1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1
Offset: 1
A002260
Triangle read by rows: T(n,k) = k for n >= 1, k = 1..n.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Offset: 1
Angele Hamel (amh(AT)maths.soton.ac.uk)
First six rows:
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
- Clark Kimberling, "Fractal sequences and interspersions," Ars Combinatoria 45 (1997) 157-168. (Introduces upper trimming, lower trimming, and signature sequences.)
- M. Myers, Smarandache Crescendo Subsequences, R. H. Wilde, An Anthology in Memoriam, Bristol Banner Books, Bristol, 1998, p. 19.
- F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006.
- N. J. A. Sloane, Table of n, a(n) for n = 1..11325
- Franklin T. Adams-Watters, Doubly Fractal Sequences
- Matin Amini and Majid Jahangiri, A Novel Proof for Kimberling's Conjecture on Doubly Fractal Sequences, arXiv:1612.09481 [math.NT], 2017.
- Bruno Berselli, Illustration of the initial terms
- Jerry Brown et al., Problem 4619, School Science and Mathematics (USA), Vol. 97(4), 1997, pp. 221-222.
- Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida, and Daisy Ann A. Disu, On Fractal Sequences, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113.
- Clark Kimberling, Fractal sequences
- Clark Kimberling, Numeration systems and fractal sequences, Acta Arithmetica 73 (1995) 103-117.
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- F. Smarandache, Sequences of Numbers Involved in Unsolved Problems.
- Aaron Snook, Augmented Integer Linear Recurrences, 2012. - _N. J. A. Sloane_, Dec 19 2012
- Michael Somos, Sequences used for indexing triangular or square arrays
- Eric Weisstein's World of Mathematics, Smarandache Sequences
- Eric Weisstein's World of Mathematics, Unit Fraction
-
a002260 n k = k
a002260_row n = [1..n]
a002260_tabl = iterate (\row -> map (+ 1) (0 : row)) [1]
-- Reinhard Zumkeller, Aug 04 2014, Jul 03 2012
-
at:=0; for n from 1 to 150 do for i from 1 to n do at:=at+1; lprint(at,i); od: od: # N. J. A. Sloane, Nov 01 2006
seq(seq(i,i=1..k),k=1..13); # Peter Luschny, Jul 06 2009
-
FoldList[{#1, #2} &, 1, Range[2, 13]] // Flatten (* Robert G. Wilson v, May 10 2011 *)
Flatten[Table[Range[n],{n,20}]] (* Harvey P. Dale, Jun 20 2013 *)
-
T(n,k):=sum((i+k)*binomial(i+k-1,i)*binomial(k,n-i-k+1)*(-1)^(n-i-k+1),i,max(0,n+1-2*k),n-k+1); /* Vladimir Kruchinin, Oct 18 2013 */
-
t1(n)=n-binomial(floor(1/2+sqrt(2*n)),2) /* this sequence */
-
A002260(n)=n-binomial((sqrtint(8*n)+1)\2,2) \\ M. F. Hasler, Mar 10 2014
-
from math import isqrt, comb
def A002260(n): return n-comb((m:=isqrt(k:=n<<1))+(k>m*(m+1)),2) # Chai Wah Wu, Nov 08 2024
A002024
k appears k times; a(n) = floor(sqrt(2n) + 1/2).
Original entry on oeis.org
1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13
Offset: 1
From _Clark Kimberling_, Sep 16 2008: (Start)
As a rectangular array, a northwest corner:
1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
This is the weight array (cf. A144112) of A107985 (formatted as a rectangular array). (End)
G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^9 + 4*x^9 + 4*x^10 + ...
- Edward S. Barbeau, Murray S. Klamkin, and William O. J. Moser, Five Hundred Mathematical Challenges, Prob. 441, pp. 41, 194. MAA 1995.
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 97.
- K. Hardy and K. S. Williams, The Green Book of Mathematical Problems, p. 59, Solution to Prob. 14, Dover NY, 1985
- R. Honsberger, Mathematical Morsels, pp. 133-134, MAA 1978.
- J. F. Hurley, Litton's Problematical Recreations, pp. 152; 313-4 Prob. 22, VNR Co., NY, 1971.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 43.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.
