cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A002450 a(n) = (4^n - 1)/3.

Original entry on oeis.org

0, 1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, 349525, 1398101, 5592405, 22369621, 89478485, 357913941, 1431655765, 5726623061, 22906492245, 91625968981, 366503875925, 1466015503701, 5864062014805, 23456248059221, 93824992236885, 375299968947541
Offset: 0

Views

Author

Keywords

Comments

For n > 0, a(n) is the degree (n-1) "numbral" power of 5 (see A048888 for the definition of numbral arithmetic). Example: a(3) = 21, since the numbral square of 5 is 5(*)5 = 101(*)101(base 2) = 101 OR 10100 = 10101(base 2) = 21, where the OR is taken bitwise. - John W. Layman, Dec 18 2001
a(n) is composite for all n > 2 and has factors x, (3*x + 2*(-1)^n) where x belongs to A001045. In binary the terms greater than 0 are 1, 101, 10101, 1010101, etc. - John McNamara, Jan 16 2002
Number of n X 2 binary arrays with path of adjacent 1's from upper left corner to right column. - R. H. Hardin, Mar 16 2002
The Collatz-function iteration started at a(n), for n >= 1, will end at 1 after 2*n+1 steps. - Labos Elemer, Sep 30 2002 [corrected by Wolfdieter Lang, Aug 16 2021]
Second binomial transform of A001045. - Paul Barry, Mar 28 2003
All members of sequence are also generalized octagonal numbers (A001082). - Matthew Vandermast, Apr 10 2003
Also sum of squares of divisors of 2^(n-1): a(n) = A001157(A000079(n-1)), for n > 0. - Paul Barry, Apr 11 2003
Binomial transform of A000244 (with leading zero). - Paul Barry, Apr 11 2003
Number of walks of length 2n between two vertices at distance 2 in the cycle graph C_6. For n = 2 we have for example 5 walks of length 4 from vertex A to C: ABABC, ABCBC, ABCDC, AFABC and AFEDC. - Herbert Kociemba, May 31 2004
Also number of walks of length 2n + 1 between two vertices at distance 3 in the cycle graph C_12. - Herbert Kociemba, Jul 05 2004
a(n+1) is the number of steps that are made when generating all n-step random walks that begin in a given point P on a two-dimensional square lattice. To make one step means to mark one vertex on the lattice (compare A080674). - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Mar 13 2005
a(n+1) is the sum of square divisors of 4^n. - Paul Barry, Oct 13 2005
a(n+1) is the decimal number generated by the binary bits in the n-th generation of the Rule 250 elementary cellular automaton. - Eric W. Weisstein, Apr 08 2006
a(n-1) / a(n) = percentage of wasted storage if a single image is stored as a pyramid with a each subsequent higher resolution layer containing four times as many pixels as the previous layer. n is the number of layers. - Victor Brodsky (victorbrodsky(AT)gmail.com), Jun 15 2006
k is in the sequence if and only if C(4k + 1, k) (A052203) is odd. - Paul Barry, Mar 26 2007
This sequence also gives the number of distinct 3-colorings of the odd cycle C(2*n - 1). - Keith Briggs, Jun 19 2007
All numbers of the form m*4^m + (4^m-1)/3 have the property that they are sums of two squares and also their indices are the sum of two squares. This follows from the identity m*4^m + (4^m-1)/3 = 4(4(..4(4m + 1) + 1) + 1) + 1 ..) + 1. - Artur Jasinski, Nov 12 2007
For n > 0, terms are the numbers that, in base 4, are repunits: 1_4, 11_4, 111_4, 1111_4, etc. - Artur Jasinski, Sep 30 2008
Let A be the Hessenberg matrix of order n, defined by: A[1, j] = 1, A[i, i] := 5, (i > 1), A[i, i - 1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 1, a(n) = charpoly(A,1). - Milan Janjic, Jan 27 2010
This is the sequence A(0, 1; 3, 4; 2) = A(0, 1; 4, 0; 1) of the family of sequences [a, b : c, d : k] considered by G. Detlefs, and treated as A(a, b; c, d; k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
6*a(n) + 1 is every second Mersenne number greater than or equal to M3, hence all Mersenne primes greater than M2 must be a 6*a(n) + 1 of this sequence. - Roderick MacPhee, Nov 01 2010
Smallest number having alternating bit sum n. Cf. A065359.
For n = 1, 2, ..., the last digit of a(n) is 1, 5, 1, 5, ... . - Washington Bomfim, Jan 21 2011
