cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 67 results. Next

A001700 a(n) = binomial(2*n+1, n+1): number of ways to put n+1 indistinguishable balls into n+1 distinguishable boxes = number of (n+1)-st degree monomials in n+1 variables = number of monotone maps from 1..n+1 to 1..n+1.

Original entry on oeis.org

1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378, 352716, 1352078, 5200300, 20058300, 77558760, 300540195, 1166803110, 4537567650, 17672631900, 68923264410, 269128937220, 1052049481860, 4116715363800, 16123801841550, 63205303218876, 247959266474052
Offset: 0

Views

Author

Keywords

Comments

To show for example that C(2n+1, n+1) is the number of monotone maps from 1..n + 1 to 1..n + 1, notice that we can describe such a map by a nondecreasing sequence of length n + 1 with entries from 1 to n + 1. The number k of increases in this sequence is anywhere from 0 to n. We can specify these increases by throwing k balls into n+1 boxes, so the total is Sum_{k = 0..n} C((n+1) + k - 1, k) = C(2*n+1, n+1).
Also number of ordered partitions (or compositions) of n + 1 into n + 1 parts. E.g., a(2) = 10: 003, 030, 300, 012, 021, 102, 120, 210, 201, 111. - Mambetov Bektur (bektur1987(AT)mail.ru), Apr 17 2003
Also number of walks of length n on square lattice, starting at origin, staying in first and second quadrants. - David W. Wilson, May 05 2001. (E.g., for n = 2 there are 10 walks, all starting at 0, 0: 0, 1 -> 0, 0; 0, 1 -> 1, 1; 0, 1 -> 0, 2; 1, 0 -> 0, 0; 1, 0 -> 1, 1; 1, 0 -> 2, 0; 1, 0 -> 1, -1; -1, 0 -> 0, 0; -1, 0 -> -1, 1; -1, 0-> -2, 0.)
Also total number of leaves in all ordered trees with n + 1 edges.
Also number of digitally balanced numbers [A031443] from 2^(2*n+1) to 2^(2*n+2). - Naohiro Nomoto, Apr 07 2001
Also number of ordered trees with 2*n + 2 edges having root of even degree and nonroot nodes of outdegree 0 or 2. - Emeric Deutsch, Aug 02 2002
Also number of paths of length 2*d(G) connecting two neighboring nodes in optimal chordal graph of degree 4, G(2*d(G)^2 + 2*d(G) + 1, 2d(G) + 1), where d(G) = diameter of graph G. - S. Bujnowski (slawb(AT)atr.bydgoszcz.pl), Feb 11 2002
Define an array by m(1, j) = 1, m(i, 1) = i, m(i, j) = m(i, j-1) + m(i-1, j); then a(n) = m(n, n), diagonal of A165257 - Benoit Cloitre, May 07 2002
Also the numerator of the constant term in the expansion of cos^(2*n)(x) or sin^(2*n)(x) when the denominator is 2^(2*n-1). - Robert G. Wilson v
Consider the expansion of cos^n(x) as a linear combination of cosines of multiple angles. If n is odd, then the expansion is a combination of a*cos((2*k-1)*x)/2^(n-1) for all 2*k - 1 <= n. If n is even, then the expansion is a combination of a*cos(2k*x)/2^(n-1) terms plus a constant. "The constant term, [a(n)/2^(2n-1)], is due to the fact that [cos^2n(x)] is never negative, i.e., electrical engineers would say the average or 'dc value' of [cos^(2*n)(x)] is [a(n)/2^(2*n-1)]. The dc value of [cos^(2*n-1)(x)] on the other hand, is zero because it is symmetrical about the horizontal axis, i.e., it is negative and positive equally." Nahin[62] - Robert G. Wilson v, Aug 01 2002
Also number of times a fixed Dyck word of length 2*k occurs in all Dyck words of length 2*n + 2*k. Example: if the fixed Dyck word is xyxy (k = 2), then it occurs a(1) = 3 times in the 5 Dyck words of length 6 (n = 1): (xy[xy)xy], xyxxyy, xxyyxy, x(xyxy)y, xxxyyy (placed between parentheses). - Emeric Deutsch, Jan 02 2003
a(n+1) is the determinant of the n X n matrix m(i, j) = binomial(2*n-i, j). - Benoit Cloitre, Aug 26 2003
a(n-1) = (2*n)!/(2*n!*n!), formula in [Davenport] used by Gauss for the special case prime p = 4*n + 1: x = a(n-1) mod p and y = x*(2n)! mod p are solutions of p = x^2 + y^2. - Frank Ellermann. Example: For prime 29 = 4*7 + 1 use a(7-1) = 1716 = (2*7)!/(2*7!*7!), 5 = 1716 mod 29 and 2 = 5*(2*7)! mod 29, then 29 = 5*5 + 2*2.
The number of compositions of 2*n, say c_1 + c_2 + ... + c_k = 2n, satisfy that Sum_{i = 1..j} c_i < 2*j for all j = 1..k, or equivalently, the number of subsets, say S, of [2*n-1] = {1, 2, ..., 2*n-1} with at least n elements such that if 2k is in S, then there must be at least k elements in S smaller than 2k. E.g., a(2) = 3 because we can write 4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1. - Ricky X. F. Chen (ricky_chen(AT)mail.nankai.edu.cn), Jul 30 2006
The number of walks of length 2*n + 1 on an infinite linear lattice that begin at the origin and end at node (1). Also the number of paths on a square lattice from the origin to (n+1, n) that use steps (1,0) and (0,1). Also number of binary numbers of length 2*n + 1 with n + 1 ones and n zeros. - Stefan Hollos (stefan(AT)exstrom.com), Dec 10 2007
If Y is a 3-subset of an 2*n-set X then, for n >= 3, a(n-1) is the number of n-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
Also the number of rankings (preferential arrangements) of n unlabeled elements onto n levels when empty levels are allowed. - Thomas Wieder, May 24 2008
Also the Catalan transform of A000225 shifted one index, i.e., dropping A000225(0). - R. J. Mathar, Nov 11 2008
With offset 1. The number of solutions in nonnegative integers to X1 + X2 + ... + Xn = n. The number of terms in the expansion of (X1 + X2 + ... + Xn)^n. The coefficient of x^n in the expansion of (1 + x + x^2 + ...)^n. The number of distinct image sets of all functions taking [n] into [n]. - Geoffrey Critzer, Feb 22 2009
The Hankel transform of the aerated sequence 1, 0, 3, 0, 10, 0, ... is 1, 3, 3, 5, 5, 7, 7, ... (A109613(n+1)). - Paul Barry, Apr 21 2009
Also the number of distinct network topologies for a network of n items with 1 to n - 1 unidirectional connections to other objects in the network. - Anthony Bachler, May 05 2010
Equals INVERT transform of the Catalan numbers starting with offset 1. E.g.: a(3) = 35 = (1, 2, 5) dot (10, 3, 1) + 14 = 21 + 14 = 35. - Gary W. Adamson, May 15 2009
The integral of 1/(1+x^2)^(n+1) is given by a(n)/2^(2*n - 1) * (x/(1 + x^2)^n*P(x) + arctan(x)), where P(x) is a monic polynomial of degree 2*n - 2 with rational coefficients. - Christiaan van de Woestijne, Jan 25 2011
a(n) is the number of Schroder paths of semilength n in which the (2,0)-steps at level 0 come in 2 colors and there are no (2,0)-steps at a higher level. Example: a(2) = 10 because, denoting U = (1,1), H = (1,0), and D = (1,-1), we have 2^2 = 4 paths of shape HH, 2 paths of shape HUD, 2 paths of shape UDH, and 1 path of each of the shapes UDUD and UUDD. - Emeric Deutsch, May 02 2011
a(n) is the number of Motzkin paths of length n in which the (1,0)-steps at level 0 come in 3 colors and those at a higher level come in 2 colors. Example: a(3)=35 because, denoting U = (1,1), H = (1,0), and D = (1,-1), we have 3^3 = 27 paths of shape HHH, 3 paths of shape HUD, 3 paths of shape UDH, and 2 paths of shape UHD. - Emeric Deutsch, May 02 2011
Also number of digitally balanced numbers having length 2*(n + 1) in binary representation: a(n) = #{m: A070939(A031443(m)) = 2*(n + 1)}. - Reinhard Zumkeller, Jun 08 2011
a(n) equals 2^(2*n + 3) times the coefficient of Pi in 2F1([1/2, n+2]; [3/2]; -1). - John M. Campbell, Jul 17 2011
For positive n, a(n) equals 4^(n+2) times the coefficient of Pi^2 in Integral_{x = 0..Pi/2} x sin^(2*n + 2)x. - John M. Campbell, Jul 19 2011 [Apparently, the contributor means Integral_{x = 0..Pi/2} x * (sin(x))^(2*n + 2).]
a(n-1) = C(2*n, n)/2 is the number of ways to assign 2*n people into 2 (unlabeled) groups of size n. - Dennis P. Walsh, Nov 09 2011
Equals row sums of triangle A205945. - Gary W. Adamson, Feb 01 2012
a(n-1) gives the number of n-regular sequences defined by Erdős and Gallai in 1960 in connection with the degree sequences of simple graphs. - Matuszka Tamás, Mar 06 2013
a(n) is the sum of falling diagonals of squares in the comment in A085812 (equivalent to the Cloitre formula of Aug 2002). - John Molokach, Sep 26 2013
For n > 0: largest terms of Zigzag matrices as defined in A088961. - Reinhard Zumkeller, Oct 25 2013
Also the number of different possible win/loss round sequences (from the perspective of the eventual winner) in a "best of 2*n + 1" two-player game. For example, a(2) = 10 means there are 10 different win/loss sequences in a "best of 5" game (like a tennis match in which the first player to win 3 sets, out of a maximum of 5, wins the match); the 10 sequences are WWW, WWLW, WWLLW, WLWW, WLWLW, WLLWW, LWWW, LWWLW, LWLWW, LLWWW. See also A072600. - Philippe Beaudoin, May 14 2014; corrected by Jon E. Schoenfield, Nov 23 2014
When adding 1 to the beginning of the sequence: Convolving a(n)/2^n with itself equals 2^(n+1). For example, when n = 4: convolving {1, 1/1, 3/2, 10/4, 35/8, 126/16} with itself is 32 = 2^5. - Bob Selcoe, Jul 16 2014
From Tom Copeland, Nov 09 2014: (Start)
The shifted array belongs to a family of arrays associated to the Catalan A000108 (t = 1), and Riordan, or Motzkin sums A005043 (t = 0), with the o.g.f. [1 - sqrt(1 - 4x/(1 + (1 - t)x))]/2 and inverse x*(1 - x)/[1 + (t - 1)*x*(1 - x)]. See A091867 for more info on this family. Here is t = -3 (mod signs in the results).
Let C(x) = [1 - sqrt(1-4x)]/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1 + t*x) with inverse P(x, -t).
O.g.f: G(x) = [-1 + sqrt(1 + 4*x/(1 - 4*x))]/2 = -C[P(-x, 4)].
Inverse o.g.f: Ginv(x) = x*(1 + x)/(1 + 4*x*(1 + x)) = -P(Cinv(-x), -4) (shifted signed A001792). A088218(x) = 1 + G(x).
Equals A001813/2 omitting the leading 1 there. (End)
Placing n distinguishable balls into n indistinguishable boxes gives A000110(n) (the number of set partitions). - N. J. A. Sloane, Jun 19 2015
The sequence is the INVERTi transform of A049027: (1, 4, 17, 74, 326, ...). - Gary W. Adamson, Jun 23 2015
a(n) is the number of compositions of 2*n + 2 such that the sum of the elements at odd positions is equal to the sum of the elements at even positions. a(2) = 10 because there are 10 such compositions of 6: (3, 3), (1, 3, 2), (2, 3, 1), (1, 1, 2, 2), (1, 2, 2, 1), (2, 2, 1, 1), (2, 1, 1, 2), (1, 2, 1, 1, 1), (1, 1, 1, 2, 1), (1, 1, 1, 1, 1, 1). - Ran Pan, Oct 08 2015
a(n-1) is also the Schur function of the partition (n) of n evaluated at x_1 = x_2 = ... = x_n = 1, i.e., the number of semistandard Young tableaux of shape (n) (weakly increasing rows with n boxes with numbers from {1, 2, ..., n}). - Wolfdieter Lang, Oct 11 2015
Also the number of ordered (rooted planar) forests with a total of n+1 edges and no trivial trees. - Nachum Dershowitz, Mar 30 2016
a(n) is the number of sets (i1,...in) of length n so that n >= i1 >= i2 >= ...>= in >= 1. For instance, n=3 as there are only 10 such sets (3,3,3) (3,3,2) (3,3,1) (3,2,2) (3,2,1) (3,1,1) (2,2,2) (2,2,1) (2,1,1) (1,1,1,) 3,2,1 is each used 10 times respectively. - Anton Zakharov, Jul 04 2016
The repeated middle term in the odd rows of Pascal's triangle, or half the central binomial coefficient in the even rows of Pascal's triangle, n >= 2. - Enrique Navarrete, Feb 12 2018
a(n) is the number of walks of length 2n+1 from the origin with steps (1,1) and (1,-1) that stay on or above the x-axis. Equivalently, a(n) is the number of walks of length 2n+1 from the origin with steps (1,0) and (0,1) that stay in the first octant. - Alexander Burstein, Dec 24 2019
Total number of nodes summed over all Dyck paths of semilength n. - Alois P. Heinz, Mar 08 2020
a(n-1) is the determinant of the n X n matrix m(i, j) = binomial(n+i-1, j). - Fabio Visonà, May 21 2022
Let X_i be iid standard Gaussian random variable N(0,1), and S_n be the partial sum S_n = X_1+...+X_n. Then P(S_1>0,S_2>0,...,S_n>0) = a(n+1)/2^(2n-1) = a(n+1) / A004171(n+1). For example, P(S_1>0) = 1/2, P(S_1>0,S_2>0) = 3/8, P(S_1>0,S_2>0,S_3>0) = 5/16, etc. This probability is also equal to the volume of the region x_1 > 0, x_2 > -x_1, x_3 > -(x_1+x_2), ..., x_n > -(x_1+x_2+...+x_(n-1)) in the hypercube [-1/2, 1/2]^n. This also holds for the Cauchy distribution and other stable distributions with mean 0, skew 0 and scale 1. - Xiaohan Zhang, Nov 01 2022
a(n) is the number of parking functions of size n+1 avoiding the patterns 132, 213, and 321. - Lara Pudwell, Apr 10 2023
Number of vectors in (Z_>=0)^(n+1) such that the sum of the components is n+1. binomial(2*n-1, n) provides this property for n. - Michael Richard, Jun 12 2023
Also number of discrete negations on the finite chain L_n={0,1,...,n-1,n}, i.e., monotone decreasing unary operators such that N(0)=n and N(n)=0. - Marc Munar, Oct 10 2023
a(n) is the number of Dyck paths of semilength n+1 having one of its peaks marked. - Juan B. Gil, Jan 03 2024
a(n) is the dimension of the (n+1)-st symmetric power of an (n+1)-dimensional vector space. - Mehmet A. Ates, Feb 15 2024
a(n) is the independence number of the twisted odd graph O^(sigma)(n+2). - _Miquel A. Fiol, Aug 26 2024
a(n) is the number of non-descending sequences with length n and the last number is less or equal to n. a(n) is also the number of integer partitions (of any positive integer) with length n and largest part is less or equal to n. - Zlatko Damijanic, Dec 06 2024
a(n) is the number of triangulations of a once-punctured (n+1)-gon [from Fontaine & Plamondon's Theorem 3.6]. - Esther Banaian, May 06 2025

