Cf. A337260 (decreasing length, then colexicographic).
Cf. A108244 (decreasing length, then reverse colexicographic).
Cf. A228369 (lexicographic).
Cf. A066099 (reverse lexicographic).
Cf. A228525 (colexicographic).

Programs

  • Haskell
    a228351 n = a228351_list !! (n - 1)
    a228351_list = concatMap a228351_row [1..]
    a228351_row 0 = []
    a228351_row n = a001511 n : a228351_row (n `div` 2^(a001511 n))
    -- Peter Kagey, Jun 27 2016
    
  • Maple
    # Program computing the sequence:
    A228351 := proc(n) local c, k, L, N: L, N := [], [seq(2*r, r = 1 .. n)]: for k in N do c := 0: while k != 0 do if gcd(k, 2) = 2 then k := k/2: c := c+1: else L := [op(L), op(c)]: k := k-1: c := 0: fi: od: od: L[n]: end: # Lorenzo Sauras Altuzarra, Jan 22 2020
    # Program computing the list of compositions:
    List := proc(n) local c, k, L, M, N: L, M, N := [], [], [seq(2*r, r = 1 .. 2^n-1)]: for k in N do c := 0: while k != 0 do if gcd(k, 2) = 2 then k := k/2: c := c+1: else L := [op(L), c]: k := k-1: c := 0: fi: od: M := [op(M), L]: L := []: od: M: end: # Lorenzo Sauras Altuzarra, Jan 22 2020
  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Differences[Prepend[bpe[n],0]],{n,0,30}] (* Gus Wiseman, Apr 01 2020 *)
  • Python
    from itertools import count, islice
    def A228351_gen(): # generator of terms
        for n in count(1):
            k = n
            while k:
                yield (s:=(~k&k-1).bit_length()+1)
                k >>= s
    A228351_list = list(islice(A228351_gen(),30)) # Chai Wah Wu, Jul 17 2023

A033428 a(n) = 3*n^2.

Original entry on oeis.org

0, 3, 12, 27, 48, 75, 108, 147, 192, 243, 300, 363, 432, 507, 588, 675, 768, 867, 972, 1083, 1200, 1323, 1452, 1587, 1728, 1875, 2028, 2187, 2352, 2523, 2700, 2883, 3072, 3267, 3468, 3675, 3888, 4107, 4332, 4563, 4800, 5043, 5292, 5547, 5808, 6075, 6348
Offset: 0

Views

Author

Keywords

Comments

The number of edges of a complete tripartite graph of order 3n, K_n,n,n. - Roberto E. Martinez II, Oct 18 2001
From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0; then a(n) is the sequence found by reading the line from 0 in the direction 0,3,.... The spiral begins:
.
33--32--31--30
/ \
34 16--15--14 29
/ / \ \
35 17 5---4 13 28
/ / / \ \ \
36 18 6 0---3--12--27--48-->
/ / / / / / / /
37 19 7 1---2 11 26 47
\ \ \ / / /
38 20 8---9--10 25 46
\ \ / /
39 21--22--23--24 45
\ /
40--41--42--43--44
(End)
Number of edges of the complete bipartite graph of order 4n, K_n,3n. - Roberto E. Martinez II, Jan 07 2002
Also the number of partitions of 6n + 3 into at most 3 parts. - R. K. Guy, Oct 23 2003
Also the number of partitions of 6n into exactly 3 parts. - Colin Barker, Mar 23 2015
Numbers n such that the imaginary quadratic field Q[sqrt(-n)] has six units. - Marc LeBrun, Apr 12 2006
The denominators of Hoehn's sequence (recalled by G. L. Honaker, Jr.) and the numerators of that sequence reversed. The sequence is 1/3, (1+3)/(5+7), (1+3+5)/(7+9+11), (1+3+5+7)/(9+11+13+15), ...; reduced to 1/3, 4/12, 9/27, 16/48, ... . For the reversal, the reduction is 3/1, 12/4, 27/9, 48/16, ... . - Enoch Haga, Oct 05 2007
Right edge of tables in A200737 and A200741: A200737(n, A000292(n)) = A200741(n, A100440(n)) = a(n). - Reinhard Zumkeller, Nov 21 2011
The Wiener index of the crown graph G(n) (n>=3). The crown graph G(n) is the graph with vertex set {x(1), x(2), ..., x(n), y(1), y(2), ..., y(n)} and edge set {(x(i), y(j)): 1<=i, j<=n, i/=j} (= the complete bipartite graph K(n,n) with horizontal edges removed). Example: a(3)=27 because G(3) is the cycle C(6) and 6*1 + 6*2 + 3*3 = 27. The Hosoya-Wiener polynomial of G(n) is n(n-1)(t+t^2)+nt^3. - Emeric Deutsch, Aug 29 2013
From Michel Lagneau, May 04 2015: (Start)
Integer area A of equilateral triangles whose side lengths are in the commutative ring Z[3^(1/4)] = {a + b*3^(1/4) + c*3^(1/2) + d*3^(3/4), a,b,c and d in Z}.
The area of an equilateral triangle of side length k is given by A = k^2*sqrt(3)/4. In the ring Z[3^(1/4)], if k = q*3^(1/4), then A = 3*q^2/4 is an integer if q is even. Example: 27 is in the sequence because the area of the triangle (6*3^(1/4), 6*3^(1/4), 6*3^(1/4)) is 27. (End)
a(n) is 2*sqrt(3) times the area of a 30-60-90 triangle with short side n. Also, 3 times the area of an n X n square. - Wesley Ivan Hurt, Apr 06 2016
Consider the hexagonal tiling of the plane. Extract any four hexagons adjacent by edge. This can be done in three ways. Fold the four hexagons so that all opposite faces occupy parallel planes. For all parallel projections of the resulting object, at least two correspond to area a(n) for side length of n of the original hexagons. - Torlach Rush, Aug 17 2022
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^(3*n))/(1 + q^(3*n)) = ( Sum_{n in Z} q^(n*(3*n+1)/2) ) / ( Product_{n >= 1} 1 + q^n ) = 1 - 2*q^3 + 2*q^12 - 2*q^27 + 2*q^48 - 2*q^75 + - .... - Peter Bala, Dec 30 2024