- Franklin T. Adams-Watters, Table of n, a(n) for n = 1..5050
- Jaegug Bae and Sungjin Choi, A generalization of a subset-sum-distinct sequence, J. Korean Math. Soc. 40 (2003), no. 5, 757--768. MR1996839 (2004d:05198). See b(n).
- Jonathan H. B. Deane and Guido Gentile, A diluted version of the problem of the existence of the Hofstadter sequence, arXiv:2311.13854 [math.NT], 2023. See p. 10.
- Nathan Fox, Connecting Slow Solutions to Nested Recurrences with Linear Recurrent Sequences, arXiv:2203.09340 [math.CO], 2022.
- H. T. Freitag and H. W. Gould, Solution to Problem 571, Math. Mag., 38 (1965), 185-187.
- H. T. Freitag (Proposer) and H. W. Gould (Solver), Problem 571: An Ordering of the Rationals, Math. Mag., 38 (1965), 185-187 [Annotated scanned copy]
- Mikel Garcia-de-Andoin, Álvaro Saiz, Pedro Pérez-Fernández, Lucas Lamata, Izaskun Oregi, and Mikel Sanz, Digital-Analog Quantum Computation with Arbitrary Two-Body Hamiltonians, arXiv:2307.00966 [quant-ph], 2023.
- S. W. Golomb, Discrete chaos: sequences satisfying "strange" recursions, unpublished manuscript, circa 1990 [cached copy, with permission (annotated)]
- Henry W. Gould, Letters to N. J. A. Sloane, Oct 1973 and Jan 1974.
- Abraham Isgur, Vitaly Kuznetsov, and Stephen Tanny, A combinatorial approach for solving certain nested recursions with non-slow solutions, arXiv:1202.0276 [math.CO], 2012.
- Stanley Wu-Wei Liu, Closed form expressions for A002024(n).
- M. A. Nyblom, Some curious sequences involving floor and ceiling functions, Am. Math. Monthly 109 (#6, 200), 559-564.
- Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
- Raphael Schumacher, Extension of Summation Formulas involving Stirling series, arXiv:1605.09204 [math.NT], 2016.
- Raphael Schumacher, The self-counting identity, Fib. Quart., 55 (No. 2 2017), 157-167.
- Raphael Schumacher, The Self-Counting Flow, Fibonacci Quart. 60 (2022), no. 5, 324-343.
- N. J. A. Sloane, Handwritten notes on Self-Generating Sequences, 1970. (note that A1148 has now become A005282)
- Michael Somos, Sequences used for indexing triangular or square arrays.
- L. J. Upton, Letter to N. J. A. Sloane, May 22 1991.
- Eric Weisstein's World of Mathematics, Self-Counting Sequence.
- Index entries for Hofstadter-type sequences
Cf.
A001462,
A002262,
A003881,
A004736,
A127899,
A107985,
A001563,
A014132,
A000194,
A005145,
A131507,
A093995,
A060432 (partial sums).
A123578 is an essentially identical sequence.
-
a002024 n k = a002024_tabl !! (n-1) !! (k-1)
a002024_row n = a002024_tabl !! (n-1)
a002024_tabl = iterate (\xs@(x:_) -> map (+ 1) (x : xs)) [1]
a002024_list = concat a002024_tabl
a002024' = round . sqrt . (* 2) . fromIntegral
-- Reinhard Zumkeller, Jul 05 2015, Feb 12 2012, Mar 18 2011
-
a002024_list = [1..] >>= \n -> replicate n n
-
a002024 = (!!) $ [1..] >>= \n -> replicate n n
-- Sascha Mücke, May 10 2016
-
[Floor(Sqrt(2*n) + 1/2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2014
-
A002024 := n-> ceil((sqrt(1+8*n)-1)/2); seq(A002024(n), n=1..100);
-
a[1] = 1; a[n_] := a[n] = a[n - a[n - 1]] + 1 (* Branko Curgus, May 12 2009 *)
Table[n, {n, 13}, {n}] // Flatten (* Robert G. Wilson v, May 11 2010 *)
Table[PadRight[{},n,n],{n,15}]//Flatten (* Harvey P. Dale, Jan 13 2019 *)
-
t1(n)=floor(1/2+sqrt(2*n)) /* A002024 = this sequence */
-
t2(n)=n-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1) */
-
t3(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1 /* A004736 */
-
t4(n)=n-1-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1)-1 */
-
A002024(n)=(sqrtint(n*8)+1)\2 \\ M. F. Hasler, Apr 19 2014
-
a(n)=(sqrtint(8*n-7)+1)\2
-
a(n)=my(k=1);while(binomial(k+1,2)+1<=n,k++);k \\ R. J. Cano, Mar 17 2014
-
from math import isqrt
def A002024(n): return (isqrt(8*n)+1)//2 # Chai Wah Wu, Feb 02 2022
-
[floor(sqrt(2*n) +1/2) for n in (1..80)] # G. C. Greubel, Dec 10 2018
A048673
Permutation of natural numbers: a(n) = (A003961(n)+1) / 2 [where A003961(n) shifts the prime factorization of n one step towards larger primes].