Examples

			There are a(2)=10 ways to put 3 indistinguishable balls into 3 distinguishable boxes, namely, (OOO)()(), ()(OOO)(), ()()(OOO), (OO)(O)(), (OO)()(O), (O)(OO)(), ()(OO)(O), (O)()(OO), ()(O)(OO), and (O)(O)(O). - _Dennis P. Walsh_, Apr 11 2012
a(2) = 10: Semistandard Young tableaux for partition (3) of 3 (the indeterminates x_i, i = 1, 2, 3 are omitted and only their indices are given): 111, 112, 113, 122, 123, 133, 222, 223, 233, 333. - _Wolfdieter Lang_, Oct 11 2015
		

References

  • H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th ed., 1999, ch. V.3 (p. 122).
  • A. Frosini, R. Pinzani, and S. Rinaldi, About half the middle binomial coefficient, Pure Math. Appl., 11 (2000), 497-508.
  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • Paul J. Nahin, "An Imaginary Tale, The Story of [Sqrt(-1)]," Princeton University Press, Princeton, NJ 1998, p. 62.
  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A000984(n+1)/2.
a(n) = (2*n+1)*Catalan(n) [A000108] = A035324(n+1, 1) (first column of triangle).
Row sums of triangles A028364, A050166, A039598.
Bisections: a(2*k) = A002458(k), a(2*k+1) = A001448(k+1)/2, k >= 0.
Other versions of the same sequence: A088218, A110556, A138364.
Diagonals 1 and 2 of triangle A100257.
Second row of array A102539.
Column of array A073165.
Row sums of A103371. - Susanne Wienand, Oct 22 2011
Cf. A002054: C(2*n+1, n-1). - Bruno Berselli, Jan 20 2014

Programs

  • GAP
    List([0..30],n->Binomial(2*n+1,n+1)); # Muniru A Asiru, Feb 26 2019
  • Haskell
    a001700 n = a007318 (2*n+1) (n+1)  -- Reinhard Zumkeller, Oct 25 2013
    
  • Magma
    [Binomial(2*n, n)/2: n in [1..40]]; // Vincenzo Librandi, Nov 10 2014
    
  • Maple
    A001700 := n -> binomial(2*n+1,n+1); seq(A001700(n), n=0..20);
    A001700List := proc(m) local A, P, n; A := [1]; P := [1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), 2*P[-1]]);
    A := [op(A), P[-1]] od; A end: A001700List(27); # Peter Luschny, Mar 24 2022
  • Mathematica
    Table[ Binomial[2n + 1, n + 1], {n, 0, 23}]
    CoefficientList[ Series[2/((Sqrt[1 - 4 x] + 1)*Sqrt[1 - 4 x]), {x, 0, 22}], x] (* Robert G. Wilson v, Aug 08 2011 *)
  • Maxima
    B(n,a,x):=coeff(taylor(exp(x*t)*(t/(exp(t)-1))^a,t,0,20),t,n)*n!;
    makelist((-1)^(n)*B(n,n+1,-n-1)/n!,n,0,10); /* Vladimir Kruchinin, Apr 06 2016 */
    
  • PARI
    a(n)=binomial(2*n+1,n+1)
    
  • PARI
    z='z+O('z^50); Vec((1/sqrt(1-4*z)-1)/(2*z)) \\ Altug Alkan, Oct 11 2015
    
  • Python
    from _future_ import division
    A001700_list, b = [], 1
    for n in range(10**3):
        A001700_list.append(b)
        b = b*(4*n+6)//(n+2) # Chai Wah Wu, Jan 26 2016
    
  • Sage
    [rising_factorial(n+1,n+1)/factorial(n+1) for n in (0..22)] # Peter Luschny, Nov 07 2011
    

Formula

a(n-1) = binomial(2*n, n)/2 = A000984(n)/2 = (2*n)!/(2*n!*n!).
D-finite with recurrence: a(0) = 1, a(n) = 2*(2*n+1)*a(n-1)/(n+1) for n > 0.
G.f.: (1/sqrt(1 - 4*x) - 1)/(2*x).
L.g.f.: log((1 - sqrt(1 - 4*x))/(2*x)) = Sum_{n >= 0} a(n)*x^(n+1)/(n+1). - Vladimir Kruchinin, Aug 10 2010
G.f.: 2F1([1, 3/2]; [2]; 4*x). - Paul Barry, Jan 23 2009
G.f.: 1/(1 - 2*x - x/(1 - x/(1 - x/(1 - x/(1 - ... (continued fraction). - Paul Barry, May 06 2009
G.f.: c(x)^2/(1 - x*c(x)^2), c(x) the g.f. of A000108. - Paul Barry, Sep 07 2009
O.g.f.: c(x)/sqrt(1 - 4*x) = (2 - c(x))/(1 - 4*x), with c(x) the o.g.f. of A000108. Added second formula. - Wolfdieter Lang, Sep 02 2012
Convolution of A000108 (Catalan) and A000984 (central binomial): Sum_{k=0..n} C(k)*binomial(2*(n-k), n-k), C(k) Catalan. - Wolfdieter Lang, Dec 11 1999
a(n) = Sum_{k=0..n} C(n+k, k). - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{k=0..n} C(n, k)*C(n+1, k+1). - Benoit Cloitre, Oct 19 2002
a(n) = Sum_{k = 0..n+1} binomial(2*n+2, k)*cos((n - k + 1)*Pi). - Paul Barry, Nov 02 2004
a(n) = 4^n*binomial(n+1/2, n)/(n+1). - Paul Barry, May 10 2005
E.g.f.: Sum_{n >= 0} a(n)*x^(2*n + 1)/(2*n + 1)! = BesselI(1, 2*x). - Michael Somos, Jun 22 2005
E.g.f. in Maple notation: exp(2*x)*(BesselI(0, 2*x) + BesselI(1, 2*x)). Integral representation as n-th moment of a positive function on [0, 4]: a(n) = Integral_{x = 0..4} x^n * (x/(4 - x))^(1/2)/(2*Pi) dx, n >= 0. This representation is unique. - Karol A. Penson, Oct 11 2001
Narayana transform of [1, 2, 3, ...]. Let M = the Narayana triangle of A001263 as an infinite lower triangular matrix and V = the Vector [1, 2, 3, ...]. Then A001700 = M * V. - Gary W. Adamson, Apr 25 2006
a(n) = A122366(n,n). - Reinhard Zumkeller, Aug 30 2006
a(n) = C(2*n, n) + C(2*n, n-1) = A000984(n) + A001791(n). - Zerinvary Lajos, Jan 23 2007
a(n-1) = (n+1)*(n+2)*...*(2*n-1)/(n-1)! (product of n-1 consecutive integers, divided by (n-1)!). - Jonathan Vos Post, Apr 09 2007; [Corrected and shortened by Giovanni Ciriani, Mar 26 2019]
a(n-1) = (2*n - 1)!/(n!*(n - 1)!). - William A. Tedeschi, Feb 27 2008
a(n) = (2*n + 1)*A000108(n). - Paul Barry, Aug 21 2007
Binomial transform of A005773 starting (1, 2, 5, 13, 35, 96, ...) and double binomial transform of A001405. - Gary W. Adamson, Sep 01 2007
Row sums of triangle A132813. - Gary W. Adamson, Sep 01 2007
Row sums of triangle A134285. - Gary W. Adamson, Nov 19 2007
a(n) = 2*A000984(n) - A000108(n), that is, a(n) = 2*C(2*n, n) - n-th Catalan number. - Joseph Abate, Jun 11 2010
Conjectured: 4^n GaussHypergeometric(1/2,-n; 2; 1) -- Solution for the path which stays in the first and second quadrant. - Benjamin Phillabaum, Feb 20 2011
a(n)= Sum_{k=0..n} A038231(n,k) * (-1)^k * A000108(k). - Philippe Deléham, Nov 27 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1] = -1, A[i,j] = Catalan(j-i), (i <= j), and A[i,j] = 0, otherwise. Then, for n >= 1, a(n) = (-1)^n * charpoly(A,-2). - Milan Janjic, Jul 08 2010
a(n) is the upper left term of M^(n+1), where M is the infinite matrix in which a column of (1,2,3,...) is prepended to an infinite lower triangular matrix of all 1's and the rest zeros, as follows:
1, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
3, 1, 1, 1, 0, ...
4, 1, 1, 1, 1, ...
...
Alternatively, a(n) is the upper left term of M^n where M is the infinite matrix:
3, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
...
- Gary W. Adamson, Jul 14 2011
a(n) = (n + 1)*hypergeom([-n, -n], [2], 1). - Peter Luschny, Oct 24 2011
a(n) = Pochhammer(n+1, n+1)/(n+1)!. - Peter Luschny, Nov 07 2011
E.g.f.: 1 + 6*x/(U(0) - 6*x); U(k) = k^2 + (4*x + 3)*k + 6*x + 2 - 2*x*(k + 1)*(k + 2)*(2*k + 5)/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2011
a(n) = 2*A000984(n) - A000108(n). [Abate & Whitt]
a(n) = 2^(2*n+1)*binomial(n+1/2, -1/2). - Peter Luschny, May 06 2014
For n > 1: a(n-1) = A166454(2*n, n), central terms in A166454. - Reinhard Zumkeller, Mar 04 2015
a(n) = 2*4^n*Gamma(3/2 + n)/(sqrt(Pi)*Gamma(2+n)). - Peter Luschny, Dec 14 2015
a(n) ~ 2*4^n*(1 - (5/8)/n + (73/128)/n^2 - (575/1024)/n^3 + (18459/32768)/n^4)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
a(n) = (-1)^(n)*B(n, n+1, -n-1)/n!, where B(n,a,x) is a generalized Bernoulli polynomial. - Vladimir Kruchinin, Apr 06 2016
a(n) = Gamma(2 + 2*n)/(n!*Gamma(2 + n)). Andres Cicuttin, Apr 06 2016
a(n) = (n + (n + 1))!/(Gamma(n)*Gamma(1 + n)*A002378(n)), for n > 0. Andres Cicuttin, Apr 07 2016
From Ilya Gutkovskiy, Jul 04 2016: (Start)
Sum_{n >= 0} 1/a(n) = 2*(9 + 2*sqrt(3)*Pi)/27 = A248179.
Sum_{n >= 0} (-1)^n/a(n) = 2*(5 + 4*sqrt(5)*arcsinh(1/2))/25 = 2*(5*A145433 - 1).
Sum_{n >= 0} (-1)^n*a(n)/n! = BesselI(2,2)*exp(-2) = A229020*A092553. (End)
Conjecture: a(n) = Sum_{k=2^n..2^(n+1)-1} A178244(k). - Mikhail Kurkov, Feb 20 2021
a(n-1) = 1 + (1/n)*Sum_{t=1..n/2} (2*cos((2*t-1)*Pi/(2*n)))^(2*n). - Greg Dresden, Oct 11 2022
a(n) = Product_{1 <= i <= j <= n} (i + j + 1)/(i + j - 1). Cf. A006013. - Peter Bala, Feb 21 2023
Sum_{n >= 0} a(n)*x^(n+1)/(n+1) = x + 3*x^2/2 + 10*x^3/3 + 35*x^4/4 + ... = the series reversion of exp(-x)*(1 - exp(-x)). - Peter Bala, Sep 06 2023

Extensions

Name corrected by Paul S. Coombes, Jan 11 2012
Name corrected by Robert Tanniru, Feb 01 2014