Examples

			From _Ilya Gutkovskiy_, Apr 13 2016: (Start)
Illustration of initial terms:
.                                              o
.                                             o o
.                                            o   o
.                          o                o  o  o
.                         o o              o  o o  o
.                        o   o            o  o   o  o
.           o           o  o  o          o  o  o  o  o
.          o o         o  o o  o        o  o  o o  o  o
.         o   o       o  o   o  o      o  o  o   o  o  o
.  o     o  o  o     o  o  o  o  o    o  o  o  o  o  o  o
. o o   o  o o  o   o  o  o o  o  o  o  o  o  o o  o  o  o
. n=1      n=2            n=3                 n=4
(End)
		

Crossrefs

Programs

  • Haskell
    a033428 = (* 3) . (^ 2)
    a033428_list = 0 : 3 : 12 : zipWith (+) a033428_list
       (map (* 3) $ tail $ zipWith (-) (tail a033428_list) a033428_list)
    -- Reinhard Zumkeller, Jul 11 2013
    
  • Magma
    [3*n^2: n in [0..50]]; // Vincenzo Librandi, May 18 2015
    
  • Maple
    seq(3*n^2, n=0..46); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    3 Range[0, 50]^2
    LinearRecurrence[{3, -3, 1}, {0, 3, 12}, 50] (* Harvey P. Dale, Feb 16 2013 *)
  • Maxima
    makelist(3*n^2,n,0,30); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n)=3*n^2
    
  • Python
    def a(n): return 3 * (n**2) # Torlach Rush, Aug 25 2022

Formula

a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2.
G.f.: 3*x*(1+x)/(1-x)^3. - R. J. Mathar, Sep 09 2008
Main diagonal of triangle in A132111: a(n) = A132111(n,n). - Reinhard Zumkeller, Aug 10 2007
A214295(a(n)) = -1. - Reinhard Zumkeller, Jul 12 2012
a(n) = A215631(n,n) for n > 0. - Reinhard Zumkeller, Nov 11 2012
a(n) = A174709(6n+2). - Philippe Deléham, Mar 26 2013
a(n) = a(n-1) + 6*n - 3, with a(0)=0. - Jean-Bernard François, Oct 04 2013
E.g.f.: 3*x*(1 + x)*exp(x). - Ilya Gutkovskiy, Apr 13 2016
a(n) = t(3*n) - 3*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): A000217(3*n) - 3*A000217(n). - Bruno Berselli, Aug 31 2017
a(n) = A000326(n) + A005449(n). - Bruce J. Nicholson, Jan 10 2020
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/18 (A086463).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/36. (End)
From Amiram Eldar, Feb 03 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sqrt(3)*sinh(Pi/sqrt(3))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(3)*sin(Pi/sqrt(3))/Pi. (End)
a(n) = A003215(n) - A016777(n). - Leo Tavares, Apr 29 2023

Extensions

Better description from N. J. A. Sloane, May 15 1998

A022998 If n is odd then n, otherwise 2n.

Original entry on oeis.org

0, 1, 4, 3, 8, 5, 12, 7, 16, 9, 20, 11, 24, 13, 28, 15, 32, 17, 36, 19, 40, 21, 44, 23, 48, 25, 52, 27, 56, 29, 60, 31, 64, 33, 68, 35, 72, 37, 76, 39, 80, 41, 84, 43, 88, 45, 92, 47, 96, 49, 100, 51, 104, 53, 108, 55, 112, 57, 116, 59, 120, 61, 124, 63, 128, 65, 132, 67
Offset: 0

Views

Author

Keywords

Comments

Also for n > 0: numerator of Sum_{i=1..n} 2/(i*(i+1)), denominator=A026741. - Reinhard Zumkeller, Jul 25 2002
For n > 2: a(n) = gcd(A143051((n-1)^2), A143051(1+(n-1)^2)) = A050873(A000290(n-1), A002522(n-1)). - Reinhard Zumkeller, Jul 20 2008
Partial sums give the generalized octagonal numbers A001082. - Omar E. Pol, Sep 10 2011
Multiples of 4 and odd numbers interleaved. - Omar E. Pol, Sep 25 2011
The Pisano period lengths modulo m appear to be A066043(m). - R. J. Mathar, Oct 08 2011
The partial sums a(n)/A026741(n+1) given by R. Zumkeller in a comment above are 2*n/(n+1) (telescopic sum), and thus converge to 2. - Wolfdieter Lang, Apr 09 2013
a(n) = numerator(H(n,1)), where H(n,1) = 2*n/(n+1) is the harmonic mean of 1 and n. a(n) = 2*n/gcd(2n, n+1) = 2*n/gcd(n+1,2). a(n) = A227041(n,1), n>=1. - Wolfdieter Lang, Jul 04 2013
a(n) = numerator of the mean (2n/(n+1), after reduction), of the compositions of n; denominator is given by A001792(n-1). - Clark Kimberling, Mar 11 2014
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n,m)) for all natural numbers n and m. The sequence of convergents of the 2-periodic continued fraction [0; 1, -4, 1, -4, ...] = 1/(1 - 1/(4 - 1/(1 - 1/(4 - ...)))) begins [0/1, 1/1, 4/3, 3/2, 8/5, 5/3, 12/7, ...]. The present sequence is the sequence of numerators. The sequence of denominators of the continued fraction convergents [1, 1, 3, 2, 5, 3, 7, ...] is A026741, also a strong divisibility sequence. Cf. A203976. - Peter Bala, May 19 2014
a(n) is also the length of the n-th line segment of a rectangular spiral on the infinite square grid. The vertices of the spiral are the generalized octagonal numbers. - Omar E. Pol, Jul 27 2018
a(n) is the number of petals of the Rhodonea curve r = a*cos(n*theta) or r = a*sin(n*theta). - Matt Westwood, Nov 19 2019

Crossrefs

Column 4 of A195151. - Omar E. Pol, Sep 25 2011
Cf. A000034, A001082 (partial sums).
Cf. A227041 (first column). - Wolfdieter Lang, Jul 04 2013
Row 2 of A349593. A385555, A385556, A385557, A385558, A385559, and A385560 are respectively rows 3, 4, 5-6, 7, 8, and 9-10.