Original entry on oeis.org
1, 2, 3, 5, 4, 8, 6, 14, 13, 11, 7, 23, 9, 17, 18, 41, 10, 38, 12, 32, 28, 20, 15, 68, 25, 26, 63, 50, 16, 53, 19, 122, 33, 29, 39, 113, 21, 35, 43, 95, 22, 83, 24, 59, 88, 44, 27, 203, 61, 74, 48, 77, 30, 188, 46, 149, 58, 47, 31, 158, 34, 56, 138, 365, 60, 98, 36, 86, 73
Offset: 1
For n = 6, as 6 = 2 * 3 = prime(1) * prime(2), we have a(6) = ((prime(1+1) * prime(2+1))+1) / 2 = ((3 * 5)+1)/2 = 8.
For n = 12, as 12 = 2^2 * 3, we have a(12) = ((3^2 * 5) + 1)/2 = 23.
Cf.
A246351 (Numbers n such that a(n) < n.)
Cf.
A246352 (Numbers n such that a(n) >= n.)
Cf.
A246281 (Numbers n such that a(n) <= n.)
Cf.
A246282 (Numbers n such that a(n) > n.),
A252742 (their char. function)
Cf.
A246261 (Numbers n for which a(n) is odd.)
Cf.
A246263 (Numbers n for which a(n) is even.)
Cf.
A246342 (Iterates starting from n=12.)
Cf.
A246344 (Iterates starting from n=16.)
Cf.
A245447 (This permutation "squared", a(a(n)).)
Other permutations whose formulas refer to this sequence:
A122111,
A243062,
A243066,
A243500,
A243506,
A244154,
A244319,
A245605,
A245608,
A245610,
A245612,
A245708,
A246265,
A246267,
A246268,
A246363,
A249745,
A249824,
A249826, and also
A183209,
A254103 that are somewhat similar.
-
a048673 = (`div` 2) . (+ 1) . a045965
-- Reinhard Zumkeller, Jul 12 2012
-
f:= proc(n)
local F,q,t;
F:= ifactors(n)[2];
(1 + mul(nextprime(t[1])^t[2], t = F))/2
end proc:
seq(f(n),n=1..1000); # Robert Israel, Jan 15 2015
-
Table[(Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n, {n, 69}] (* Michael De Vlieger, Dec 18 2014, revised Mar 17 2016 *)
-
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
A048673(n) = (A003961(n)+1)/2; \\ Antti Karttunen, Dec 20 2014
-
A048673(n) = if(1==n,n,if(n%2,A253888(A048673((n-1)/2)),(3*A048673(n/2))-1)); \\ (Not practical, but demonstrates the construction as a binary tree). - Antti Karttunen, Feb 10 2021
-
from sympy import factorint, nextprime, prod
def a(n):
f = factorint(n)
return 1 if n==1 else (1 + prod(nextprime(i)**f[i] for i in f))//2 # Indranil Ghosh, May 09 2017
-
(define (A048673 n) (/ (+ 1 (A003961 n)) 2)) ;; Antti Karttunen, Dec 20 2014
New name and crossrefs to derived sequences added by
Antti Karttunen, Dec 20 2014
Comments