A039599 Triangle formed from even-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 14, 28, 20, 7, 1, 42, 90, 75, 35, 9, 1, 132, 297, 275, 154, 54, 11, 1, 429, 1001, 1001, 637, 273, 77, 13, 1, 1430, 3432, 3640, 2548, 1260, 440, 104, 15, 1, 4862, 11934, 13260, 9996, 5508, 2244, 663, 135, 17, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (n,n) with steps E = (1,0) and N = (0,1) which touch but do not cross the line x - y = k and only situated above this line; example: T(3,2) = 5 because we have EENNNE, EENNEN, EENENN, ENEENN, NEEENN. - Philippe Deléham, May 23 2005
The matrix inverse of this triangle is the triangular matrix T(n,k) = (-1)^(n+k)* A085478(n,k). - Philippe Deléham, May 26 2005
Essentially the same as A050155 except with a leading diagonal A000108 (Catalan numbers) 1, 1, 2, 5, 14, 42, 132, 429, .... - Philippe Deléham, May 31 2005
Number of Grand Dyck paths of semilength n and having k downward returns to the x-axis. (A Grand Dyck path of semilength n is a path in the half-plane x>=0, starting at (0,0), ending at (2n,0) and consisting of steps u=(1,1) and d=(1,-1)). Example: T(3,2)=5 because we have u(d)uud(d),uud(d)u(d),u(d)u(d)du,u(d)duu(d) and duu(d)u(d) (the downward returns to the x-axis are shown between parentheses). - Emeric Deutsch, May 06 2006
Riordan array (c(x),x*c(x)^2) where c(x) is the g.f. of A000108; inverse array is (1/(1+x),x/(1+x)^2). - Philippe Deléham, Feb 12 2007
The triangle may also be generated from M^n*[1,0,0,0,0,0,0,0,...], where M is the infinite tridiagonal matrix with all 1's in the super and subdiagonals and [1,2,2,2,2,2,2,...] in the main diagonal. - Philippe Deléham, Feb 26 2007
Inverse binomial matrix applied to A124733. Binomial matrix applied to A089942. - Philippe Deléham, Feb 26 2007
Number of standard tableaux of shape (n+k,n-k). - Philippe Deléham, Mar 22 2007
From Philippe Deléham, Mar 30 2007: (Start)
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y):
(0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970
(1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877;
(1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598;
(2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954;
(3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791;
(4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. (End)
The table U(n,k) = Sum_{j=0..n} T(n,j)*k^j is given in A098474. - Philippe Deléham, Mar 29 2007
Sequence read mod 2 gives A127872. - Philippe Deléham, Apr 12 2007
Number of 2n step walks from (0,0) to (2n,2k) and consisting of step u=(1,1) and d=(1,-1) and the path stays in the nonnegative quadrant. Example: T(3,0)=5 because we have uuuddd, uududd, ududud, uduudd, uuddud; T(3,1)=9 because we have uuuudd, uuuddu, uuudud, ududuu, uuduud, uduudu, uudduu, uduuud, uududu; T(3,2)=5 because we have uuuuud, uuuudu, uuuduu, uuduuu, uduuuu; T(3,3)=1 because we have uuuuuu. - Philippe Deléham, Apr 16 2007, Apr 17 2007, Apr 18 2007
Triangular matrix, read by rows, equal to the matrix inverse of triangle A129818. - Philippe Deléham, Jun 19 2007
Let Sum_{n>=0} a(n)*x^n = (1+x)/(1-mx+x^2) = o.g.f. of A_m, then Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n. Related expansions of A_m are: A099493, A033999, A057078, A057077, A057079, A005408, A002878, A001834, A030221, A002315, A033890, A057080, A057081, A054320, A097783, A077416, A126866, A028230, A161591, for m=-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, respectively. - Philippe Deléham, Nov 16 2009
The Kn11, Kn12, Fi1 and Fi2 triangle sums link the triangle given above with three sequences; see the crossrefs. For the definitions of these triangle sums, see A180662. - Johannes W. Meijer, Apr 20 2011
4^n = (n-th row terms) dot (first n+1 odd integer terms). Example: 4^4 = 256 = (14, 28, 20, 7, 1) dot (1, 3, 5, 7, 9) = (14 + 84 + 100 + 49 + 9) = 256. - Gary W. Adamson, Jun 13 2011
The linear system of n equations with coefficients defined by the first n rows solve for diagonal lengths of regular polygons with N= 2n+1 edges; the constants c^0, c^1, c^2, ... are on the right hand side, where c = 2 + 2*cos(2*Pi/N). Example: take the first 4 rows relating to the 9-gon (nonagon), N = 2*4 + 1; with c = 2 + 2*cos(2*Pi/9) = 3.5320888.... The equations are (1,0,0,0) = 1; (1,1,0,0) = c; (2,3,1,0) = c^2; (5,9,5,1) = c^3. The solutions are 1, 2.53208..., 2.87938..., and 1.87938...; the four distinct diagonal lengths of the 9-gon (nonagon) with edge = 1. (Cf. comment in A089942 which uses the analogous operations but with c = 1 + 2*cos(2*Pi/9).) - Gary W. Adamson, Sep 21 2011
Also called the Lobb numbers, after Andrew Lobb, are a natural generalization of the Catalan numbers, given by L(m,n)=(2m+1)*Binomial(2n,m+n)/(m+n+1), where n >= m >= 0. For m=0, we get the n-th Catalan number. See added reference. - Jayanta Basu, Apr 30 2013
From Wolfdieter Lang, Sep 20 2013: (Start)
T(n, k) = A053121(2*n, 2*k). T(n, k) appears in the formula for the (2*n)-th power of the algebraic number rho(N):= 2*cos(Pi/N) = R(N, 2) in terms of the odd-indexed diagonal/side length ratios R(N, 2*k+1) = S(2*k, rho(N)) in the regular N-gon inscribed in the unit circle (length unit 1). S(n, x) are Chebyshev's S polynomials (see A049310):
rho(N)^(2*n) = Sum_{k=0..n} T(n, k)*R(N, 2*k+1), n >= 0, identical in N > = 1. For a proof see the Sep 21 2013 comment under A053121. Note that this is the unreduced version if R(N, j) with j > delta(N), the degree of the algebraic number rho(N) (see A055034), appears.
For the odd powers of rho(n) see A039598. (End)
Unsigned coefficients of polynomial numerators of Eqn. 2.1 of the Chakravarty and Kodama paper, defining the polynomials of A067311. - Tom Copeland, May 26 2016
The triangle is the Riordan square of the Catalan numbers in the sense of A321620. - Peter Luschny, Feb 14 2023

Examples

			Triangle T(n, k) begins:
  n\k     0     1     2     3     4     5    6   7   8  9
  0:      1
  1:      1     1
  2:      2     3     1
  3:      5     9     5     1
  4:     14    28    20     7     1
  5:     42    90    75    35     9     1
  6:    132   297   275   154    54    11    1
  7:    429  1001  1001   637   273    77   13   1
  8:   1430  3432  3640  2548  1260   440  104  15   1
  9:   4862 11934 13260  9996  5508  2244  663 135  17  1
  ... Reformatted by _Wolfdieter Lang_, Dec 21 2015
From _Paul Barry_, Feb 17 2011: (Start)
Production matrix begins
  1, 1,
  1, 2, 1,
  0, 1, 2, 1,
  0, 0, 1, 2, 1,
  0, 0, 0, 1, 2, 1,
  0, 0, 0, 0, 1, 2, 1,
  0, 0, 0, 0, 0, 1, 2, 1 (End)
From _Wolfdieter Lang_, Sep 20 2013: (Start)
Example for rho(N) = 2*cos(Pi/N) powers:
n=2: rho(N)^4 = 2*R(N,1) + 3*R(N,3) + 1*R(N, 5) =
  2 + 3*S(2, rho(N)) + 1*S(4, rho(N)), identical in N >= 1. For N=4 (the square with only one distinct diagonal), the degree delta(4) = 2, hence R(4, 3) and R(4, 5) can be reduced, namely to R(4, 1) = 1 and R(4, 5) = -R(4,1) = -1, respectively. Therefore, rho(4)^4 =(2*cos(Pi/4))^4 = 2 + 3 -1 = 4. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.

Crossrefs

Row sums: A000984.
Triangle sums (see the comments): A000958 (Kn11), A001558 (Kn12), A088218 (Fi1, Fi2).

Programs

  • Magma
    /* As triangle */ [[Binomial(2*n, k+n)*(2*k+1)/(k+n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 16 2015
    
  • Maple
    T:=(n,k)->(2*k+1)*binomial(2*n,n-k)/(n+k+1): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, May 06 2006
    T := proc(n, k) option remember; if k = n then 1 elif k > n then 0 elif k = 0 then T(n-1, 0) + T(n-1,1) else T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1) fi end:
    seq(seq(T(n, k), k = 0..n), n = 0..9) od; # Peter Luschny, Feb 14 2023
  • Mathematica
    Table[Abs[Differences[Table[Binomial[2 n, n + i], {i, 0, n + 1}]]], {n, 0,7}] // Flatten (* Geoffrey Critzer, Dec 18 2011 *)
    Join[{1},Flatten[Table[Binomial[2n-1,n-k]-Binomial[2n-1,n-k-2],{n,10},{k,0,n}]]] (* Harvey P. Dale, Dec 18 2011 *)
    Flatten[Table[Binomial[2*n,m+n]*(2*m+1)/(m+n+1),{n,0,9},{m,0,n}]] (* Jayanta Basu, Apr 30 2013 *)
  • PARI
    a(n, k) = (2*n+1)/(n+k+1)*binomial(2*k, n+k)
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(a(y, x), ", ")); print(""))
    trianglerows(10) \\ Felix Fröhlich, Jun 24 2016
  • Sage
    # Algorithm of L. Seidel (1877)
    # Prints the first n rows of the triangle
    def A039599_triangle(n) :
        D = [0]*(n+2); D[1] = 1
        b = True ; h = 1
        for i in range(2*n-1) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            if b : print([D[z] for z in (1..h-1)])
            b = not b
    A039599_triangle(10)  # Peter Luschny, May 01 2012
    

Formula

T(n,k) = C(2*n-1, n-k) - C(2*n-1, n-k-2), n >= 1, T(0,0) = 1.
From Emeric Deutsch, May 06 2006: (Start)
T(n,k) = (2*k+1)*binomial(2*n,n-k)/(n+k+1).
G.f.: G(t,z)=1/(1-(1+t)*z*C), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function. (End)
The following formulas were added by Philippe Deléham during 2003 to 2009: (Start)
Triangle T(n, k) read by rows; given by A000012 DELTA A000007, where DELTA is Deléham's operator defined in A084938.
T(n, k) = C(2*n, n-k)*(2*k+1)/(n+k+1). Sum(k>=0; T(n, k)*T(m, k) = A000108(n+m)); A000108: numbers of Catalan.
T(n, 0) = A000108(n); T(n, k) = 0 if k>n; for k>0, T(n, k) = Sum_{j=1..n} T(n-j, k-1)*A000108(j).
T(n, k) = A009766(n+k, n-k) = A033184(n+k+1, 2k+1).
G.f. for column k: Sum_{n>=0} T(n, k)*x^n = x^k*C(x)^(2*k+1) where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108.
T(0, 0) = 1, T(n, k) = 0 if n<0 or n=1, T(n, k) = T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1).
a(n) + a(n+1) = 1 + A000108(m+1) if n = m*(m+3)/2; a(n) + a(n+1) = A039598(n) otherwise.
T(n, k) = A050165(n, n-k).
Sum_{j>=0} T(n-k, j)*A039598(k, j) = A028364(n, k).
Matrix inverse of the triangle T(n, k) = (-1)^(n+k)*binomial(n+k, 2*k) = (-1)^(n+k)*A085478(n, k).
Sum_{k=0..n} T(n, k)*x^k = A000108(n), A000984(n), A007854(n), A076035(n), A076036(n) for x = 0, 1, 2, 3, 4.
Sum_{k=0..n} (2*k+1)*T(n, k) = 4^n.
T(n, k)*(-2)^(n-k) = A114193(n, k).
Sum_{k>=h} T(n,k) = binomial(2n,n-h).
Sum_{k=0..n} T(n,k)*5^k = A127628(n).
Sum_{k=0..n} T(n,k)*7^k = A115970(n).
T(n,k) = Sum_{j=0..n-k} A106566(n+k,2*k+j).
Sum_{k=0..n} T(n,k)*6^k = A126694(n).
Sum_{k=0..n} T(n,k)*A000108(k) = A007852(n+1).
Sum_{k=0..floor(n/2)} T(n-k,k) = A000958(n+1).
Sum_{k=0..n} T(n,k)*(-1)^k = A000007(n).
Sum_{k=0..n} T(n,k)*(-2)^k = (-1)^n*A064310(n).
T(2*n,n) = A126596(n).
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x=1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{j>=0} T(n,j)*binomial(j,k) = A116395(n,k).
T(n,k) = Sum_{j>=0} A106566(n,j)*binomial(j,k).
T(n,k) = Sum_{j>=0} A127543(n,j)*A038207(j,k).
Sum_{k=0..floor(n/2)} T(n-k,k)*A000108(k) = A101490(n+1).
T(n,k) = A053121(2*n,2*k).
Sum_{k=0..n} T(n,k)*sin((2*k+1)*x) = sin(x)*(2*cos(x))^(2*n).
T(n,n-k) = Sum_{j>=0} (-1)^(n-j)*A094385(n,j)*binomial(j,k).
Sum_{j>=0} A110506(n,j)*binomial(j,k) = Sum_{j>=0} A110510(n,j)*A038207(j,k) = T(n,k)*2^(n-k).
Sum_{j>=0} A110518(n,j)*A027465(j,k) = Sum_{j>=0} A110519(n,j)*A038207(j,k) = T(n,k)*3^(n-k).
Sum_{k=0..n} T(n,k)*A001045(k) = A049027(n), for n>=1.
Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n if Sum_{k>=0} a(k)*x^k = (1+x)/(x^2-m*x+1).
Sum_{k=0..n} T(n,k)*A040000(k) = A001700(n).
Sum_{k=0..n} T(n,k)*A122553(k) = A051924(n+1).
Sum_{k=0..n} T(n,k)*A123932(k) = A051944(n).
Sum_{k=0..n} T(n,k)*k^2 = A000531(n), for n>=1.
Sum_{k=0..n} T(n,k)*A000217(k) = A002457(n-1), for n>=1.
Sum{j>=0} binomial(n,j)*T(j,k)= A124733(n,k).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Sum_{k=0..n} T(n,k)*A005043(k) = A127632(n).
Sum_{k=0..n} T(n,k)*A132262(k) = A089022(n).
T(n,k) + T(n,k+1) = A039598(n,k).
T(n,k) = A128899(n,k)+A128899(n,k+1).
Sum_{k=0..n} T(n,k)*A015518(k) = A076025(n), for n>=1. Also Sum_{k=0..n} T(n,k)*A015521(k) = A076026(n), for n>=1.
Sum_{k=0..n} T(n,k)*(-1)^k*x^(n-k) = A033999(n), A000007(n), A064062(n), A110520(n), A132863(n), A132864(n), A132865(n), A132866(n), A132867(n), A132869(n), A132897(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Sum_{k=0..n} T(n,k)*(-1)^(k+1)*A000045(k) = A109262(n), A000045:= Fibonacci numbers.
Sum_{k=0..n} T(n,k)*A000035(k)*A016116(k) = A143464(n).
Sum_{k=0..n} T(n,k)*A016116(k) = A101850(n).
Sum_{k=0..n} T(n,k)*A010684(k) = A100320(n).
Sum_{k=0..n} T(n,k)*A000034(k) = A029651(n).
Sum_{k=0..n} T(n,k)*A010686(k) = A144706(n).
Sum_{k=0..n} T(n,k)*A006130(k-1) = A143646(n), with A006130(-1)=0.
T(n,2*k)+T(n,2*k+1) = A118919(n,k).
Sum_{k=0..j} T(n,k) = A050157(n,j).
Sum_{k=0..2} T(n,k) = A026012(n); Sum_{k=0..3} T(n,k)=A026029(n).
Sum_{k=0..n} T(n,k)*A000045(k+2) = A026671(n).
Sum_{k=0..n} T(n,k)*A000045(k+1) = A026726(n).
Sum_{k=0..n} T(n,k)*A057078(k) = A000012(n).
Sum_{k=0..n} T(n,k)*A108411(k) = A155084(n).
Sum_{k=0..n} T(n,k)*A057077(k) = 2^n = A000079(n).
Sum_{k=0..n} T(n,k)*A057079(k) = 3^n = A000244(n).
Sum_{k=0..n} T(n,k)*(-1)^k*A011782(k) = A000957(n+1).
(End)
T(n,k) = Sum_{j=0..k} binomial(k+j,2j)*(-1)^(k-j)*A000108(n+j). - Paul Barry, Feb 17 2011
Sum_{k=0..n} T(n,k)*A071679(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
Sum_{k=0..n} T(n,k)*(2*k+1)^2 = (4*n+1)*binomial(2*n,n). - Werner Schulte, Jul 22 2015
Sum_{k=0..n} T(n,k)*(2*k+1)^3 = (6*n+1)*4^n. - Werner Schulte, Jul 22 2015
Sum_{k=0..n} (-1)^k*T(n,k)*(2*k+1)^(2*m) = 0 for 0 <= m < n (see also A160562). - Werner Schulte, Dec 03 2015
T(n,k) = GegenbauerC(n-k,-n+1,-1) - GegenbauerC(n-k-1,-n+1,-1). - Peter Luschny, May 13 2016
T(n,n-2) = A014107(n). - R. J. Mathar, Jan 30 2019
T(n,n-3) = n*(2*n-1)*(2*n-5)/3. - R. J. Mathar, Jan 30 2019
T(n,n-4) = n*(n-1)*(2*n-1)*(2*n-7)/6. - R. J. Mathar, Jan 30 2019
T(n,n-5) = n*(n-1)*(2*n-1)*(2*n-3)*(2*n-9)/30. - R. J. Mathar, Jan 30 2019