Rule 50 elementary cellular automaton generates this sequence. This sequence also appears in the second column of array in A173588. - Paul Muljadi, Jan 27 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 21, ..., in the square spiral whose edges are the Jacobsthal numbers A001045 and whose vertices are the numbers A000975. These parallel lines are two semi-diagonals in the spiral. - Omar E. Pol, Sep 10 2011
a(n), n >= 1, is also the inverse of 3, denoted by 3^(-1), Modd(2^(2*n - 1)). For Modd n see a comment on A203571. E.g., a(2) = 5, 3 * 5 = 15 == 1 (Modd 8), because floor(15/8) = 1 is odd and -15 == 1 (mod 8). For n = 1 note that 3 * 1 = 3 == 1 (Modd 2) because floor(3/2) = 1 and -3 == 1 (mod 2). The inverse of 3 taken Modd 2^(2*n) coincides with 3^(-1) (mod 2^(2*n)) given in A007583(n), n >= 1. - Wolfdieter Lang, Mar 12 2012
If an AVL tree has a leaf at depth n, then the tree can contain no more than a(n+1) nodes total. - Mike Rosulek, Nov 20 2012
Also, this is the Lucas sequence V(5, 4). - Bruno Berselli, Jan 10 2013
Also, for n > 0, a(n) is an odd number whose Collatz trajectory contains no odd number other than n and 1. - Jayanta Basu, Mar 24 2013
Sum_{n >= 1} 1/a(n) converges to (3*(log(4/3) - QPolyGamma[0, 1, 1/4]))/log(4) = 1.263293058100271... = A321873. - K. G. Stier, Jun 23 2014
Consider n spheres in R^n: the i-th one (i=1, ..., n) has radius r(i) = 2^(1-i) and the coordinates of its center are (0, 0, ..., 0, r(i), 0, ..., 0) where r(i) is in position i. The coordinates of the intersection point in the positive orthant of these spheres are (2/a(n), 4/a(n), 8/a(n), 16/a(n), ...). For example in R^2, circles centered at (1, 0) and (0, 1/2), and with radii 1 and 1/2, meet at (2/5, 4/5). - Jean M. Morales, May 19 2015
From Peter Bala, Oct 11 2015: (Start)
a(n) gives the values of m such that binomial(4*m + 1,m) is odd. Cf. A003714, A048716, A263132.
2*a(n) = A020988(n) gives the values of m such that binomial(4*m + 2, m) is odd.
4*a(n) = A080674(n) gives the values of m such that binomial(4*m + 4, m) is odd. (End)
Collatz Conjecture Corollary: Except for powers of 2, the Collatz iteration of any positive integer must eventually reach a(n) and hence terminate at 1. - Gregory L. Simay, May 09 2016
Number of active (ON, black) cells at stage 2^n - 1 of the two-dimensional cellular automaton defined by "Rule 598", based on the 5-celled von Neumann neighborhood. - Robert Price, May 16 2016
From Luca Mariot and Enrico Formenti, Sep 26 2016: (Start)
a(n) is also the number of coprime pairs of polynomials (f, g) over GF(2) where both f and g have degree n + 1 and nonzero constant term.
a(n) is also the number of pairs of one-dimensional binary cellular automata with linear and bipermutive local rule of neighborhood size n+1 giving rise to orthogonal Latin squares of order 2^m, where m is a multiple of n. (End)
Except for 0, 1 and 5, all terms are Brazilian repunits numbers in base 4, and so belong to A125134. For n >= 3, all these terms are composite because a(n) = {(2^n-1) * (2^n + 1)}/3 and either (2^n - 1) or (2^n + 1) is a multiple of 3. - Bernard Schott, Apr 29 2017
Given the 3 X 3 matrix A = [2, 1, 1; 1, 2, 1; 1, 1, 2] and the 3 X 3 unit matrix I_3, A^n = a(n)(A - I_3) + I_3. - Nicolas Patrois, Jul 05 2017
The binary expansion of a(n) (n >= 1) consists of n 1's alternating with n - 1 0's. Example: a(4) = 85 = 1010101_2. - Emeric Deutsch, Aug 30 2017
a(n) (n >= 1) is the viabin number of the integer partition [n, n - 1, n - 2, ..., 2, 1] (for the definition of viabin number see comment in A290253). Example: a(4) = 85 = 1010101_2; consequently, the southeast border of the Ferrers board of the corresponding integer partition is ENENENEN, where E = (1, 0), N = (0, 1); this leads to the integer partition [4, 3, 2, 1]. - Emeric Deutsch, Aug 30 2017
Numbers whose binary and Gray-code representations are both palindromes (i.e., intersection of A006995 and A281379). - Amiram Eldar, May 17 2021
Starting with n = 1 the sequence satisfies {a(n) mod 6} = repeat{1, 5, 3}. - Wolfdieter Lang, Jan 14 2022
Terms >= 5 are those q for which the multiplicative order of 2 mod q is floor(log_2(q)) + 2 (and which is 1 more than the smallest possible order for any q). - Tim Seuré, Mar 09 2024
The order of 2 modulo a(n) is 2*n for n >= 2. - Joerg Arndt, Mar 09 2024