Programs

  • Haskell
    a022998 n = a000034 (n + 1) * n
    a022998_list = zipWith (*) [0..] $ tail a000034_list
    -- Reinhard Zumkeller, Mar 31 2012
    
  • Magma
    [((-1)^n+3)*n/2: n in [0..70]]; // Vincenzo Librandi, Sep 17 2011
    
  • Maple
    A022998 := proc(n) if type(n,'odd') then n ; else 2*n; end if; end proc: # R. J. Mathar, Mar 10 2011
  • Mathematica
    Table[n (3 + (-1)^n)/2, {n, 0, 100}] (* Wesley Ivan Hurt, Dec 13 2013 *)
    Table[If[OddQ[n],n,2n],{n,0,150}] (* or *) Riffle[ 2*Range[ 0,150,2], Range[ 1,150,2]] (* Harvey P. Dale, Feb 06 2017 *)
  • PARI
    a(n)=if(n%2,n,2*n)
    
  • Python
    def A022998(n): return n if n&1 else n<<1 # Chai Wah Wu, Mar 05 2024
  • SageMath
    [n*(1+((n+1)%2)) for n in (0..80)] # G. C. Greubel, Jul 31 2022
    

Formula

Denominator of (n+1)*(n-1)*(2*n+1)/(2*n) (for n > 0).
a(n+1) = lcm(n, n+2)/n + lcm(n, n+2)/(n+2) for all n >= 1. - Asher Auel, Dec 15 2000
Multiplicative with a(2^e) = 2^(e+1), a(p^e) = p^e, p > 2.
G.f. x*(1 + 4*x + x^2)/(1-x^2)^2. - Ralf Stephan, Jun 10 2003
a(n) = 3*n/2 + n*(-1)^n/2 = n*(3 + (-1)^n)/2. - Paul Barry, Sep 04 2003
a(n) = A059029(n-1) + 1 = A043547(n+2) - 2.
a(n)*a(n+3) = -4 + a(n+1)*a(n+2).
a(n) = n*(((n+1) mod 2) + 1) = n^2 + 2*n - 2*n*floor((n+1)/2). - William A. Tedeschi, Feb 29 2008
a(n) = denominator((n+1)/(2*n)) for n >= 1; A026741(n+1) = numerator((n+1)/(2*n)) for n >= 1. - Johannes W. Meijer, Jun 18 2009
a(n) = 2*a(n-2) - a(n-4).
Dirichlet g.f. zeta(s-1)*(1+2^(1-s)). - R. J. Mathar, Mar 10 2011
a(n) = n * (2 - n mod 2) = n * A000034(n+1). - Reinhard Zumkeller, Mar 31 2012
a(n) = floor(2*n/(1 + (n mod 2))). - Wesley Ivan Hurt, Dec 13 2013
From Ilya Gutkovskiy, Mar 16 2017: (Start)
E.g.f.: x*(2*sinh(x) + cosh(x)).
It appears that a(n) is the period of the sequence k*(k + 1)/2 mod n. (End) [This is correct; see A349593. - Jianing Song, Jul 03 2025]
a(n) = Sum_{d | n} A345082(d). - Peter Bala, Jan 13 2024

Extensions

More terms from Michael Somos, Aug 07 2000

A033184 Catalan triangle A009766 transposed.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 14, 9, 4, 1, 42, 42, 28, 14, 5, 1, 132, 132, 90, 48, 20, 6, 1, 429, 429, 297, 165, 75, 27, 7, 1, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1
Offset: 1

Views

Author

Keywords

Comments

Triangle read by rows: T(n,k) = number of Dyck n-paths (A000108) containing k returns to ground level. E.g., the paths UDUUDD, UUDDUD each have 2 returns; so T(3,2)=2. Row sums over even-indexed columns are the Fine numbers A000957. - David Callan, Jul 25 2005
Triangular array of numbers a(n,k) = number of linear forests of k planted planar trees and n non-root nodes.
Catalan convolution triangle; with offset [0,0]: a(n,m)=(m+1)*binomial(2*n-m,n-m)/(n+1), n >= m >= 0, else 0. G.f. for column m: c(x)*(x*c(x))^m with c(x) g.f. for A000108 (Catalan). - Wolfdieter Lang, Sep 12 2001
a(n+1,m+1), n >= m >= 0, a(n,m) := 0, nA030528(n,m)*(-1)^(n-m).
a(n,k)=number of Dyck paths of semilength n and having k returns to the axis. Also number of Dyck paths of semilength n and having first peak at height k. Also number of ordered trees with n edges and root degree k. Also number of ordered trees with n edges and having the leftmost leaf at level k. Also number of parallelogram polyominoes of semiperimeter n+1 and having k cells in the leftmost column. - Emeric Deutsch, Mar 01 2004
Triangle T(n,k) with 1<=k<=n given by [0, 1, 1, 1, 1, 1, 1, 1, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] = 1; 0, 1; 0, 1, 1; 0, 2, 2, 1; 0, 5, 5, 3, 1; 0, 14, 14, 9, 4, 1; ... where DELTA is the operator defined in A084938; essentially the same triangle as A059365. - Philippe Deléham, Jun 14 2004
Number of Dyck paths of semilength and having k-1 peaks at height 2. - Emeric Deutsch, Aug 31 2004
Riordan array (c(x),x*c(x)), c(x) the g.f. of A000108. Inverse of Riordan array (1-x,x*(1-x)). - Paul Barry, Jun 22 2005
Subtriangle of triangle A106566. - Philippe Deléham, Jan 07 2007
T(n, k) is also the number of order-preserving and order-decreasing full transformations (of an n-chain) with exactly k fixed points. - Abdullahi Umar, Oct 02 2008
Triangle read by rows, product of A065600 and A007318 considered as infinite lower triangular arrays; A033184 = A065600*A007318. - Philippe Deléham, Dec 07 2009
The formula stating "Column k is the k-fold convolution of column 1" is equivalent to repeatedly applying M to [1,0,0,0,...], where M is an upper triangular matrix of all 1's with an additional single subdiagonal of 1's. - Gary W. Adamson, Jun 06 2011
4^(n-1) = (n-th row terms) dot (first n terms in A001792), where A001792 = binomial transform of the natural numbers: (1, 3, 8, 20, 48, 112, ...). Example: 4^4 = 256 = (14, 14, 9, 4, 1) dot (1, 3, 8, 20, 48) = (42 + 42 + 28 + 14 + 5 + 1) = 256. - Gary W. Adamson, Jun 17 2011
The e.g.f. for the n-th subdiagonal of the triangle has the form exp(x)*P(n,x), where P(n,x) is the e.g.f. for row n of triangle A039599. For example, the third row of A039599 is [5, 9, 5, 1] and so the third subdiagonal sequence of this triangle [5, 14, 28, 48, 75, ...] has the e.g.f. exp(x)*(5 + 9*x + 5*x^2/2! + x^3/3!). - Peter Bala, Oct 15 2019
Antidiagonals of convolution matrix of Table 1.3, p. 397, of Hoggatt and Bicknell. - Tom Copeland, Dec 25 2019
Also the convolution triangle of A120588(n) = A000108(n-1) for n > 0. - Peter Luschny, Oct 07 2022