Extensions

Corrected by Philippe Deléham, Nov 26 2009, Dec 14 2009

A053121 Catalan triangle (with 0's) read by rows.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 1, 5, 0, 9, 0, 5, 0, 1, 0, 14, 0, 14, 0, 6, 0, 1, 14, 0, 28, 0, 20, 0, 7, 0, 1, 0, 42, 0, 48, 0, 27, 0, 8, 0, 1, 42, 0, 90, 0, 75, 0, 35, 0, 9, 0, 1, 0, 132, 0, 165, 0, 110, 0, 44, 0, 10, 0, 1, 132, 0, 297, 0, 275, 0, 154, 0, 54, 0, 11, 0
Offset: 0

Views

Author

Keywords

Comments

Inverse lower triangular matrix of A049310(n,m) (coefficients of Chebyshev's S polynomials).
Walks with a wall: triangle of number of n-step walks from (0,0) to (n,m) where each step goes from (a,b) to (a+1,b+1) or (a+1,b-1) and the path stays in the nonnegative quadrant.
T(n,m) is the number of left factors of Dyck paths of length n ending at height m. Example: T(4,2)=3 because we have UDUU, UUDU, and UUUD, where U=(1,1) and D=(1,-1). (This is basically a different formulation of the previous - walks with a wall - property.) - Emeric Deutsch, Jun 16 2011
"The Catalan triangle is formed in the same manner as Pascal's triangle, except that no number may appear on the left of the vertical bar." [Conway and Smith]
G.f. for row polynomials p(n,x) := Sum_{m=0..n} (a(n,m)*x^m): c(z^2)/(1-x*z*c(z^2)). Row sums (x=1): A001405 (central binomial).
In the language of the Shapiro et al. reference such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. The g.f. Ginv(x) of the m=0 column of the inverse of a given Bell-matrix (here A049310) is obtained from its g.f. of the m=0 column (here G(x)=1/(1+x^2)) by Ginv(x)=(f^{(-1)}(x))/x, with f(x) := x*G(x) and f^{(-1)}is the compositional inverse function of f (here one finds, with Ginv(0)=1, c(x^2)). See the Shapiro et al. reference.
Number of involutions of {1,2,...,n} that avoid the patterns 132 and have exactly k fixed points. Example: T(4,2)=3 because we have 2134, 4231 and 3214. Number of involutions of {1,2,...,n} that avoid the patterns 321 and have exactly k fixed points. Example: T(4,2)=3 because we have 1243, 1324 and 2134. Number of involutions of {1,2,...,n} that avoid the patterns 213 and have exactly k fixed points. Example: T(4,2)=3 because we have 1243, 1432 and 4231. - Emeric Deutsch, Oct 12 2006
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Riordan array (c(x^2),xc(x^2)), where c(x) is the g.f. of Catalan numbers A000108. - Philippe Deléham, Nov 25 2007
A053121^2 = triangle A145973. Convolved with A001405 = triangle A153585. - Gary W. Adamson, Dec 28 2008
By columns without the zeros, n-th row = A000108 convolved with itself n times; equivalent to A = (1 + x + 2x^2 + 5x^3 + 14x^4 + ...), then n-th row = coefficients of A^(n+1). - Gary W. Adamson, May 13 2009
Triangle read by rows,product of A130595 and A064189 considered as infinite lower triangular arrays; A053121 = A130595*A064189 = B^(-1)*A097609*B where B = A007318. - Philippe Deléham, Dec 07 2009
From Mark Dols, Aug 17 2010: (Start)
As an upper right triangle, rows represent powers of 5-sqrt(24):
5 - sqrt(24)^1 = 0.101020514...
5 - sqrt(24)^2 = 0.010205144...
5 - sqrt(24)^3 = 0.001030928...
(Divided by sqrt(96) these powers give a decimal representation of the columns of A007318, with 1/sqrt(96) being the middle column.) (End)
T(n,k) is the number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) having k (1,0)-steps. Example: T(5,3)=4 because, denoting U=(1,1), D=(1,-1), H=(1,0), we have HHHUD, HHUDH, HUDHH, and UDHHH. - Emeric Deutsch, Jun 01 2011
Let S(N,x) denote the N-th Chebyshev S-polynomial in x (see A049310, cf. [W. Lang]). Then x^n = sum_{k=0..n} T(n,k)*S(k,x). - L. Edson Jeffery, Sep 06 2012
This triangle a(n,m) appears also in the (unreduced) formula for the powers rho(N)^n for the algebraic number over the rationals rho(N) = 2*cos(Pi/N) = R(N, 2), the smallest diagonal/side ratio R in the regular N-gon:
rho(N)^n = sum(a(n,m)*R(N,m+1),m=0..n), n>=0, identical in N >= 1. R(N,j) = S(j-1, x=rho(N)) (Chebyshev S (A049310)). See a comment on this under A039599 (even powers) and A039598 (odd powers). Proof: see the Sep 06 2012 comment by L. Edson Jeffery, which follows from T(n,k) (called here a(n,k)) being the inverse of the Riordan triangle A049310. - Wolfdieter Lang, Sep 21 2013
The so-called A-sequence for this Riordan triangle of the Bell type (c(x^2), x*c(x^2)) (see comments above) is A(x) = 1 + x^2. This proves the recurrence given in the formula section by Henry Bottomley for a(n, m) = a(n-1, m-1) + a(n-1, m+1) for n>=1 and m>=1, with inputs. The Z-sequence for this Riordan triangle is Z(x) = x which proves the recurrence a(n,0) = a(n-1,1), n>=1, a(0,0) = 1. For A- and Z-sequences for Riordan triangles see the W. Lang link under A006232. - Wolfdieter Lang, Sep 22 2013
Rows of the triangle describe decompositions of tensor powers of the standard (2-dimensional) representation of the Lie algebra sl(2) into irreducibles. Thus a(n,m) is the multiplicity of the m-th ((m+1)-dimensional) irreducible representation in the n-th tensor power of the standard one. - Mamuka Jibladze, May 26 2015
The Riordan row polynomials p(n, x) belong to the Boas-Buck class (see a comment and references in A046521), hence they satisfy the Boas-Buck identity: (E_x - n*1)*p(n, x) = (E_x + 1)*Sum_{j=0..n-1} (1/2)*(1 - (-1)^j)*binomial(j+1, (j+1)/2)*p(n-1-j, x), for n >= 0, where E_x = x*d/dx (Euler operator). For the triangle a(n, m) this entails a recurrence for the sequence of column m, given in the formula section. - Wolfdieter Lang, Aug 11 2017
From Roger Ford, Jan 22 2018: (Start)
For row n, the nonzero values represent the odd components (loops) formed by n+1 nonintersecting arches above and below the x-axis with the following constraints: The top has floor((n+3)/2) starting arches at position 1 and the next consecutive odd positions. All other starting top arches are in even positions. The bottom arches are a rainbow of arches. If the component=1 then the arch configuration is a semimeander solution.
Examples: For row 3 {0, 2, 0, 1} there are 3 arch configurations: 2 arch configurations have a component=1; 1 has a component=3. c=components, U=top arch starting in odd position, u=top arch starting in an even position, d=ending top arch:
.
top UuUdUddd c=3 top UdUuUddd c=1 top UdUdUudd c=1
/\ /\
//\\ / \
// \\ / /\ \ /\
// \\ / / \ \ / \
///\ /\\\ /\ / / /\ \ \ /\ /\ / /\ \
\\\ \/ /// \ \ \ \/ / / / \ \ \ \/ / / /
\\\ /// \ \ \ / / / \ \ \ / / /
\\\/// \ \ \/ / / \ \ \/ / /
\\// \ \ / / \ \ / /
\/ \ \/ / \ \/ /
\ / \ /
\/ \/
For row 4 {2, 0, 3, 0, 1} there are 6 arch configurations: 2 have a component=1; 3 have a component=3: 1 has a component=1. (End)

Examples

			Triangle a(n,m) begins:
  n\m  0   1   2   3   4   5   6  7  8  9 10 ...
  0:   1
  1:   0   1
  2:   1   0   1
  3:   0   2   0   1
  4:   2   0   3   0   1
  5:   0   5   0   4   0   1
  6:   5   0   9   0   5   0   1
  7:   0  14   0  14   0   6   0  1
  8:  14   0  28   0  20   0   7  0  1
  9:   0  42   0  48   0  27   0  8  0  1
  10: 42   0  90   0  75   0  35  0  9  0  1
  ... (Reformatted by _Wolfdieter Lang_, Sep 20 2013)
E.g., the fourth row corresponds to the polynomial p(3,x)= 2*x + x^3.
From _Paul Barry_, May 29 2009: (Start)
Production matrix is
  0, 1,
  1, 0, 1,
  0, 1, 0, 1,
  0, 0, 1, 0, 1,
  0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 0, 0, 1, 0, 1 (End)
Boas-Buck recurrence for column k = 2, n = 6: a(6, 2) = (3/4)*(0 + 2*a(4 ,2) + 0 + 6*a(2, 2)) = (3/4)*(2*3 + 6) = 9. - _Wolfdieter Lang_, Aug 11 2017
		

References

  • J. H. Conway and D. A. Smith, On Quaternions and Octonions, A K Peters, Ltd., Natick, MA, 2003. See p. 60. MR1957212 (2004a:17002)
  • A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.

Crossrefs

Cf. A008315, A049310, A000108, A001405 (row sums), A145973, A153585, A108786, A037952. Another version: A008313. A039598 and A039599 without zeros, and odd and even numbered rows.
Variant without zero-diagonals: A033184 and with rows reversed: A009766.