Examples

			Apply Collatz iteration to 9: 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5 and hence 16, 8, 4, 2, 1.
Apply Collatz iteration to 27: 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5 and hence 16, 8, 4, 2, 1. [Corrected by _Sean A. Irvine_ at the suggestion of Stephen Cornelius, Mar 04 2024]
a(5) = (4^5 - 1)/3 = 341 = 11111_4 = {(2^5 - 1) * (2^5 + 1)}/3 = 31 * 33/3 = 31 * 11. - _Bernard Schott_, Apr 29 2017
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of powers of 4, A000302.
When converted to binary, this gives A094028.
Subsequence of A003714.
Primitive factors: A129735.

Programs

  • GAP
    List([0..25], n -> (4^n-1)/3); # Muniru A Asiru, Feb 18 2018
    
  • Haskell
    a002450 = (`div` 3) . a024036
    a002450_list = iterate ((+ 1) . (* 4)) 0
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Magma
    [ (4^n-1)/3: n in [0..25] ]; // Klaus Brockhaus, Oct 28 2008
    
  • Magma
    [n le 2 select n-1 else 5*Self(n-1)-4*Self(n-2): n in [1..70]]; // Vincenzo Librandi, Jun 13 2015
    
  • Maple
    [seq((4^n-1)/3,n=0..40)];
    A002450:=1/(4*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
  • Mathematica
    Table[(4^n - 1)/3, {n, 0, 127}] (* Vladimir Joseph Stephan Orlovsky, Sep 29 2008 *)
    LinearRecurrence[{5, -4}, {0, 1}, 30] (* Harvey P. Dale, Jun 23 2013 *)
  • Maxima
    makelist((4^n-1)/3, n, 0, 30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n) = (4^n-1)/3;
    
  • PARI
    my(z='z+O('z^40)); Vec(z/((1-z)*(1-4*z))) \\ Altug Alkan, Oct 11 2015
    
  • Python
    def A002450(n): return ((1<<(n<<1))-1)//3 # Chai Wah Wu, Jan 29 2023
  • Scala
    ((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)( * )).scanLeft(0: BigInt)( + ) // Alonso del Arte, Sep 17 2019
    