Examples

			Triangle begins:
  ---+-----------------------------------
  n\k|   1    2    3    4    5    6    7
  ---+-----------------------------------
   1 |   1
   2 |   1    1
   3 |   2    2    1
   4 |   5    5    3    1
   5 |  14   14    9    4    1
   6 |  42   42   28   14    5    1
   7 | 132  132   90   48   20    6    1
From _Peter Bala_, Feb 17 2025: (Start)
The array factorizes as an infinite product (read from right to left) of triangular arrays:
  / 1               \        / 1              \ / 1              \ / 1             \
  | 1    1           |       | 0   1          | | 0  1           | | 1  1          |
  | 2    2   1       | = ... | 0   0   1      | | 0  1   1       | | 1  1  1       |
  | 5    5   3   1   |       | 0   0   1  1   | | 0  1   1  1    | | 1  1  1  1    |
  |14   14   9   4  1|       | 0   0   1  1  1| | 0  1   1  1  1 | | 1  1  1  1  1 |
  |...               |       |...             | |...             | |...            |
See Bala, Example 2.1. (End)
		

Crossrefs

Rows of Catalan triangle A009766 read backwards.
a(n, 1) = A000108(n-1). Row sums = A000108(n) (Catalan).
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
Cf. A116364 (row squared sums), A120588.

Programs

  • Haskell
    a033184 n k = a033184_tabl !! (n-1) !! (k-1)
    a033184_row n = a033184_tabl !! (n-1)
    a033184_tabl = map reverse a009766_tabl
    -- Reinhard Zumkeller, Feb 19 2014
    
  • Magma
    /* As triangle: */ [[Binomial(2*n-k,n)*k/(2*n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 12 2015
  • Maple
    a := proc(n,k) if k<=n then k*binomial(2*n-k,n)/(2*n-k) else 0 fi end: seq(seq(a(n,k),k=1..n),n=1..10);
    # Uses function PMatrix from A357368. Adds row and column for n, k = 0.
    PMatrix(10, n -> binomial(2*(n-1), n-1) / n); # Peter Luschny, Oct 07 2022
  • Mathematica
    nn = 10; c = (1 - (1 - 4 x)^(1/2))/(2 x); f[list_] := Select[list, # > 0 &]; Map[f, Drop[CoefficientList[Series[y x c/(1 - y x c), {x, 0, nn}], {x, y}],1]] //Flatten (* Geoffrey Critzer, Jan 31 2012 *)
    Flatten[Reverse /@ NestList[Append[Accumulate[#], Last[Accumulate[#]]] &, {1}, 9]] (* Birkas Gyorgy, May 19 2012 *)
    T[1, 1] := 1; T[n_, k_]/;1<=k<=n := T[n, k] = T[n-1, k-1]+T[n, k+1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Oliver Seipel, Dec 31 2024 *)
  • PARI
    T(n,k)=binomial(2*(n-k)+k,n-k)*(k+1)/(n+1) \\ Paul D. Hanna, Aug 11 2008
    
  • Sage
    # The simplest way to construct the triangle.
    def A033184_triangle(n) :
        T = [0 for i in (0..n)]
        for k in (1..n) :
            T[k] = 1
            for i in range(k-1,0,-1) :
                T[i] = T[i-1] + T[i+1]
            print([T[i] for i in (1..k)])
    A033184_triangle(10) # Peter Luschny, Jan 27 2012
    

Formula

Column k is the k-fold convolution of column 1. The triangle is also defined recursively by (i) entries outside triangle are 0, (ii) top left entry is 1, (iii) every other entry is sum of its east and northwest neighbor. - David Callan, Jul 25 2005
G.f.: t*x*c/(1-t*x*c), where c=(1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108). - Emeric Deutsch, Mar 01 2004
T(n+1,k+1) = C(2*n-k, n-k)*(k+1)/(n+1). - Paul D. Hanna, Aug 11 2008
T((m+1)*n+r-1,m*n+r-1)*r/(m*n+r) = Sum_{k=1..n} (k/n)*T((m+1)*n-k-1,m*n-1)*T(r+k,r), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n-1,m-1) = (m/n)*Sum_{k=1..n-m+1} (k*A000108(k-1)*T(n-k-1,m-2)), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n,k) = C(2*n-k-1,n-k) - C(2*n-k-1,n-k-1). - Dennis P. Walsh, Mar 19 2012
T(n,k) = C(2*n-k,n)*k/(2*n-k). - Dennis P. Walsh, Mar 19 2012
T(n,k) = T(n,k-1) - T(n-1,k-2). - Dennis P. Walsh, Mar 19 2012
G.f.: 2*x*y / (1 + sqrt(1 - 4*x) - 2*x*y) = Sum_{n >= k > 0} T(n, k) * x^n * y^k. - Michael Somos, Jun 06 2016

A045623 Number of 1's in all compositions of n+1.