Programs

  • Haskell
    a053121 n k = a053121_tabl !! n !! k
    a053121_row n = a053121_tabl !! n
    a053121_tabl = iterate
       (\row -> zipWith (+) ([0] ++ row) (tail row ++ [0,0])) [1]
    -- Reinhard Zumkeller, Feb 24 2012
    
  • Maple
    T:=proc(n,k): if n+k mod 2 = 0 then (k+1)*binomial(n+1,(n-k)/2)/(n+1) else 0 fi end: for n from 0 to 13 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Oct 12 2006
    F:=proc(l,p) if ((l-p) mod 2) = 1 then 0 else (p+1)*l!/( ( (l-p)/2 )! * ( (l+p)/2 +1)! ); fi; end;
    r:=n->[seq( F(n,p),p=0..n)]; [seq(r(n),n=0..15)]; # N. J. A. Sloane, Jan 29 2011
    A053121 := proc(n,k) option remember; `if`(k>n or k<0,0,`if`(n=k,1,
    procname(n-1,k-1)+procname(n-1,k+1))) end proc:
    seq(print(seq(A053121(n,k), k=0..n)),n=0..12); # Peter Luschny, May 01 2011
  • Mathematica
    a[n_, m_] /; n < m || OddQ[n-m] = 0; a[n_, m_] = (m+1) Binomial[n+1, (n-m)/2]/(n+1); Flatten[Table[a[n, m], {n, 0, 12}, {m, 0, n}]] [[1 ;; 90]] (* Jean-François Alcover, May 18 2011 *)
    T[0, 0] := 1; T[n_, k_]/;0<=k<=n := T[n, k] = T[n-1, k-1]+T[n-1, k+1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Oliver Seipel, Dec 31 2024 *)
  • PARI
    T(n, m)=if(nCharles R Greathouse IV, Mar 09 2016
  • Sage
    def A053121_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1] + M[n-1,k+1]
        return M
    A053121_triangle(13) # Peter Luschny, Sep 19 2012
    

Formula

a(n, m) := 0 if n
a(n, m) = (4*(n-1)*a(n-2, m) + 2*(m+1)*a(n-1, m-1))/(n+m+2), a(n, m)=0 if n
G.f. for m-th column: c(x^2)*(x*c(x^2))^m, where c(x) = g.f. for Catalan numbers A000108.
G.f.: G(t,z) = c(z^2)/(1 - t*z*c(z^2)), where c(z) = (1 - sqrt(1-4*z))/(2*z) is the g.f. for the Catalan numbers (A000108). - Emeric Deutsch, Jun 16 2011
a(n, m) = a(n-1, m-1) + a(n-1, m+1) if n > 0 and m >= 0, a(0, 0)=1, a(0, m)=0 if m > 0, a(n, m)=0 if m < 0. - Henry Bottomley, Jan 25 2001
Sum_{k>=0} T(m,k)^2 = A000108(m). - Paul D. Hanna, Apr 23 2005
Sum_{k>=0} T(m, k)*T(n, k) = 0 if m+n is odd; Sum_{k>=0} T(m, k)*T(n, k) = A000108((m+n)/2) if m+n is even. - Philippe Deléham, May 26 2005
T(n,k)=sum{i=0..n, (-1)^(n-i)*C(n,i)*sum{j=0..i, C(i,j)*(C(i-j,j+k)-C(i-j,j+k+2))}}; Column k has e.g.f. BesselI(k,2x)-BesselI(k+2,2x). - Paul Barry, Feb 16 2006
Sum_{k=0..n} T(n,k)*(k+1) = 2^n. - Philippe Deléham, Mar 22 2007
Sum_{j>=0} T(n,j)*binomial(j,k) = A054336(n,k). - Philippe Deléham, Mar 30 2007
T(2*n+1,2*k+1) = A039598(n,k), T(2*n,2*k) = A039599(n,k). - Philippe Deléham, Apr 16 2007
Sum_{k=0..n} T(n,k)^x = A000027(n+1), A001405(n), A000108(n), A003161(n), A129123(n) for x = 0,1,2,3,4 respectively. - Philippe Deléham, Nov 22 2009
Sum_{k=0..n} T(n,k)*x^k = A126930(n), A126120(n), A001405(n), A054341(n), A126931(n) for x = -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Nov 28 2009
Sum_{k=0..n} T(n,k)*A000045(k+1) = A098615(n). - Philippe Deléham, Feb 03 2012
Recurrence for row polynomials C(n, x) := Sum_{m=0..n} a(n, m)*x^m = x*Sum_{k=0..n} Chat(k)*C(n-1-k, x), n >= 0, with C(-1, 1/x) = 1/x and Chat(k) = A000108(k/2) if n is even and 0 otherwise. From the o.g.f. of the row polynomials: G(z; x) := Sum_{n >= 0} C(n, x)*z^n = c(z^2)*(1 + x*z*G(z, x)), with the o.g.f. c of A000108. - Ahmet Zahid KÜÇÜK and Wolfdieter Lang, Aug 23 2015
The Boas-Buck recurrence (see a comment above) for the sequence of column m is: a(n, m) = ((m+1)/(n-m))*Sum_{j=0..n-1-m} (1/2)*(1 - (-1)^j)*binomial(j+1, (j+1)/2)* a(n-1-j, k), for n > m >= 0 and input a(m, m) = 1. - Wolfdieter Lang, Aug 11 2017
Sum_{m=1..n} a(n,m) = A037952(n). - R. J. Mathar, Sep 23 2021

Extensions

Edited by N. J. A. Sloane, Jan 29 2011

A000957 Fine's sequence (or Fine numbers): number of relations of valence >= 1 on an n-set; also number of ordered rooted trees with n nodes having root of even degree.

Original entry on oeis.org

0, 1, 0, 1, 2, 6, 18, 57, 186, 622, 2120, 7338, 25724, 91144, 325878, 1174281, 4260282, 15548694, 57048048, 210295326, 778483932, 2892818244, 10786724388, 40347919626, 151355847012, 569274150156, 2146336125648, 8110508473252, 30711521221376
Offset: 0

Keywords

Comments

Row-sum of signed Catalan triangle A009766. - Wouter Meeussen
There are two schools of thought about the best indexing for these numbers. Deutsch and Shapiro have a(4) = 6 whereas here a(5) = 6. The formulas given here use both labelings.
From D. G. Rogers, Oct 18 2005: (Start)
I notice that you have some other zero-one evaluations of binary bracketings (such as A055395). But if you have an operation # with 0#0 = 1#0 = 1, 0#1 = 1#1 = 0, and look at the number of bracketings of a string of n 0's that come out 0, you get another instance of the Fine numbers.
For Z = 1 + x(ZW + WW) = 1 + x CW and W = x(ZZ + ZW) = xZC. Hence Z = 1 + xxCCZ, the functional equational for the g.f. of the Fine numbers. Indeed, C = Z + W = Z + xCZ.
In terms of rooted planar trees with root of even degree, this says that of all rooted planar trees, some have root of even degree (Z) and some have root of odd degree (xCZ). (End)
Hankel transform of a(n+1) = [1,0,1,2,6,18,57,186,...] is A000012 = [1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
Starting with offset 3 = iterates of M * [1,0,0,0,...] where M = a tridiagonal matrix with [0,2,2,2,...] as the main diagonal and [1,1,1,...] as the super and subdiagonals. - Gary W. Adamson, Jan 09 2009
Starting with 1 and convolved with A068875 = the Catalan numbers with offset 1. - Gary W. Adamson, May 01 2009
For a relation to non-crossing partitions of the root system A_n, see A100754. - Tom Copeland, Oct 19 2014
From Tom Copeland, Nov 02 2014: (Start)
Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x) = [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).
Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)] = (x-2x^2)/(1-x)^2, and Fin(Cinv(x)) = P(x).
Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).
BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)] = (x-x^2) / (1 + x - x^2).
Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).
Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1].
(End)
a(n+1) is the number of Dyck paths of semilength n avoiding UD at Level 0. For n = 3 the a(4) = 2 such Dyck paths are UUUDDD and UUDUDD. - Ran Pan, Sep 23 2015
For n >= 3, a(n) is the number of permutations pi of [n-2] such that s(pi) avoids the patterns 132, 231, and 312, where s is West's stack-sorting map. - Colin Defant, Sep 16 2018
Named after the American scientist Terrence Leon Fine (1939-2021). - Amiram Eldar, Jun 08 2021

Examples

			G.f. = x + x^3 + 2*x^4 + 6*x^5 + 18*x^6 + 57*x^7 + 186*x^8 + 622*x^9 + 2120*x^10 + ...
		

References

  • Emeric Deutsch and Louis W. Shapiro, Seventeen Catalan identities, Bull. Instit. Combin. Applic., Vol. 31 (2001), pp. 31-38.
  • Ki Hang Kim, Douglas G. Rogers and Fred W. Roush, Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013). - N. J. A. Sloane, Jun 05 2012
  • Louis W. Shapiro and Carol J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of A065600.
Sequence with signs: A064310.
Bisections: A138413, A138414.
Logarithmic derivative: A072547.

Programs

  • Haskell
    a000957 n = a000957_list !! n
    a000957_list = 0 : 1 :
       (map (`div` 2) $ tail $ zipWith (-) a000108_list a000957_list)
    -- Reinhard Zumkeller, Nov 12 2011
    
  • Magma
    [0,1] cat  [n le 1 select n-1 else (Catalan(n)-Self(n-1))/2: n in [1..30]]; // Vincenzo Librandi, Nov 17 2016
    
  • Maple
    t1 := (1-sqrt(1-4*x))/(3-sqrt(1-4*x)); t2 := series(t1,x,90); A000957 := n- coeff(t2,x,n);
    A000957 := proc(n): if n = 0 then 0 else add((-1)^(n+k-1)*binomial(n+k-1, n-1)*(n-k)/n, k=0..n-1) fi: end: seq(A000957(n), n=0..28); # Johannes W. Meijer, Jul 22 2013
    # third Maple program:
    a:= proc(n) option remember; `if`(n<3, n*(2-n),
          ((7*n-12)*a(n-1)+(4*n-6)*a(n-2))/(2*n))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Apr 23 2020
  • Mathematica
    Table[ Plus@@Table[ (-1)^(m+n) (n+m)!/n!/m! (n-m+1)/(n+1), {m, 0, n} ], {n, 0, 36} ] (* Wouter Meeussen *)
    a[0] = 0; a[n_] := (1/2)*(-3*(-1/2)^n + 2^(n+1)*(2n-1)!!* Hypergeometric2F1Regularized[2, 2n+1, n+2, -1]); (* Jean-François Alcover, Feb 22 2012 *)
    Table[2^n (n-2) (2n-1)!! (3 (n-1) Hypergeometric2F1[1, 3-n, 3+n, 2] - n - 2)/(n+2)! + KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
  • Maxima
    C(n):=binomial(2*n,n)/(n+1);
    a(n):=if n<=0 then 0 else if n=1 then 1 else  sum(C(n-i-1)*(a(i)+a(i-1)),i,2,n-1);
    /* Vladimir Kruchinin, Apr 23 2020 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( 1 / (1 + 2 / (1 - sqrt(1 - 4*x + x*O(x^n)))), n))}; /* Michael Somos, Sep 17 2006 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( 1 / (1 + 1 / serreverse(x - x^2 + x*O(x^n))), n))}; /* Michael Somos, Sep 30 2006 */
    
  • Python
    from itertools import count, islice
    def A000957_gen(): # generator of terms
        yield from (0,1,0)
        a, c = 0, 1
        for n in count(1):
            yield (a:=(c:=c*((n<<2)+2)//(n+2))-a>>1)
    A000957_list = list(islice(A000957_gen(),20)) # Chai Wah Wu, Apr 26 2023
  • Sage
    def Fine():
        f, c, n = 1, 1, 1
        yield 0
        while True:
            yield f
            n += 1
            c = c * (4*n - 6) // n
            f = (c - f) // 2
    a = Fine()
    print([next(a) for  in range(29)])  # _Peter Luschny, Nov 30 2016
    

Formula

Catalan(n) = 2*a(n+1) + a(n), n >= 1. [Corrected by Pontus von Brömssen, Jul 23 2022]
a(n) = (A064306(n-1) + (-1)^(n-1))/2^n, n >= 1.
G.f.: (1-sqrt(1-4*x))/(3-sqrt(1-4*x)) (compare g.f. for Catalan numbers, A000108). - Emeric Deutsch
a(n) ~ 4^n/(9*n*sqrt(n*Pi)). (Corrected by Peter Luschny, Oct 26 2015.)
a(n) = (2/(n-1))*Sum_{j=0..n-3}(-2)^j*(j+1)*binomial(2n-1, n-3-j), n>=2. - Emeric Deutsch, Dec 26 2003
a(n) = 3*Sum_{j=0..floor((n-1)/2)} binomial(2n-2j-2, n-1) - binomial(2n, n) for n>0. - Emeric Deutsch, Jan 28 2004
Reversion of g.f. (x-2x^2)/(1-x)^2. - Ralf Stephan, Mar 22 2004
a(n) = ((-1)^n/2^n)*(-3/4-(1/4)*sum{k=0..n, C(1/2, k)8^k})+0^n; a(n) = ((-1)^n/2^n)*(-3/4-(1/4)*sum{k=0..n, (-1)^(k-1)*2^k*(2k)!/((k!)^2*(2k-1))})+0^n. - Paul Barry, Jun 10 2005
Hankel determinant transform is 1-n. - Michael Somos, Sep 17 2006
a(n+1) = A126093(n,0). - Philippe Deléham, Mar 05 2007
a(n+1) has g.f. 1/(1-0*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(..... (continued fraction). - Paul Barry, Dec 02 2008
From Paul Barry, Jan 17 2009: (Start)
G.f.: x*c(x)/(1+x*c(x)), c(x) the g.f. of A000108;
a(n+1) = Sum_{k=0..n} (-1)^k*C(2n-k,n-k)*(k+1)/(n+1). (End)
a(n) = 3*(-1/2)^(n+1) + Gamma(n+1/2)*4^n*hypergeom([1, n+1/2],[n+2],-8) /(sqrt(Pi)*(n+1)!) (for n>0). - Mark van Hoeij, Nov 11 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1] = -1, A[i,j] = Catalan(j-i), (i<=j), and A[i,j] = 0, otherwise. Then, for n>=1, a(n+1) = (-1)^n*charpoly(A,1). - Milan Janjic, Jul 08 2010
a(n) = the upper left term in M^n, n>0; where M = the infinite square production matrix:
0, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
...
- Gary W. Adamson, Jul 14 2011
a(n+1) = Sum_{k=0..n} A039598(n,k)*(-2)^k. - Philippe Deléham, Nov 04 2011
D-finite with recurrence: 2*n*a(n) +(12-7*n)*a(n-1) +2*(3-2*n)*a(n-2)=0. - R. J. Mathar, Nov 15 2011
a(n) = sum(sum(2^(s-2n-2k)*(n/n+2k)binomial(n+2k, k)*binomial(s-n-1, s-2n-2k), (k=0, ..., floor((s-2n)/2)), (n=1, ..., s) with s>=2. - José Luis Ramírez Ramírez, Mar 22 2012
0 = a(n)*(16*a(n+1) + 22*a(n+2) - 20*a(n+3)) + a(n+1)*(34*a(n+1) + 53*a(n+2) - 38*a(n+3)) + a(n+2)*(10*a(n+2) + 4*a(n+3)) for all n in Z if we extend by a(0)=-1, a(-n) = -3/4 * (-2)^n if n>0. - Michael Somos, Jan 31 2014 [Corrected by Pontus von Brömssen, Aug 04 2022]
G.f. A(x) satisfies x*A'(x)/A(x) = x + 2*x^3 + 6*x^4 + 22*x^5 + ..., the o.g.f. for A072547. - Peter Bala, Oct 01 2015
a(n) = 2^n*(n-2)*(2*n-1)!!*(3*(n-1)*hypergeom([1,3-n], [3+n], 2)-n-2)/(n+2)! + 0^n. - Vladimir Reshetnikov, Oct 25 2015
a(n) = binomial(2*n,n)*(hypergeom([1,(1-n)/2,1-n/2],[1-n,3/2-n],1)*3/(4-2/n)-1) for n>=2. - Peter Luschny, Oct 26 2015
O.g.f. A(x) satisfies 1 + A(x) = (1 + 3*Sum_{n >= 1} Catalan(n)*x^n)/(1 + 2*Sum_{n >= 1} Catalan(n)*x^n) = (1 + 2*Sum_{n >= 1} binomial(2*n,n)*x^n )/(1 + 3/2*Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016
a(n) = Sum_{i=2..n-1} C(n-i-1)*(a(i)+a(i-1)), a(0)=0, a(1)=1, where C(n) = A000108(n). - Vladimir Kruchinin, Apr 23 2020