Formula

From Wolfdieter Lang, Apr 24 2001: (Start)
a(n+1) = Sum_{m = 0..n} A060921(n, m).
G.f.: x/((1-x)*(1-4*x)). (End)
a(n) = Sum_{k = 0..n-1} 4^k; a(n) = A001045(2*n). - Paul Barry, Mar 17 2003
E.g.f.: (exp(4*x) - exp(x))/3. - Paul Barry, Mar 28 2003
a(n) = (A007583(n) - 1)/2. - N. J. A. Sloane, May 16 2003
a(n) = A000975(2*n)/2. - N. J. A. Sloane, Sep 13 2003
a(n) = A084160(n)/2. - N. J. A. Sloane, Sep 13 2003
a(n+1) = 4*a(n) + 1, with a(0) = 0. - Philippe Deléham, Feb 25 2004
a(n) = Sum_{i = 0..n-1} C(2*n - 1 - i, i)*2^i. - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n+1) = Sum_{k = 0..n} binomial(n+1, k+1)*3^k. - Paul Barry, Aug 20 2004
a(n) = center term in M^n * [1 0 0], where M is the 3 X 3 matrix [1 1 1 / 1 3 1 / 1 1 1]. M^n * [1 0 0] = [A007583(n-1) a(n) A007583(n-1)]. E.g., a(4) = 85 since M^4 * [1 0 0] = [43 85 43] = [A007583(3) a(4) A007583(3)]. - Gary W. Adamson, Dec 18 2004
a(n) = Sum_{k = 0..n, j = 0..n} C(n, j)*C(j, k)*A001045(j - k). - Paul Barry, Feb 15 2005
a(n) = Sum_{k = 0..n} C(n, k)*A001045(n-k)*2^k = Sum_{k = 0..n} C(n, k)*A001045(k)*2^(n-k). - Paul Barry, Apr 22 2005
a(n) = A125118(n, 3) for n > 2. - Reinhard Zumkeller, Nov 21 2006
a(n) = Sum_{k = 0..n} 2^(n - k)*A128908(n, k), n >= 1. - Philippe Deléham, Oct 19 2008
a(n) = Sum_{k = 0..n} A106566(n, k)*A100335(k). - Philippe Deléham, Oct 30 2008
If we define f(m, j, x) = Sum_{k = j..m} binomial(m, k)*stirling2(k, j)*x^(m - k) then a(n-1) = f(2*n, 4, -2), n >= 2. - Milan Janjic, Apr 26 2009
a(n) = A014551(n) * A001045(n). - R. J. Mathar, Jul 08 2009
a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3) = 5*a(n-1) - 4*a(n-2), a(0) = 0, a(1) = 1, a(2) = 5. - Wolfdieter Lang, Oct 18 2010
a(0) = 0, a(n+1) = a(n) + 2^(2*n). - Washington Bomfim, Jan 21 2011
A036555(a(n)) = 2*n. - Reinhard Zumkeller, Jan 28 2011
a(n) = Sum_{k = 1..floor((n+2)/3)} C(2*n + 1, n + 2 - 3*k). - Mircea Merca, Jun 25 2011
a(n) = Sum_{i = 1..n} binomial(2*n + 1, 2*i)/3. - Wesley Ivan Hurt, Mar 14 2015
a(n+1) = 2^(2*n) + a(n), a(0) = 0. - Ben Paul Thurston, Dec 27 2015
a(k*n)/a(n) = 1 + 4^n + ... + 4^((k-1)*n). - Gregory L. Simay, Jun 09 2016
Dirichlet g.f.: (PolyLog(s, 4) - zeta(s))/3. - Ilya Gutkovskiy, Jun 26 2016
A000120(a(n)) = n. - André Dalwigk, Mar 26 2018
a(m) divides a(m*n), in particular: a(2*n) == 0 (mod 5), a(3*n) == 0 (mod 3*7), a(5*n) == 0 (mod 11*31), etc. - M. F. Hasler, Oct 19 2018
a(n) = 4^(n-1) + a(n-1). - Bob Selcoe, Jan 01 2020
a(n) = A178415(1, n) = A347834(1, n-1), arrays, for n >= 1. - Wolfdieter Lang, Nov 29 2021
a(n) = A000225(2*n)/3. - John Keith, Jan 22 2022
a(n) = A080674(n) + 1 = A047849(n) - 1 = A163834(n) - 2 = A155701(n) - 3 = A163868(n) - 4 = A156605(n) - 7. - Ray Chandler, Jun 16 2023
From Peter Bala, Jul 23 2025: (Start)
The following are examples of telescoping products. Cf. A016153:
Product_{k = 1..2*n} 1 + 2^k/a(k+1) = a(n+1)/A007583(n) = (4^(n+1) - 1)/(2*4^n + 1).
Hence, Product_{k >= 1} 1 + 2^k/a(k+1) = 2.
Product_{k >= 1} 1 - 2^k/a(k+1) = 2/5, since 1 - 2^n/a(n+1) = b(n)/b(n-1), where b(n) = 2 - 3/(1 - 2^(n+1)).
Product_{k >= 1} 1 + (-2)^k/a(k+1) = 2/3, since 1 + (-2)^n/a(n+1) = c(n)/c(n-1), where c(n) = 2 - 1/(1 + (-2)^(n+1)).
Product_{k >= 1} 1 - (-2)^k/a(k+1) = 6/5, since 1 - (-2)^n/a(n+1) = d(n)/d(n-1), where d(n) = 2 - 1/(1 - (-2)^(n+1)). (End)

A016825 Positive integers congruent to 2 (mod 4): a(n) = 4*n+2, for n >= 0.