Original entry on oeis.org

1, 2, 5, 12, 28, 64, 144, 320, 704, 1536, 3328, 7168, 15360, 32768, 69632, 147456, 311296, 655360, 1376256, 2883584, 6029312, 12582912, 26214400, 54525952, 113246208, 234881024, 486539264, 1006632960, 2080374784, 4294967296, 8858370048, 18253611008, 37580963840
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the n X n matrix m_(i,j) = 2 + abs(i-j) then det(M_n) = (-1)^(n-1)*a(n-1). - Benoit Cloitre, May 28 2002
a(n) is the number of triangulations of a regular (n+3)-gon in which every triangle shares at least one side with the polygon itself. - David Callan, Mar 25 2004
Number of compositions of j+n, j>n and j the maximum part. E.g. a(4) is derived from the number of compositions of, for example: 54(2), 531(6), 522(3), 5211(12) and 51111(5) giving 2+6+3+12+5=28. - Jon Perry, Sep 13 2005
If X_1,X_2,...,X_n are 2-blocks of a (2n+2)-set X then, for n>=1, a(n+1) is the number of (n+1)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007
Generated from iterates of M * [1,1,1,...], where M = an infinite triadiagonal matrix with (1,1,1,...) in the main and superdiagonals and (1,0,0,0,...) in the subdiagonal. - Gary W. Adamson, Jan 04 2009
a(n) is the number of weak compositions of n with exactly 1 part equal to 0. - Milan Janjic, Jun 27 2010
An elephant sequence, see A175654. For the corner squares 16 A[5] vectors, with decimal values between 19 and 400, lead to this sequence. For the central square these vectors lead to the companion sequence A045891 (without the first leading 1). - Johannes W. Meijer, Aug 15 2010
Equals first finite difference row of A001792: (1, 3, 8, 20, 48, 112, ...). - Gary W. Adamson, Oct 26 2010
With alternating signs the g.f. is: (1 + x)^2/(1 + 2*x)^2.
Number of 132-avoiding permutations of [n+2] containing exactly one 213 pattern. - David Scambler, Nov 07 2011
a(n) is the number of 1's in all compositions of n+1 = the number of 2's in all compositions of n+2 = the number of 3's in all compositions of n+3 = ... So the partial sums = A001792. - Geoffrey Critzer, Feb 12 2012
Also number of compositions of n into 2 sorts of parts where all parts of the first sort precede all parts of the second sort; see example. - Joerg Arndt, Apr 28 2013
a(n) is also the difference of the total number of parts between all compositions of n+1 and all compositions of n. The equivalent sequence for partitions is A138137. - Omar E. Pol, Aug 28 2013
Except for an initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = (1 - S)^2; see A291000. - Clark Kimberling, Aug 24 2017
For a composition of n, the total number of runs of parts of size k is a(n-k) - a(n-2k). - Gregory L. Simay, Feb 17 2018
a(n) is the number of binary trees on n+1 nodes that are isomorphic to a path graph. The ratio of a(n)/A000108(n+1) gives the probability that a random Catalan tree on n+1 nodes is isomorphic to a path graph. - Marcel K. Goh, May 09 2020
a(n) is the number of words of length n over the alphabet {0,1,2} such that the first letter is not 2 and the last 1 occurs before the first 0. - Henri Mühle, Mar 08 2021
Also the number of "special permutations" in the Weng and Zagier reference. - F. Chapoton, Sep 30 2022
a(n-k) is the total number of runs of 1s of length k over all binary n-strings. - Félix Balado, Dec 11 2022

Examples

			E.g. a(2)=5 because in the compositions of 3, namely 3,2+1,1+2,1+1+1, we have five 1's altogether.
There are a(3)=12 compositions of 3 into 2 sorts of parts where all parts of the first sort precede all parts of the second sort. Here p:s stands for "part p of sort s":
01:  [ 1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:1  ]
03:  [ 1:0  1:1  1:1  ]
04:  [ 1:0  2:0  ]
05:  [ 1:0  2:1  ]
06:  [ 1:1  1:1  1:1  ]
07:  [ 1:1  2:1  ]
08:  [ 2:0  1:0  ]
09:  [ 2:0  1:1  ]
10:  [ 2:1  1:1  ]
11:  [ 3:0  ]
12:  [ 3:1  ]
- _Joerg Arndt_, Apr 28 2013
For the compositions of 6, the total number of runs of parts of size 2 is a(6-2) - a(6-2*2) = 28 - 5 = 23, enumerated as follows (with the runs of 2 enclosed in []): 4,[2]; [2],4; [2],3,1; [2],1,3; 3,[2],1; 1,[2],3; 3,1,[2]; 1,3,[2]; [2,2,2]; [2,2],1,1; 1,[2,2],1; 1,1,[2,2]; [2],1,[2],1; 1,[2],1,[2]; [2],1,1,[2]; [2],1,1,1,1; 1,[2],1,1,1; 1,1,[2],1,1; 1,1,1,[2],1; and 1,1,1,1[2]. - _Gregory L. Simay_, Feb 17 2018
There are a(3)=12 triwords of length 3: (0,0,0), (0,0,2), (0,2,0), (0,2,2), (1,0,0), (1,0,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2). - _Henri Mühle_, Mar 08 2021
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Convolution of A011782.
Row sums of A103450, A152195, A177992, A198069.
Cf. A001792.

Programs

  • GAP
    a:=[2,5];; for n in [3..40] do a[n]:=4*a[n-1]-4*a[n-2]; od; Concatenation([1],a); # Muniru A Asiru, Oct 16 2018
    
  • Haskell
    a045623 n = a045623_list !! n
    a045623_list = tail $ f a011782_list [] where
       f (u:us) vs = sum (zipWith (*) vs $ reverse ws) : f us ws
         where ws = u : vs
    -- Reinhard Zumkeller, Jul 21 2013
    
  • Maple
    seq(ceil(1/4*2^n*(n+3)),n=0..50);
  • Mathematica
    Table[If[n==0, 1, 2^(n-2)(n+3)], {n, 0, 29}] (* Robert G. Wilson v, Jun 27 2005 *)
    CoefficientList[Series[(1 -2x +x^2)/(1-2x)^2, {x, 0, 30}], x] (* or *)
    LinearRecurrence[{4, -4}, {1, 2, 5}, 31] (* Robert G. Wilson v, Feb 18 2018 *)
  • Maxima
    a(n):=sum(((2*m+2)*n-2*m^2+1)*binomial(2*n+2,2*m+1),m,0,n)/((4*n+2)*2^n); /* Vladimir Kruchinin, Nov 01 2020 */
  • PARI
    a(n)=if(n<1,n==0,(n+3)*2^(n-2))
    