A064189 Triangle T(n,k), 0 <= k <= n, read by rows, defined by: T(0,0)=1, T(n,k)=0 if n < k, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 9, 12, 9, 4, 1, 21, 30, 25, 14, 5, 1, 51, 76, 69, 44, 20, 6, 1, 127, 196, 189, 133, 70, 27, 7, 1, 323, 512, 518, 392, 230, 104, 35, 8, 1, 835, 1353, 1422, 1140, 726, 369, 147, 44, 9, 1, 2188, 3610, 3915, 3288, 2235, 1242, 560, 200, 54, 10, 1
Offset: 0

Author

N. J. A. Sloane, Sep 21 2001

Keywords

Comments

Motzkin triangle read in reverse order.
T(n,k) = number of lattice paths from (0,0) to (n,k), staying weakly above the x-axis and consisting of steps U=(1,1), D=(1,-1) and H=(1,0). Example: T(3,1) = 5 because we have HHU, UDU, HUH, UHH and UUD. Columns 0,1,2 and 3 give A001006 (Motzkin numbers), A002026 (first differences of Motzkin numbers), A005322 and A005323, respectively. - Emeric Deutsch, Feb 29 2004
Riordan array ((1-x-sqrt(1-2x-3x^2))/(2x^2), (1-x-sqrt(1-2x-3x^2))/(2x)). Inverse is the array (1/(1+x+x^2), x/(1+x+x^2)) (A104562). - Paul Barry, Mar 15 2005
Inverse binomial matrix applied to A039598. - Philippe Deléham, Feb 28 2007
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Equals binomial transform of triangle A053121. - Gary W. Adamson, Oct 25 2008
Consider a semi-infinite chessboard with squares labeled (n,k), ranks or rows n >= 0, files or columns k >= 0; the number of king-paths of length n from (0,0) to (n,k), 0 <= k <= n, is T(n,k). The recurrence relation given above relates to the movements of the king. This is essentially the comment made by Harrie Grondijs for the Motzkin triangle A026300. - Johannes W. Meijer, Oct 10 2010

Examples

			Triangle begins:
  [0]   1;
  [1]   1,    1;
  [2]   2,    2,    1;
  [3]   4,    5,    3,    1;
  [4]   9,   12,    9,    4,   1;
  [5]  21,   30,   25,   14,   5,   1;
  [6]  51,   76,   69,   44,  20,   6,   1;
  [7] 127,  196,  189,  133,  70,  27,   7,  1;
  [8] 323,  512,  518,  392, 230, 104,  35,  8, 1;
  [9] 835, 1353, 1422, 1140, 726, 369, 147, 44, 9, 1;
  ...
From _Philippe Deléham_, Nov 04 2011: (Start)
Production matrix begins:
  1, 1
  1, 1, 1
  0, 1, 1, 1
  0, 0, 1, 1, 1
  0, 0, 0, 1, 1, 1
  0, 0, 0, 0, 1, 1, 1 (End)
		

References

  • See A026300 for additional references and other information.

Crossrefs

A026300 (the main entry for this sequence) with rows reversed.
Row sums give: A005773(n+1) or A307789(n+2).

Programs

  • Maple
    alias(C=binomial): A064189 := (n,k) -> add(C(n,j)*(C(n-j,j+k)-C(n-j,j+k+2)), j=0..n): seq(seq(A064189(n,k), k=0..n),n=0..10); # Peter Luschny, Dec 31 2019
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> simplify(hypergeom([1 -n/2, -n/2+1/2], [2], 4))); # Peter Luschny, Oct 08 2022
  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 1, 1], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)
    T[n_, k_] := Binomial[n, k] Hypergeometric2F1[(k - n)/2, (k - n + 1)/2, k + 2, 4];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* Peter Luschny, May 19 2021 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, polcoeff( polcoeff( 2 / (1 - x + sqrt(1 - 2*x - 3*x^2) - 2*x*y) + x * O(x^n), n), k))}; /* Michael Somos, Jun 06 2016 */
  • Sage
    def A064189_triangel(dim):
        M = matrix(ZZ,dim,dim)
        for n in range(dim): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+M[n-1,k]+M[n-1,k+1]
        return M
    A064189_triangel(9) # Peter Luschny, Sep 20 2012
    

Formula

Sum_{k=0..n} T(n, k)*(k+1) = 3^n.
Sum_{k=0..n} T(n, k)*T(n, n-k) = T(2*n, n) - T(2*n, n+2)
G.f.: M/(1-t*z*M), where M = 1 + z*M + z^2*M^2 is the g.f. of the Motzkin numbers (A001006). - Emeric Deutsch, Feb 29 2004
Sum_{k>=0} T(m, k)*T(n, k) = A001006(m+n). - Philippe Deléham, Mar 05 2004
Sum_{k>=0} T(n-k, k) = A005043(n+2). - Philippe Deléham, May 31 2005
Column k has e.g.f. exp(x)*(BesselI(k,2*x)-BesselI(k+2,2*x)). - Paul Barry, Feb 16 2006
T(n,k) = Sum_{j=0..n} C(n,j)*(C(n-j,j+k) - C(n-j,j+k+2)). - Paul Barry, Feb 16 2006
n-th row is generated from M^n * V, where M = the infinite tridiagonal matrix with all 1's in the super, main and subdiagonals; and V = the infinite vector [1,0,0,0,...]. E.g., Row 3 = (4, 5, 3, 1), since M^3 * V = [4, 5, 3, 1, 0, 0, 0, ...]. - Gary W. Adamson, Nov 04 2006
T(n,k) = A122896(n+1,k+1). - Philippe Deléham, Apr 21 2007
T(n,k) = (k/n)*Sum_{j=0..n} binomial(n,j)*binomial(j,2*j-n-k). - Vladimir Kruchinin, Feb 12 2011
Sum_{k=0..n} T(n,k)*(-1)^k*(k+1) = (-1)^n. - Werner Schulte, Jul 08 2015
Sum_{k=0..n} T(n,k)*(k+1)^3 = (2*n+1)*3^n. - Werner Schulte, Jul 08 2015
G.f.: 2 / (1 - x + sqrt(1 - 2*x - 3*x^2) - 2*x*y) = Sum_{n >= k >= 0} T(n, k) * x^n * y^k. - Michael Somos, Jun 06 2016
T(n,k) = binomial(n, k)*hypergeom([(k-n)/2, (k-n+1)/2], [k+2], 4). - Peter Luschny, May 19 2021
The coefficients of the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + x + x^2)^n expanded about the point x = 0 give the entries in row n in reverse order. - Peter Bala, Sep 06 2022

Extensions

More terms from Vladeta Jovovic, Sep 23 2001

A048896 a(n) = 2^(A000120(n+1) - 1), n >= 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 4, 4, 8, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 2, 4, 4
Offset: 0

Keywords

Comments

a(n) = 2^A048881 = 2^{maximal power of 2 dividing the n-th Catalan number (A000108)}. [Comment corrected by N. J. A. Sloane, Apr 30 2018]
Row sums of triangle A128937. - Philippe Deléham, May 02 2007
a(n) = sum of (n+1)-th row terms of triangle A167364. - Gary W. Adamson, Nov 01 2009
a(n), n >= 1: Numerators of Maclaurin series for 1 - ((sin x)/x)^2, A117972(n), n >= 2: Denominators of Maclaurin series for 1 - ((sin x)/x)^2, the correlation function in Montgomery's pair correlation conjecture. - Daniel Forgues, Oct 16 2011
For n > 0: a(n) = A007954(A007931(n)). - Reinhard Zumkeller, Oct 26 2012
a(n) = A261363(2*(n+1), n+1). - Reinhard Zumkeller, Aug 16 2015
From Gus Wiseman, Oct 30 2022: (Start)
Also the number of coarsenings of the (n+1)-th composition in standard order. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See link for sequences related to standard compositions. For example, the a(10) = 4 coarsenings of (2,1,1) are: (2,1,1), (2,2), (3,1), (4).
Also the number of times n+1 appears in A357134. For example, 11 appears at positions 11, 20, 33, and 1024, so a(10) = 4.
(End)

Examples

			From _Omar E. Pol_, Jul 21 2009: (Start)
If written as a triangle:
  1;
  1,2;
  1,2,2,4;
  1,2,2,4,2,4,4,8;
  1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16;
  1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32;
  ...,
the first half-rows converge to Gould's sequence A001316.
(End)
		

Crossrefs

This is Guy Steele's sequence GS(3, 5) (see A135416).
Equals first right hand column of triangle A160468.
Equals A160469(n+1)/A002425(n+1).
Standard compositions are listed by A066099.
The opposite version (counting refinements) is A080100.
The version for Heinz numbers of partitions is A317141.

Programs

  • Haskell
    a048896 n = a048896_list !! n
    a048896_list = f [1] where f (x:xs) = x : f (xs ++ [x,2*x])
    -- Reinhard Zumkeller, Mar 07 2011
    
  • Haskell
    import Data.List (transpose)
    a048896 = a000079 . a000120
    a048896_list = 1 : concat (transpose
       [zipWith (-) (map (* 2) a048896_list) a048896_list,
        map (* 2) a048896_list])
    -- Reinhard Zumkeller, Jun 16 2013
    
  • Magma
    [Numerator(2^n / Factorial(n+1)): n in [0..100]]; // Vincenzo Librandi, Apr 12 2014
  • Maple
    a := n -> 2^(add(i,i=convert(n+1,base,2))-1): seq(a(n), n=0..97); # Peter Luschny, May 01 2009
  • Mathematica
    NestList[Flatten[#1 /. a_Integer -> {a, 2 a}] &, {1}, 4] // Flatten (* Robert G. Wilson v, Aug 01 2012 *)
    Table[Numerator[2^n / (n + 1)!], {n, 0, 200}] (* Vincenzo Librandi, Apr 12 2014 *)
    Denominator[Table[BernoulliB[2*n] / (Zeta[2*n]/Pi^(2*n)), {n, 1, 100}]] (* Terry D. Grant, May 29 2017 *)
    Table[Denominator[((2 n)!/2^(2 n + 1)) (-1)^n], {n, 1, 100}]/4 (* Terry D. Grant, May 29 2017 *)
    2^IntegerExponent[CatalanNumber[Range[0,100]],2] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    a(n)=if(n<1,1,if(n%2,a(n/2-1/2),2*a(n-1)))
    
  • PARI
    a(n) = 1 << (hammingweight(n+1)-1); \\ Kevin Ryde, Feb 19 2022
    

Formula

a(n) = 2^A048881(n).
a(n) = 2^k if 2^k divides A000108(n) but 2^(k+1) does not divide A000108(n).
It appears that a(n) = Sum_{k=0..n} binomial(2*(n+1), k) mod 2. - Christopher Lenard (c.lenard(AT)bendigo.latrobe.edu.au), Aug 20 2001
a(0) = 1; a(2*n) = 2*a(2*n-1); a(2*n+1) = a(n).
a(n) = (1/2) * A001316(n+1). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 26 2004
It appears that a(n) = Sum_{k=0..2n} floor(binomial(2n+2, k+1)/2)(-1)^k = 2^n - Sum_{k=0..n+1} floor(binomial(n+1, k)/2). - Paul Barry, Dec 24 2004
a(n) = Sum_{k=0..n} (T(n,k) mod 2) where T = A039598, A053121, A052179, A124575, A126075, A126093. - Philippe Deléham, May 02 2007
a(n) = numerator(b(n)), where sin(x)^2/x = Sum_{n>0} b(n)*(-1)^n x^(2*n-1). - Vladimir Kruchinin, Feb 06 2013
a((2*n+1)*2^p-1) = A001316(n), p >= 0 and n >= 0. - Johannes W. Meijer, Feb 12 2013
a(n) = numerator(2^n / (n+1)!). - Vincenzo Librandi, Apr 12 2014
a(2n) = (2n+1)!/(n!n!)/A001803(n). - Richard Turk, Aug 23 2017
a(2n-1) = (2n-1)!/(n!(n-1)!)/A001790(n). - Richard Turk, Aug 23 2017

Extensions

New definition from N. J. A. Sloane, Mar 01 2008

A061554 Square table read by antidiagonals: a(n,k) = binomial(n+k, floor(k/2)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 4, 4, 1, 1, 10, 10, 5, 5, 1, 1, 20, 15, 15, 6, 6, 1, 1, 35, 35, 21, 21, 7, 7, 1, 1, 70, 56, 56, 28, 28, 8, 8, 1, 1, 126, 126, 84, 84, 36, 36, 9, 9, 1, 1, 252, 210, 210, 120, 120, 45, 45, 10, 10, 1, 1, 462, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1
Offset: 0