Original entry on oeis.org

2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230, 234
Offset: 0

Views

Author

Keywords

Comments

Twice the odd numbers, also called singly even numbers.
Numbers having equal numbers of odd and even divisors: A001227(a(n)) = A000005(2*a(n)). - Reinhard Zumkeller, Dec 28 2003
Continued fraction for coth(1/2) = (e+1)/(e-1). The continued fraction for tanh(1/2) = (e-1)/(e+1) would be a(0) = 0, a(n) = A016825(n-1), n >= 1.
No solutions to a(n) = b^2 - c^2. - Henry Bottomley, Jan 13 2001
Sequence gives m such that 8 is the largest power of 2 dividing A003629(k)^m-1 for any k. - Benoit Cloitre, Apr 05 2002
k such that Sum_{d|k} (-1)^d = A048272(k) = 0. - Benoit Cloitre, Apr 15 2002
Also k such that Sum_{d|k} phi(d)*mu(k/d) = A007431(k) = 0. - Benoit Cloitre, Apr 15 2002
Also k such that Sum_{d|k} (d/A000005(d))*mu(k/d) = 0, k such that Sum_{d|k}(A000005(d)/d)*mu(k/d) = 0. - Benoit Cloitre, Apr 19 2002
Solutions to phi(x) = phi(x/2); primorial numbers are here. - Labos Elemer, Dec 16 2002
Together with 1, numbers that are not the leg of a primitive Pythagorean triangle. - Lekraj Beedassy, Nov 25 2003
For n > 0: complement of A107750 and A023416(a(n)-1) = A023416(a(n)) <> A023416(a(n)+1). - Reinhard Zumkeller, May 23 2005
Also the minimal value of Sum_{i=1..n+2} (p(i) - p(i+1))^2, where p(n+3) = p(1), as p ranges over all permutations of {1,2,...,n+2} (see the Mihai reference). Example: a(2)=10 because the values of the sum for the permutations of {1,2,3,4} are 10 (8 times), 12 (8 times) and 18 (8 times). - Emeric Deutsch, Jul 30 2005
Except for a(n)=2, numbers having 4 as an anti-divisor. - Alexandre Wajnberg, Oct 02 2005
A139391(a(n)) = A006370(a(n)) = A005408(n). - Reinhard Zumkeller, Apr 17 2008
Also a(n) = (n-1) + n + (n+1) + (n+2), so a(n) and -a(n) are all the integers that are sums of four consecutive integers. - Rick L. Shepherd, Mar 21 2009
The denominator in Pi/8 = 1/2 - 1/6 + 1/10 - 1/14 + 1/18 - 1/22 + .... - Mohammad K. Azarian, Oct 13 2011
This sequence gives the positive zeros of i^x + 1 = 0, x real, where i^x = exp(i*x*Pi/2). - Ilya Gutkovskiy, Aug 08 2015
Numbers k such that Sum_{j=1..k} j^3 is not a multiple of k. - Chai Wah Wu, Aug 23 2017
Numbers k such that Lucas(k) is a multiple of 3. - Bruno Berselli, Oct 17 2017
Also numbers k such that t^k == -1 (mod 5), where t is a term of A047221. - Bruno Berselli, Dec 28 2017
The even numbers form a ring, and these are the primes in that ring. Note that unique factorization into primes does not hold, since 60 = 2*30 = 6*10. - N. J. A. Sloane, Nov 11 2019
Also numbers ending with 10 in base 2. - John Keith, May 09 2022

Examples

			0.4621171572600097585023184... = 0 + 1/(2 + 1/(6 + 1/(10 + 1/(14 + ...)))), i.e., c.f. for tanh(1/2).
2.1639534137386528487700040... = 2 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + ...)))), i.e., c.f. for coth(1/2).
		

References

  • H. Bass, Mathematics, Mathematicians and Mathematics Education, Bull. Amer. Math. Soc. (N.S.) 42 (2004), no. 4, 417-430.
  • Arthur Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 70.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 262, 278.

Crossrefs

First differences of A001105.
Cf. A160327 (decimal expansion).
Subsequence of A042963.
Essentially the complement of A042965.

Programs

Formula

a(n) = 4*n + 2, for n >= 0.
a(n) = 2*A005408(n). - Lekraj Beedassy, Nov 28 2003
a(n) = A118413(n+1,2) for n>1. - Reinhard Zumkeller, Apr 27 2006
From Michael Somos, Apr 11 2007: (Start)
G.f.: 2*(1+x)/(1-x)^2.
E.g.f.: 2*(1+2*x)*exp(x).
a(n) = a(n-1) + 4.
a(-1-n) = -a(n). (End)
a(n) = 8*n - a(n-1) for n > 0, a(0)=2. - Vincenzo Librandi, Nov 20 2010
From Reinhard Zumkeller, Jun 11 2012, Jun 30 2012 and Jul 20 2012: (Start)
A080736(a(n)) = 0.
A007814(a(n)) = 1;
A037227(a(n)) = 3.
A214546(a(n)) = 0. (End)
a(n) = T(n+2) - T(n-2) where T(n) = n*(n+1)/2 = A000217(n). In general, if M(k,n) = 2*k*n + k, then M(k,n) = T(n+k) - T(n-k). - Charlie Marion, Feb 24 2020
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1/sqrt(2-sqrt(2)) (A285871).
Product_{n>=1} (1 + (-1)^n/a(n)) = sqrt(1-1/sqrt(2)) (A154739). (End)

A006370 The Collatz or 3x+1 map: a(n) = n/2 if n is even, 3n + 1 if n is odd.