Formula

Sum_{k = 0..n} (k+2)*binomial(n,k) gives the sequence but with a different offset: 2, 5, 12, 28, 64, 144, 320, 704, 1536, ... - N. J. A. Sloane, Jan 30 2008 - formula corrected by Robert G. Wilson v, Feb 26 2018
Binomial transform of 1,1,2,2,3,3,... . - Paul Barry, Mar 06 2003
a(0)=1, a(n) = (n+3)*2^(n-2), n >= 1.
a(n+1) = 2*a(n) + 2^(n-1), n>0.
G.f.: (1-x)^2/(1-2*x)^2. - Detlef Pauly (dettodet(AT)yahoo.de), Mar 03 2003
G.f.: 1/(1-x-x^2-x^3-...)^2. - Jon Perry, Jul 04 2004
a(n) = Sum_{0 <= j <= k <= n} binomial(n, j+k). - Benoit Cloitre, Oct 14 2004
a(n) = Sum_{k=0..n} C(n, k)*floor((k+2)/2). - Paul Barry, Mar 06 2003
a(n+1) - 2*a(n) = A131577(n). - Paul Curtz, May 18 2008
G.f.: 1/(1-x) + Q(0)*x/(1-x)^3, where Q(k)= 1 + (k+1)*x/(1 - x - x*(1-x)/(x + (k+1)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 25 2013
a(n) = Sum_{k=0..n} (k+1)*C(n-1,n-k). - Peter Luschny, Apr 20 2015
a(n) = Sum_{k=0..n-1} a(k) + 2^(n-1) = A001787(n-1) + 2^n, a(0)=1. - Yuchun Ji, May 22 2020
a(n) = Sum_{m=0..n}((2*m+2)*n-2*m^2+1)*C(2*n+2,2*m+1)/((4*n+2)*2^n). - Vladimir Kruchinin, Nov 01 2020
E.g.f.: (1 + exp(2*x)*(3 + 2*x))/4. - Stefano Spezia, Dec 19 2021
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 32*log(2) - 61/3.
Sum_{n>=0} (-1)^n/a(n) = 32*log(3/2) - 37/3. (End)

A027471 a(n) = (n-1)*3^(n-2), n > 0.

Original entry on oeis.org

0, 1, 6, 27, 108, 405, 1458, 5103, 17496, 59049, 196830, 649539, 2125764, 6908733, 22320522, 71744535, 229582512, 731794257, 2324522934, 7360989291, 23245229340, 73222472421, 230127770466, 721764371007, 2259436291848
Offset: 1

Views

Author

Keywords

Comments

Arithmetic derivative of 3^(n-1): a(n) = A003415(A000244(n-1)). - Reinhard Zumkeller, Feb 26 2002 [Offset corrected by Jianing Song, May 28 2024]
Binomial transform of A053220(n+1) is a(n+2). Binomial transform of A001787 is a(n+1). Binomial transform of A045883(n-1). - Michael Somos, Jul 10 2003
If X_1,X_2,...,X_n are 3-blocks of a (3n+1)-set X then, for n >= 1, a(n+2) is the number of (n+1)-subsets of X intersecting each X_i, (i=1,2,...,n). > - Milan Janjic, Nov 18 2007
Let S be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xSy if x is a subset of y. Then a(n+1) = the sum of the differences in size (i.e., |y|-|x|) for all (x, y) of S. - Ross La Haye, Nov 19 2007
Number of substrings 00 (or 11, or 22) in all ternary words of length n: a(3) = 6 because we have 000, 001, 002, 100, 200 (with 000 contributing two substrings). - Darrell Minor, Jul 17 2025

Crossrefs

Second column of A027465.
Partial sums of A081038.
Cf. A006234.

Programs

  • GAP
    List([1..40], n-> (n-1)*3^(n-2)); # Muniru A Asiru, Jul 15 2018
    
  • Magma
    [(n-1)*3^(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 09 2011
    
  • Maple
    seq((n-1)*3^(n-2), n=1..40); # Muniru A Asiru, Jul 15 2018
  • Mathematica
    Table[(n-1)3^(n-2),{n,30}] (* or *)
    LinearRecurrence[{6,-9},{0,1},30] (* Harvey P. Dale, Apr 14 2016 *)
    Range[0, 24]! CoefficientList[ Series[x*Exp[3 x], {x, 0, 24}], x] (* Robert G. Wilson v, Aug 03 2018 *)
  • PARI
    a(n)=if(n<1, 0, (n-1)*3^(n-2));
    
  • Sage
    [3^(n-2)*(n-1) for n in (1..30)] # G. C. Greubel, May 20 2021

Formula

From Wolfdieter Lang: (Start)
G.f.: (x/(1-3*x))^2.
E.g.f.: (1 + (3*x-1)*exp(3*x))/9.
a(n) = 3^(n-2)*(n-1) (convolution of A000244, powers of 3, with itself). (End)
a(n) = 6*a(n-1) - 9*a(n-2), n > 2, a(1)=0, a(2)=1. - Barry E. Williams, Jan 13 2000
a(n) = A036290(n-1)/3, for n>0. - Paul Barry, Feb 06 2004 [corrected by Jerzy R Borysowicz, Apr 03 2025]
a(n) = Sum_{k=0..n} 3^(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2.
From Paul Barry, Feb 15 2005: (Start)
a(n) = (1/3)*Sum_{k=0..2n} T(n, k)*k, where T(n, k) is given by A027907.
a(n) = (1/3)*Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j+k).
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j-k).
a(n+1) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j+k+1). (End)
Sum_{n>=2} 1/a(n) = 3*log(3/2). - Jaume Oliver Lafont, Sep 19 2009
a(n) = 3*a(n-1) + 3^(n-2) (with a(1)=0). - Vincenzo Librandi, Dec 30 2010
Sum_{n>=2} (-1)^n/a(n) = 3*log(4/3). - Amiram Eldar, Oct 28 2020

Extensions

Edited by Michael Somos, Jul 10 2003

A001793 a(n) = n*(n+3)*2^(n-3).