Author

Henry Bottomley, May 17 2001

Keywords

Comments

Equivalently, a triangle read by rows, where the rows are obtained by sorting the elements of the rows of Pascal's triangle (A007318) into descending order. - Philippe Deléham, May 21 2005
Equivalently, as a triangle read by rows, this is T(n,k)=binomial(n,floor((n-k)/2)); column k then has e.g.f. Bessel_I(k,2x)+Bessel_I(k+1,2x). - Paul Barry, Feb 28 2006
Antidiagonal sums are A037952(n+1) = C(n+1,[n/2]). Matrix inverse is the row reversal of triangle A066170. Eigensequence is A125094(n) = Sum_{k=0..n-1} A125093(n-1,k)*A125094(k). - Paul D. Hanna, Nov 20 2006
Riordan array (1/(1-x-x^2*c(x^2)),x*c(x^2)); where c(x)=g.f.for Catalan numbers A000108. - Philippe Deléham, Mar 17 2007
Triangle T(n,k), 0<=k<=n, read by rows given by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
T(n,k) is the number of paths from (0,k) to some (n,m) which never dip below y=0, touch y=0 at least once and are made up only of the steps (1,1) and (1,-1). This can be proved using the recurrence supplied by Deléham. - Gerald McGarvey, Oct 15 2008
Triangle read by rows = partial sums of A053121 terms starting from the right. - Gary W. Adamson, Oct 24 2008
As a subset of the "family of triangles" (Deleham comment of Sep 25 2007), beginning with a signed variant of A061554, M = (-1,0) = (1; -1, 1; 2, -1, 1; -3, 3, -1, 1; ...) successive binomial transforms of M yield (0,1) - A089942; (1,2) - A039599; (2,3) - A124733; (3,4) - A124574; (4,5) - A126331; ... such that the binomial transform of the triangle generated from (n,n+1) = the triangle generated from (n+1,n+2). Similarly, another subset beginning with A053121 - (0,0), and taking successive binomial transforms yields (1,1) - A064189; (2,2) - A039598; (3,3) - A091965, ... By rows, the triangle generated from (n,n) can be obtained by taking pairwise sums from the (n-1,n) triangle starting from the right. For example, row 2 of (1,2) - A039599 = (2, 3, 1); and taking pairwise sums from the right we obtain (5, 4, 1) = row 2 of (2,2) - A039598. - Gary W. Adamson, Aug 04 2011
The triangle by rows (n) with alternating signs (+-+...) from the top as a set of simultaneous equations solves for diagonal lengths of odd N (N = 2n+1) regular polygons. The constants in each case are powers of c = 2*cos(2*Pi/N). By way of example, the first 3 rows relate to the heptagon and the simultaneous equations are (1,0,0) = 1; (-1,1,0) = c = 1.24697...; and (2,-1,1) = c^2. The answers are 1, 2.24697..., and 1.801...; the 3 distinct diagonal lengths of the heptagon with edge = 1. - Gary W. Adamson, Sep 07 2011

Examples

			The array starts:
   1, 1,  2,  3,  6, 10,  20,  35,   70,  126, ...
   1, 1,  3,  4, 10, 15,  35,  56,  126,  210, ...
   1, 1,  4,  5, 15, 21,  56,  84,  210,  330, ...
   1, 1,  5,  6, 21, 28,  84, 120,  330,  495, ...
   1, 1,  6,  7, 28, 36, 120, 165,  495,  715, ...
   1, 1,  7,  8, 36, 45, 165, 220,  715, 1001, ...
   1, 1,  8,  9, 45, 55, 220, 286, 1001, 1365, ...
   1, 1,  9, 10, 55, 66, 286, 364, 1365, 1820, ...
   1, 1, 10, 11, 66, 78, 364, 455, 1820, 2380, ...
   1, 1, 11, 12, 78, 91, 455, 560, 2380, 3060, ...
Triangle (antidiagonal) version begins:
    1;
    1,   1;
    2,   1,   1;
    3,   3,   1,   1;
    6,   4,   4,   1,   1;
   10,  10,   5,   5,   1,   1;
   20,  15,  15,   6,   6,   1,  1;
   35,  35,  21,  21,   7,   7,  1,  1;
   70,  56,  56,  28,  28,   8,  8,  1,  1;
  126, 126,  84,  84,  36,  36,  9,  9,  1,  1;
  252, 210, 210, 120, 120,  45, 45, 10, 10,  1, 1;
  462, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1; ...
Matrix inverse begins:
   1;
  -1,  1;
  -1, -1,   1;
   1, -2,  -1,   1;
   1,  2,  -3,  -1,  1;
  -1,  3,   3,  -4, -1,  1;
  -1, -3,   6,   4, -5, -1,  1;
   1, -4,  -6,  10,  5, -6, -1,  1;
   1,  4, -10, -10, 15,  6, -7, -1, 1; ...
From _Paul Barry_, May 21 2009: (Start)
Production matrix is
  1, 1,
  1, 0, 1,
  0, 1, 0, 1,
  0, 0, 1, 0, 1,
  0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 1, 0, 1 (End)
		

Crossrefs

Rows are A001405, A037952, A037955, A037951, A037956, A037953, A037957 etc. Columns are truncated pairs of A000012, A000027, A000217, A000292, A000332, A000389, A000579, etc. Main diagonal is alternate values of A051036.

Programs

  • Maple
    T := proc(n, k) option remember;
    if n = k then 1 elif k < 0 or n < 0 or k > n then 0
    elif k = 0 then T(n-1, 0) + T(n-1, 1) else T(n-1, k-1) + T(n-1, k+1) fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, May 25 2021
  • Mathematica
    t[n_, k_] = Binomial[n, Floor[(n+1)/2 - (-1)^(n-k)*(k+1)/2]]; Flatten[Table[t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, May 31 2011 *)
  • PARI
    T(n,k)=binomial(n,(n+1)\2-(-1)^(n-k)*((k+1)\2))

Formula

As a triangle: T(n,k) = binomial(n,m) where m = floor((n+1)/2 - (-1)^(n-k)*(k+1)/2).
a(0, k) = binomial(k, floor(k/2)) = A001405(k); for n>0 T(n, k) = T(n+1, k-2) + T(n-1, k).
n-th row = M^n * V, where M = the infinite tridiagonal matrix with all 1's in the super and subdiagonals and (1,0,0,0,...) in the main diagonal. V = the infinite vector [1,0,0,0,...]. Example: (3,3,1,1,0,0,0,...) = M^3 * V. - Gary W. Adamson, Nov 04 2006
Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0) = A001405(m+n). - Philippe Deléham, Feb 26 2007
Sum_{k=0..n} T(n,k)=2^n. - Philippe Deléham, Mar 27 2007
Sum_{k=0..n} T(n,k)*x^k = A127361(n), A126869(n), A001405(n), A000079(n), A127358(n), A127359(n), A127360(n) for x = -2, -1, 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Dec 04 2009

Extensions

Entry revised by N. J. A. Sloane, Nov 22 2006

A078812 Triangle read by rows: T(n, k) = binomial(n+k-1, 2*k-1).

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 10, 6, 1, 5, 20, 21, 8, 1, 6, 35, 56, 36, 10, 1, 7, 56, 126, 120, 55, 12, 1, 8, 84, 252, 330, 220, 78, 14, 1, 9, 120, 462, 792, 715, 364, 105, 16, 1, 10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1, 11, 220, 1287, 3432, 5005, 4368, 2380, 816, 171, 20, 1
Offset: 0

Author

Michael Somos, Dec 05 2002

Keywords

Comments

Warning: formulas and programs sometimes refer to offset 0 and sometimes to offset 1.
Apart from signs, identical to A053122.
Coefficient array for Morgan-Voyce polynomial B(n,x); see A085478 for references. - Philippe Deléham, Feb 16 2004
T(n,k) is the number of compositions of n having k parts when there are q kinds of part q (q=1,2,...). Example: T(4,2) = 10 because we have (1,3),(1,3'),(1,3"), (3,1),(3',1),(3",1),(2,2),(2,2'),(2',2) and (2',2'). - Emeric Deutsch, Apr 09 2005
T(n, k) is also the number of idempotent order-preserving full transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|). - Abdullahi Umar, Oct 02 2008
This sequence is jointly generated with A085478 as a triangular array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = u(n-1,x) + x*v(n-1)x and v(n,x) = u(n-1,x) + (x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 25 2012
Concerning Kimberling's recursion relations, see A102426. - Tom Copeland, Jan 19 2016
Subtriangle of the triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 27 2012
From Wolfdieter Lang, Aug 30 2012: (Start)
With offset [0,0] the triangle with entries R(n,k) = T(n+1,k+1):= binomial(n+k+1, 2*k+1), n >= k >= 0, and zero otherwise, becomes the Riordan lower triangular convolution matrix R = (G(x)/x, G(x)) with G(x):=x/(1-x)^2 (o.g.f. of A000027). This means that the o.g.f. of column number k of R is (G(x)^(k+1))/x. This matrix R is the inverse of the signed Riordan lower triangular matrix A039598, called in a comment there S.
The Riordan matrix with entries R(n,k), just defined, provides the transition matrix between the sequence entry F(4*m*(n+1))/L(2*l), with m >= 0, for n=0,1,... and the sequence entries 5^k*F(2*m)^(2*k+1) for k = 0,1,...,n, with F=A000045 (Fibonacci) and L=A000032 (Lucas). Proof: from the inverse of the signed triangle Riordan matrix S used in a comment on A039598.
For the transition matrix R (T with offset [0,0]) defined above, row n=2: F(12*m) /L(2*m) = 3*5^0*F(2*m)^1 + 4*5^1*F(2*m)^3 + 1*5^2*F(2*m)^5, m >= 0. (End)
From R. Bagula's comment in A053122 (cf. Damianou link p. 10), this array gives the coefficients (mod sign) of the characteristic polynomials for the Cartan matrix of the root system A_n. - Tom Copeland, Oct 11 2014
For 1 <= k <= n, T(n,k) equals the number of (n-1)-length ternary words containing k-1 letters equal 2 and avoiding 01. - Milan Janjic, Dec 20 2016
The infinite sum (Sum_{i >= 0} (T(s+i,1+i) / 2^(s+2*i)) * zeta(s+1+2*i)) = 1 allows any zeta(s+1) to be expressed as a sum of rational multiples of zeta(s+1+2*i) having higher arguments. For example, zeta(3) can be expressed as a sum involving zeta(5), zeta(7), etc. The summation for each s >= 1 uses the s-th diagonal of the triangle. - Robert B Fowler, Feb 23 2022
The convolution triangle of the nonnegative integers. - Peter Luschny, Oct 07 2022

Examples

			Triangle begins, 1 <= k <= n:
                          1
                        2   1
                      3   4   1
                    4  10   6   1
                  5  20  21   8   1
                6  35  56  36  10   1
              7  56 126 120  55  12   1
            8  84 252 330 220  78  14   1
From _Peter Bala_, Feb 11 2025: (Start)
The array factorizes as an infinite product of lower triangular arrays:
  / 1               \    / 1              \ / 1              \ / 1             \
  | 2    1           |   | 2   1          | | 0  1           | | 0  1          |
  | 3    4   1       | = | 3   2   1      | | 0  2   1       | | 0  0  1       | ...
  | 4   10   6   1   |   | 4   3   2  1   | | 0  3   2  1    | | 0  0  2  1    |
  | 5   20  21   8  1|   | 5   4   3  2  1| | 0  4   3  2  1 | | 0  0  3  2  1 |
  |...               |   |...             | |...             | |...            |
Cf. A092276. (End)
		

Crossrefs

This triangle is formed from odd-numbered rows of triangle A011973 read in reverse order.
Row sums give A001906. With signs: A053122.
The column sequences are A000027, A000292, A000389, A000580, A000582, A001288 for k=1..6, resp. For k=7..24 they are A010966..(+2)..A011000 and for k=25..50 they are A017713..(+2)..A017763.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n+k+1, 2*k+1) ))); # G. C. Greubel, Aug 01 2019
  • Haskell
    a078812 n k = a078812_tabl !! n !! k
    a078812_row n = a078812_tabl !! n
    a078812_tabl = [1] : [2, 1] : f [1] [2, 1] where
       f us vs = ws : f vs ws where
         ws = zipWith (-) (zipWith (+) ([0] ++ vs) (map (* 2) vs ++ [0]))
                          (us ++ [0, 0])
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Magma
    /* As triangle */ [[Binomial(n+k-1, 2*k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jun 01 2018
    
  • Maple
    for n from 1 to 11 do seq(binomial(n+k-1,2*k-1),k=1..n) od; # yields sequence in triangular form; Emeric Deutsch, Apr 09 2005
    # Uses function PMatrix from A357368. Adds a row and column above and to the left.
    PMatrix(10, n -> n); # Peter Luschny, Oct 07 2022
  • Mathematica
    (* First program *)
    u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%] (* A085478 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%] (* A078812 *) (* Clark Kimberling, Feb 25 2012 *)
    (* Second program *)
    Table[Binomial[n+k+1, 2*k+1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2019 *)
  • Maxima
    T(n,m):=sum(binomial(2*k,n-m)*binomial(m+k,k)*(-1)^(n-m+k)*binomial(n+1,m+k+1),k,0,n-m); /* Vladimir Kruchinin, Apr 13 2016 */
    
  • PARI
    {T(n, k) = if( n<0, 0, binomial(n+k-1, 2*k-1))};
    
  • PARI
    {T(n, k) = polcoeff( polcoeff( x*y / (1 - (2 + y) * x + x^2) + x * O(x^n), n), k)};
    
  • Sage
    @cached_function
    def T(k,n):
        if k==n: return 1
        if k==0: return 0
        return sum(i*T(k-1,n-i) for i in (1..n-k+1))
    A078812 = lambda n,k: T(k,n)
    [[A078812(n,k) for k in (1..n)] for n in (1..8)] # Peter Luschny, Mar 12 2016
    
  • Sage
    [[binomial(n+k+1, 2*k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

G.f.: x*y / (1 - (2 + y)*x + x^2). To get row n, expand this in powers of x then expand the coefficient of x^n in increasing powers of y.
From Philippe Deléham, Feb 16 2004: (Start)
If indexing begins at 0 we have
T(n,k) = (n+k+1)!/((n-k)!*(2k+1))!.
T(n,k) = Sum_{j>=0} T(n-1-j, k-1)*(j+1) with T(n, 0) = n+1, T(n, k) = 0 if n < k.
T(n,k) = T(n-1, k-1) + T(n-1, k) + Sum_{j>=0} (-1)^j*T(n-1, k+j)*A000108(j) with T(n,k) = 0 if k < 0, T(0, 0)=1 and T(0, k) = 0 for k > 0.
G.f. for the column k: Sum_{n>=0} T(n, k)*x^n = (x^k)/(1-x)^(2k+2).
Row sums: Sum_{k>=0} T(n, k) = A001906(n+1). (End)
Antidiagonal sums are A000079(n) = Sum_{k=0..floor(n/2)} binomial(n+k+1, n-k). - Paul Barry, Jun 21 2004
Riordan array (1/(1-x)^2, x/(1-x)^2). - Paul Barry, Oct 22 2006
T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n, T(n,k) = T(n-1,k-1) + 2*T(n-1,k) - T(n-2,k). - Philippe Deléham, Jan 26 2010
For another version see A128908. - Philippe Deléham, Mar 27 2012
T(n,m) = Sum_{k=0..n-m} (binomial(2*k,n-m)*binomial(m+k,k)*(-1)^(n-m+k)* binomial(n+1,m+k+1)). - Vladimir Kruchinin, Apr 13 2016
T(n, k) = T(n-1, k) + (T(n-1, k-1) + T(n-2, k-1) + T(n-3, k-1) + ...) for k >= 2 with T(n, 1) = n. - Peter Bala, Feb 11 2025
From Peter Bala, May 04 2025: (Start)
With the column offset starting at 0, the n-th row polynomial B(n, x) = 1/sqrt(x + 4) * Chebyshev_U(2*n+1, (1/2)*sqrt(x + 4)) = (-1)^n * Chebyshev_U(n, -(1/2)*(x + 2)).
B(n, x) / Product_{k = 1..2*n} (1 + 1/B(k, x)) = b(n, x), the n-th row polynomial of A085478. (End)

Extensions

Edited by N. J. A. Sloane, Apr 28 2008

A053122 Triangle of coefficients of Chebyshev's S(n,x-2) = U(n,x/2-1) polynomials (exponents of x in increasing order).