Original entry on oeis.org

1, 5, 18, 56, 160, 432, 1120, 2816, 6912, 16640, 39424, 92160, 212992, 487424, 1105920, 2490368, 5570560, 12386304, 27394048, 60293120, 132120576, 288358400, 627048448, 1358954496, 2936012800, 6325010432, 13589544960, 29125246976
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Chebyshev T polynomials: the subdiagonal A053120(n+3, n-1), for n > = 1. [rewritten by Wolfdieter Lang, Nov 25 2019]
Number of 132-avoiding permutations of [n+3] containing exactly two 123 patterns. - Emeric Deutsch, Jul 13 2001
Number of Dyck paths of semilength n+2 having pyramid weight n+1 (for pyramid weight see Denise and Simion). Example: a(2)=5 because the Dyck paths of semilength 4 having pyramid weight 3 are: (ud)u(ud)(ud)d, u(ud)(ud)d(ud), u(ud)(ud)(ud)d, u(ud)(uudd)d and u(uudd)(ud)d [here u=(1,1), d=(1,-1) and the maximal pyramids, of total length 3, are shown between parentheses]. - Emeric Deutsch, Mar 10 2004
a(n) is the number of dissections of a regular (n+3)-gon using n-1 noncrossing diagonals such that every piece of the dissection contains at least one non-base side of the (n+3)-gon. (One side of the (n+3)-gon is designated the base.) - David Callan, Mar 23 2004
If X_1,X_2,...,X_n are 2-blocks of a (2n+1)-set X then a(n) is the number of (n+2)-subsets of X intersecting each X_i, (i=1..n). - Milan Janjic, Nov 18 2007
The second corrector line for transforming 2^n offset 0 with a leading 1 into the Fibonacci sequence. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009
Sum of all nodes of all integer compositions of n, see example. - Olivier Gérard, Oct 22 2011
Number of compositions of 2n with exactly two odd summands (see example). - Mamuka Jibladze, Sep 04 2013
4*a(n) is the number of North-East paths from (0,0) to (n+2,n+2) with exactly two east steps below y = x-1 or above y = x+1. It is related to paired pattern P_1 and P_6 in Pan and Remmel's link. - Ran Pan, Feb 04 2016
From Paul Weisenhorn, Oct 18 2019: (Start)
The polynomials S(n,x)= Sum_(k>=1) b(n,k)*x^k has the recurrence relation S(n+2,x)=2*S(n+1,x))-x*S(n) with S(1,x)=1, S(2,x)=2-x and are generated by the coefficients b(n,k). b(n,k) is defined by b(n,k)=Sum_(j=1..k) binomials(k+1,j)*b(n-j,k) or by b(n,k)=((n-2+k)!*(n-1+2k)*2^n)/(4*(n-1)!*k!). b(n,1)=A001792, b(n,2)=A001793, b(n,3)=A001794, b(n,4)=A006974, b(n,5)=A006975, b(n,6)=A006976, b(n,7)=A209404.
The general formula for the sequences with k>=1: a(n)=((n-2+k)!*(n-1+2k)*2^n)/(4*(n-1)!*k!) with n >= 1. (End) [See a comment in A053120 on subdiagonal sequences. - Wolfdieter Lang, Jan 03 2020]

Examples

			a(2)=5 since 32415, 32451, 34125, 42135 and 52134 are the only 132-avoiding permutations of 12345 containing exactly two increasing subsequences of length 3.
a(4)=56: the compositions of 4 are 4, 3+1, 1+3, 2+2, 2+1+1, 1+2+1, 1+1+2, 1+1+1+1, the corresponding nodes (partial sums) are {0, 4}, {0, 3, 4}, {0, 1, 4}, {0, 2, 4}, {0, 2, 3, 4}, {0, 1, 3, 4}, {0, 1, 2, 4}, {0, 1, 2, 3, 4}, with individual sums {4, 7, 5, 6, 9, 8, 7, 10} and total 56. - _Olivier Gérard_, Oct 22 2011
The a(3)=18 compositions of 2*3=6 with two odd summands are 5+1, 1+5, 3+3, 4+1+1, 1+4+1, 1+1+4, 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2. - _Mamuka Jibladze_, Sep 04 2013
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A039991(n+3, 4) = A055252(n, 1).
Cf. A053120.

Programs

Formula

G.f.: x*(1-x)/(1-2*x)^3. Binomial transform of squares [1, 4, 9, ...].
a(n) = Sum_{k=0..floor((n+4)/2)} C(n+4, 2k)*C(k, 2). - Paul Barry, May 15 2003
With two leading zeros, binomial transform of quarter-squares A002620. - Paul Barry, May 27 2003
a(n) = Sum_{k=0..n+2} C(n+2, k) * floor(k^2/4). - Paul Barry, May 27 2003
a(n) = Sum_{i=0..j} binomial(i+1, 2)*binomial(j, i). - Jon Perry, Feb 26 2004
With one leading zero, binomial transform of triangular numbers A000217. - Philippe Deléham, Aug 02 2005
a(n) = Sum_{k=0..n+1} (-1)^(n-k+1)*C(k, n-k+1)*k*C(2k, k)/2. - Paul Barry, Oct 07 2005
Left-shifted sequence is binomial transform of left-shifted squares (A000290). - Franklin T. Adams-Watters, Nov 29 2006
Binomial transform of a(n) = n^2 offset 1. a(3)=18. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009
a(n) = (1/n) * Sum_{k=0..n} binomial(n,k)*k^3. - Gary Detlefs, Nov 26 2011
For n > 1, a(n) = Sum_{k=0..n-1} Sum_{i=0..n} (k+2) * C(n-2,i). - Wesley Ivan Hurt, Sep 20 2017
a(n) = a(-3-n)*2^(2*n+3), a(n)*(n+3) = -A058645(-3-n)*2^(2*n+3) for all n in Z. - Michael Somos, Apr 19 2019
E.g.f.: (1/2)*exp(2*x)*x*(2 + x). - Stefano Spezia, Aug 17 2019
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=1} 1/a(n) = 128/9 - 56*log(2)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 24*log(3/2) - 80/9. (End)

A030528 Triangle read by rows: a(n,k) = binomial(k,n-k).

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 3, 4, 1, 0, 0, 1, 6, 5, 1, 0, 0, 0, 4, 10, 6, 1, 0, 0, 0, 1, 10, 15, 7, 1, 0, 0, 0, 0, 5, 20, 21, 8, 1, 0, 0, 0, 0, 1, 15, 35, 28, 9, 1, 0, 0, 0, 0, 0, 6, 35, 56, 36, 10, 1, 0, 0, 0, 0, 0, 1, 21, 70, 84, 45, 11, 1, 0, 0, 0, 0, 0, 0, 7, 56, 126, 120, 55, 12, 1
Offset: 1

Views

Author

Keywords

Comments

A convolution triangle of numbers obtained from A019590.
a(n,m) := s1(-1; n,m), a member of a sequence of triangles including s1(0; n,m)= A023531(n,m) (unit matrix) and s1(2; n,m)= A007318(n-1,m-1) (Pascal's triangle).
The signed triangular matrix a(n,m)*(-1)^(n-m) is the inverse matrix of the triangular Catalan convolution matrix A033184(n+1,m+1), n >= m >= 0, with A033184(n,m) := 0 if n
Riordan array (1+x, x(1+x)). The signed triangle is the Riordan array (1-x,x(1-x)), inverse to (c(x),xc(x)) with c(x) g.f. for A000108. - Paul Barry, Feb 02 2005 [with offset 0]
Also, a(n,k)=number of compositions of n into k parts of 1's and 2's. Example: a(6,4)=6 because we have 2211, 2121, 2112, 1221, 1212 and 1122. - Emeric Deutsch, Apr 05 2005 [see MacMahon and Riordan. - Wolfdieter Lang, Jul 27 2023]
Subtriangle of A026729. - Philippe Deléham, Aug 31 2006
a(n,k) is the number of length n-1 binary sequences having no two consecutive 0's with exactly k-1 1's. Example: a(6,4)=6 because we have 01011, 01101, 01110, 10101, 10110, 11010. - Geoffrey Critzer, Jul 22 2013
Mirrored, shifted Fibonacci polynomials of A011973. The polynomials (illustrated below) of this entry have the property that p(n,t) = t * [p(n-1,t) + p(n-2,t)]. The additive properties of Pascal's triangle (A007318) are reflected in those of these polynomials, as can be seen in the Example Section below and also when the o.g.f. G(x,t) below is expanded as the series x*(1+x) + t * [x*(1+x)]^2 + t^2 * [x*(1+x)]^3 + ... . See also A053122 for a relation to Cartan matrices. - Tom Copeland, Nov 04 2014
Rows of this entry appear as columns of an array for an infinitesimal generator presented in the Copeland link. - Tom Copeland, Dec 23 2015
For n >= 2, the n-th row is also the coefficients of the vertex cover polynomial of the (n-1)-path graph P_{n-1}. - Eric W. Weisstein, Apr 10 2017
With an additional initial matrix element a_(0,0) = 1 and column of zeros a_(n,0) = 0 for n > 0, these are antidiagonals read from bottom to top of the numerical coefficients of the Maurer-Cartan form matrix of the Leibniz group L^(n)(1,1) presented on p. 9 of the Olver paper, which is generated as exp[c. * M] with (c.)^n = c_n and M the Lie infinitesimal generator A218272. Cf. A011973. And A169803. - Tom Copeland, Jul 02 2018

Examples

			Triangle starts:
  [ 1]  1
  [ 2]  1   1
  [ 3]  0   2   1
  [ 4]  0   1   3   1
  [ 5]  0   0   3   4   1
  [ 6]  0   0   1   6   5   1
  [ 7]  0   0   0   4  10   6   1
  [ 8]  0   0   0   1  10  15   7   1
  [ 9]  0   0   0   0   5  20  21   8   1
  [10]  0   0   0   0   1  15  35  28   9   1
  [11]  0   0   0   0   0   6  35  56  36  10   1
  [12]  0   0   0   0   0   1  21  70  84  45  11   1
  [13]  0   0   0   0   0   0   7  56 126 120  55  12   1
  ...
From _Tom Copeland_, Nov 04 2014: (Start)
For quick comparison to other polynomials:
  p(1,t) = 1
  p(2,t) = 1 + 1 t
  p(3,t) = 0 + 2 t + 1 t^2
  p(4,t) = 0 + 1 t + 3 t^2 + 1 t^3
  p(5,t) = 0 + 0   + 3 t^2 + 4 t^3 +  1 t^4
  p(6,t) = 0 + 0   + 1 t^2 + 6 t^3 +  5 t^4 +  1 t^5
  p(7,t) = 0 + 0   + 0     + 4 t^3 + 10 t^4 +  6 t^5 + 1 t^6
  p(8,t) = 0 + 0   + 0     + 1 t^3 + 10 t^4 + 15 t^5 + 7 t^6 + 1 t^7
  ...
Reading along columns gives rows for Pascal's triangle. (End)
		

References

  • P. A. MacMahon, Combinatory Analysis, Two volumes (bound as one), Chelsea Publishing Company, New York, 1960, Vol. I, nr. 124, p. 151.
  • John Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, London, 1958. eq. (35), p.124, 11. p. 154.

Crossrefs

Row sums A000045(n+1) (Fibonacci). a(n, 1)= A019590(n) (Fermat's last theorem). Cf. A049403.

Programs

  • Magma
    /* As triangle */ [[Binomial(k, n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Nov 05 2014
  • Maple
    for n from 1 to 12 do seq(binomial(k,n-k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Apr 05 2005
  • Mathematica
    nn=10;CoefficientList[Series[(1+x)/(1-y x - y x^2),{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Jul 22 2013 *)
    Table[Binomial[k, n - k], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, Dec 23 2015 *)
    CoefficientList[Table[x^(n/2 - 1) Fibonacci[n + 1, Sqrt[x]], {n, 10}],
       x] // Flatten (* Eric W. Weisstein, Apr 10 2017 *)

Formula

a(n, m) = 2*(2*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: (x*(1+x))^m.
As a number triangle with offset 0, this is T(n, k) = Sum_{i=0..n} (-1)^(n+i)*binomial(n, i)*binomial(i+k+1, 2k+1). The antidiagonal sums give the Padovan sequence A000931(n+5). Inverse binomial transform of A078812 (product of lower triangular matrices). - Paul Barry, Jun 21 2004
G.f.: (1 + x)/(1 - y*x - y*x^2). - Geoffrey Critzer, Jul 22 2013 [offset 0] [with offset 1: g.f. of row polynomials in y: x*(1+x)*y/(1 - x*(1+x)*y). - Wolfdieter Lang, Jul 27 2023]
From Tom Copeland, Nov 04 2014: (Start)
O.g.f: G(x,t) = x*(1+x) / [1 - t*x*(1+x)] = -P[Cinv(-x),t], where P(x,t)= x / (1 + t*x) and Cinv(x)= x*(1-x) are the compositional inverses in x of Pinv(x,t) = -P(-x,t) = x / (1 - t*x) and C(x) = [1-sqrt(1-4*x)]/2, an o.g.f. for the shifted Catalan numbers A000108.
Therefore, Ginv(x,t) = -C[Pinv(-x,t)] = {-1 + sqrt[1 + 4*x/(1+t*x)]}/2, which is -A124644(-x,t).
This places this array in a family of arrays related by composition of P and C and their inverses and interpolation by t, such as A091867 and A104597, and associated to the Catalan, Motzkin, Fine, and Fibonacci numbers. Cf. A104597 (polynomials shifted in t) A125145, A146559, A057078, A000045, A155020, A125145, A039717, A001792, A057862, A011973, A115139. (End)

Extensions

More terms from Emeric Deutsch, Apr 05 2005
Previous Showing 11-20 of 215 results. Next