Original entry on oeis.org

1, -2, 1, 3, -4, 1, -4, 10, -6, 1, 5, -20, 21, -8, 1, -6, 35, -56, 36, -10, 1, 7, -56, 126, -120, 55, -12, 1, -8, 84, -252, 330, -220, 78, -14, 1, 9, -120, 462, -792, 715, -364, 105, -16, 1, -10, 165, -792, 1716, -2002, 1365, -560, 136, -18, 1, 11, -220, 1287, -3432, 5005, -4368, 2380, -816, 171, -20
Offset: 0

Keywords

Comments

Apart from signs, identical to A078812.
Another version with row-leading 0's and differing signs is given by A285072.
G.f. for row polynomials S(n,x-2) (signed triangle): 1/(1+(2-x)*z+z^2). Unsigned triangle |a(n,m)| has g.f. 1/(1-(2+x)*z+z^2) for row polynomials.
Row sums (signed triangle) A049347(n) (periodic(1,-1,0)). Row sums (unsigned triangle) A001906(n+1)=F(2*(n+1)) (even-indexed Fibonacci).
In the language of Shapiro et al. (see A053121 for the reference) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group.
The (unsigned) column sequences are A000027, A000292, A000389, A000580, A000582, A001288 for m=0..5, resp. For m=6..23 they are A010966..(+2)..A011000 and for m=24..49 they are A017713..(+2)..A017763.
Riordan array (1/(1+x)^2,x/(1+x)^2). Inverse array is A039598. Diagonal sums have g.f. 1/(1+x^2). - Paul Barry, Mar 17 2005. Corrected by Wolfdieter Lang, Nov 13 2012.
Unsigned version is in A078812. - Philippe Deléham, Nov 05 2006
Also row n gives (except for an overall sign) coefficients of characteristic polynomial of the Cartan matrix for the root system A_n. - Roger L. Bagula, May 23 2007
From Wolfdieter Lang, Nov 13 2012: (Start)
The A-sequence for this Riordan triangle is A115141, and the Z-sequence is A115141(n+1), n>=0. For A- and Z-sequences for Riordan matrices see the W. Lang link under A006232 with details and references.
S(n,x^2-2) = sum(r(j,x^2),j=0..n) with Chebyshev's S-polynomials and r(j,x^2) := R(2*j+1,x)/x, where R(n,x) are the monic integer Chebyshv T-polynomials with coefficients given in A127672. Proof from comparing the o.g.f. of the partial sum of the r(j,x^2) polynomials (see a comment on the signed Riordan triangle A111125) with the present Riordan type o.g.f. for the row polynomials with x -> x^2. (End)
S(n,x^2-2) = S(2*n+1,x)/x, n >= 0, from the odd part of the bisection of the o.g.f. - Wolfdieter Lang, Dec 17 2012
For a relation to a generator for the Narayana numbers A001263, see A119900, whose columns are unsigned shifted rows (or antidiagonals) of this array, referring to the tables in the example sections. - Tom Copeland, Oct 29 2014
The unsigned rows of this array are alternating rows of a mirrored A011973 and alternating shifted rows of A030528 for the Fibonacci polynomials. - Tom Copeland, Nov 04 2014
Boas-Buck type recurrence for column k >= 0 (see Aug 10 2017 comment in A046521 with references): a(n, m) = (2*(m + 1)/(n - m))*Sum_{k = m..n-1} (-1)^(n-k)*a(k, m), with input a(n, n) = 1, and a(n,k) = 0 for n < k. - Wolfdieter Lang, Jun 03 2020
Row n gives the characteristic polynomial of the (n X n)-matrix M where M[i,j] = 2 if i = j, -1 if |i-j| = 1 and 0 otherwise. The matrix M is positive definite and has 2-condition number (cot(Pi/(2*n+2)))^2. - Jianing Song, Jun 21 2022
Also the convolution triangle of (-1)^(n+1)*n. - Peter Luschny, Oct 07 2022

Examples

			The triangle a(n,m) begins:
n\m   0    1    2     3     4     5     6    7    8  9
0:    1
1:   -2    1
2:    3   -4    1
3:   -4   10   -6     1
4:    5  -20   21    -8     1
5:   -6   35  -56    36   -10     1
6:    7  -56  126  -120    55   -12     1
7:   -8   84 -252   330  -220    78   -14    1
8:    9 -120  462  -792   715  -364   105  -16    1
9:  -10  165 -792  1716 -2002  1365  -560  136  -18  1
... Reformatted and extended by _Wolfdieter Lang_, Nov 13 2012
E.g., fourth row (n=3) {-4,10,-6,1} corresponds to the polynomial S(3,x-2) = -4+10*x-6*x^2+x^3.
From _Wolfdieter Lang_, Nov 13 2012: (Start)
Recurrence: a(5,1) = 35 = 1*5 + (-2)*(-20) -1*(10).
Recurrence from Z-sequence [-2,-1,-2,-5,...]: a(5,0) = -6 = (-2)*5 + (-1)*(-20) + (-2)*21 + (-5)*(-8) + (-14)*1.
Recurrence from A-sequence [1,-2,-1,-2,-5,...]: a(5,1) = 35 = 1*5  + (-2)*(-20) + (-1)*21 + (-2)*(-8) + (-5)*1.
(End)
E.g., the fourth row (n=3) {-4,10,-6,1} corresponds also to the polynomial S(7,x)/x = -4 + 10*x^2 - 6*x^4 + x^6. - _Wolfdieter Lang_, Dec 17 2012
Boas-Buck type recurrence: -56 = a(5, 2) = 2*(-1*1 + 1*(-6) - 1*21) = -2*28 = -56. - _Wolfdieter Lang_, Jun 03 2020
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 62.
  • Sigurdur Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S.: ISBN 0-8218-2848-7, 1978, p. 463.

Crossrefs

Cf. A285072 (version with row-leading 0's and differing signs). - Eric W. Weisstein, Apr 09 2017

Programs

  • Maple
    seq(seq((-1)^(n+m)*binomial(n+m+1,2*m+1),m=0..n),n=0..10); # Robert Israel, Oct 15 2014
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> -(-1)^n*n); # Peter Luschny, Oct 07 2022
  • Mathematica
    T[n_, m_, d_] := If[ n == m, 2, If[n == m - 1 || n == m + 1, -1, 0]]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}]; a = Join[M[1], Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]]; Flatten[a] (* Roger L. Bagula, May 23 2007 *)
    (* Alternative code for the matrices from MathWorld: *)
    sln[n_] := 2IdentityMatrix[n] - PadLeft[PadRight[IdentityMatrix[n - 1], {n, n - 1}], {n, n}] - PadLeft[PadRight[IdentityMatrix[n - 1], {n - 1, n}], {n, n}] (* Roger L. Bagula, May 23 2007 *)
  • Sage
    @CachedFunction
    def A053122(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A053122(n-1,k-1)-A053122(n-2,k)-2*A053122(n-1,k)
    for n in (0..9): [A053122(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

a(n, m) := 0 if n
a(n, m) = -2*a(n-1, m) + a(n-1, m-1) - a(n-2, m), a(n, -1) := 0 =: a(-1, m), a(0, 0)=1, a(n, m) := 0 if n
O.g.f. for m-th column (signed triangle): ((x/(1+x)^2)^m)/(1+x)^2.
From Jianing Song, Jun 21 2022: (Start)
T(n,k) = [x^k]f_n(x), where f_{-1}(x) = 0, f_0(x) = 1, f_n(x) = (x-2)*f_{n-1}(x) - f_{n-2}(x) for n >= 2.
f_n(x) = (((x-2+sqrt(x^2-4*x))/2)^(n+1) - ((x-2-sqrt(x^2-4*x))/2)^(n+1))/sqrt(x^2-4x).
The roots of f_n(x) are 2 + 2*cos(k*Pi/(n+1)) = 4*(cos(k*Pi/(2*n+2)))^2 for 1 <= k <= n. (End)

A052179 Triangle of numbers arising in enumeration of walks on cubic lattice.

Original entry on oeis.org

1, 4, 1, 17, 8, 1, 76, 50, 12, 1, 354, 288, 99, 16, 1, 1704, 1605, 700, 164, 20, 1, 8421, 8824, 4569, 1376, 245, 24, 1, 42508, 48286, 28476, 10318, 2380, 342, 28, 1, 218318, 264128, 172508, 72128, 20180, 3776, 455, 32, 1, 1137400, 1447338
Offset: 0

Author

N. J. A. Sloane, Jan 26 2000

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 4*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
Triangle read by rows: T(n,k) = number of lattice paths from (0,0) to (n,k) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and four types of steps H=(1,0); example: T(3,1)=50 because we have UDU, UUD, 16 HHU paths, 16 HUH paths and 16 UHH paths. - Philippe Deléham, Sep 25 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Riordan array ((1-4x-sqrt(1-8x+12x^2))/(2x^2), (1-4x-sqrt(1-8x+12x^2))/(2x)). Inverse of A159764. - Paul Barry, Apr 21 2009
6^n = (n-th row terms) dot (first n+1 terms in (1,2,3,...)). Example: 6^3 = 216 = (76, 50, 12, 1) dot (1, 2, 3, 4) = (76 + 100 + 36 + 4) = 216. - Gary W. Adamson, Jun 15 2011
A subset of the "family of triangles" (Deléham comment of Sep 25 2007) is the succession of binomial transforms beginning with triangle A053121, (0,0); giving -> A064189, (1,1); -> A039598, (2,2); -> A091965, (3,3); -> A052179, (4,4); -> A125906, (5,5) ->, etc.; generally the binomial transform of the triangle generated from (n,n) = that generated from ((n+1),(n+1)). - Gary W. Adamson, Aug 03 2011

Examples

			Triangle begins:
    1;
    4,   1;
   17,   8,   1;
   76,  50,  12,   1;
  354, 288,  99,  16,   1;
  ...
Production matrix begins:
  4, 1;
  1, 4, 1;
  0, 1, 4, 1;
  0, 0, 1, 4, 1;
  0, 0, 0, 1, 4, 1;
  0, 0, 0, 0, 1, 4, 1;
  0, 0, 0, 0, 0, 1, 4, 1;
- _Philippe Deléham_, Nov 04 2011
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(min(n, k)<0, 0,
         `if`(max(n, k)=0, 1, T(n-1, k-1)+4*T(n-1, k)+T(n-1, k+1)))
        end:
    seq(seq(T(n,k), k=0..n), n=0..10);  # Alois P. Heinz, Oct 28 2021
  • Mathematica
    t[0, 0] = 1; t[n_, k_] /; k < 0 || k > n = 0; t[n_, 0] := t[n, 0] = 4*t[n-1, 0] + t[n-1, 1]; t[n_, k_] := t[n, k] = t[n-1, k-1] + 4*t[n-1, k] + t[n-1, k+1]; Flatten[ Table[t[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Oct 10 2011, after Philippe Deleham *)

Formula

Sum_{k>=0} T(m, k)*T(n, k) = T(m+n, 0) = A005572(m+n). - Philippe Deléham, Sep 15 2005
n-th row = M^n * V, where M = the infinite tridiagonal matrix with all 1's in the super and subdiagonals and (4,4,4,...) in the main diagonal. E.g., Row 3 = (76, 50, 12, 1) since M^3 * V = [76, 50, 12, 1, 0, 0, 0, ...]. - Gary W. Adamson, Nov 04 2006
Sum_{k=0..n} T(n,k) = A005573(n). - Philippe Deléham, Feb 04 2007
Sum_{k=0..n} T(n,k)*(k+1) = 6^n. - Philippe Deléham, Mar 27 2007
Sum_{k=0..n} T(n,k)*x^k = A033543(n), A064613(n), A005572(n), A005573(n) for x = -2, -1, 0, 1 respectively. - Philippe Deléham, Nov 28 2009
As an infinite lower triangular matrix = the binomial transform of A091965 and 4th binomial transform of A053121. - Gary W. Adamson, Aug 03 2011
G.f.: 2/(1 - 4*x - 2*x*y + sqrt(1 - 8*x + 12*x^2)). - Daniel Checa, Aug 17 2022
G.f. for the m-th column: x^m*(A(x))^(m+1), where A(x) is the g.f. of the sequence counting the walks on the cubic lattice starting and finishing on the xy plane and never going below it (A005572). Explicitly, the g.f. is x^m*((1 - 4*x - sqrt(1 - 8*x + 12*x^2))/(2*x^2))^(m+1). - Daniel Checa, Aug 28 2022
Previous Showing 11-20 of 67 results. Next