Original entry on oeis.org

0, 4, 1, 10, 2, 16, 3, 22, 4, 28, 5, 34, 6, 40, 7, 46, 8, 52, 9, 58, 10, 64, 11, 70, 12, 76, 13, 82, 14, 88, 15, 94, 16, 100, 17, 106, 18, 112, 19, 118, 20, 124, 21, 130, 22, 136, 23, 142, 24, 148, 25, 154, 26, 160, 27, 166, 28, 172, 29, 178, 30, 184, 31, 190, 32, 196, 33
Offset: 0

Views

Author

Keywords

Comments

The 3x+1 or Collatz problem is as follows: start with any number n. If n is even, divide it by 2, otherwise multiply it by 3 and add 1. Do we always reach 1? This is an unsolved problem. It is conjectured that the answer is yes.
The Krasikov-Lagarias paper shows that at least N^0.84 of the positive numbers < N fall into the 4-2-1 cycle of the 3x+1 problem. This is far short of what we think is true, that all positive numbers fall into this cycle, but it is a step. - Richard C. Schroeppel, May 01 2002
Also A001477 and A016957 interleaved. - Omar E. Pol, Jan 16 2014, updated Nov 07 2017
a(n) is the image of a(2*n) under the 3*x+1 map. - L. Edson Jeffery, Aug 17 2014
The positions of powers of 2 in this sequence are given in A160967. - Federico Provvedi, Oct 06 2021
If displayed as a rectangular array with six columns, the columns are A008585, A350521, A016777, A082286, A016789, A350522 (see example). - Omar E. Pol, Jan 03 2022

Examples

			G.f. = 4*x + x^2 + 10*x^3 + 2*x^4 + 16*x^5 + 3*x^6 + 22*x^7 + 4*x^8 + 28*x^9 + ...
From _Omar E. Pol_, Jan 03 2022: (Start)
Written as a rectangular array with six columns read by rows the sequence begins:
   0,   4,  1,  10,  2,  16;
   3,  22,  4,  28,  5,  34;
   6,  40,  7,  46,  8,  52;
   9,  58, 10,  64, 11,  70;
  12,  76, 13,  82, 14,  88;
  15,  94, 16, 100, 17, 106;
  18, 112, 19, 118, 20, 124;
  21, 130, 22, 136, 23, 142;
  24, 148, 25, 154, 26, 160;
  27, 166, 28, 172, 29, 178;
  30, 184, 31, 190, 32, 196;
...
(End)
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, E16.
  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A006577 gives number of steps to reach 1.
Column k=1 of A347270, n >= 1.

Programs

  • Haskell
    a006370 n | m /= 0    = 3 * n + 1
              | otherwise = n' where (n',m) = divMod n 2
    -- Reinhard Zumkeller, Oct 07 2011
    
  • Magma
    [(1/4)*(7*n+2-(-1)^n*(5*n+2)): n in [1..70]]; // Vincenzo Librandi, Dec 20 2016
  • Maple
    f := n-> if n mod 2 = 0 then n/2 else 3*n+1; fi;
    A006370:=(4+z+2*z**2)/(z-1)**2/(1+z)**2; # Simon Plouffe in his 1992 dissertation; uses offset 0
  • Mathematica
    f[n_]:=If[EvenQ[n],n/2,3n+1];Table[f[n],{n,50}] (* Geoffrey Critzer, Jun 29 2013 *)
    LinearRecurrence[{0,2,0,-1},{4,1,10,2},70] (* Harvey P. Dale, Jul 19 2016 *)
  • PARI
    for(n=1,100,print1((1/4)*(7*n+2-(-1)^n*(5*n+2)),","))
    
  • PARI
    A006370(n)=if(n%2,3*n+1,n/2) \\ Michael B. Porter, May 29 2010
    
  • Python
    def A006370(n):
        q, r = divmod(n, 2)
        return 3*n+1 if r else q # Chai Wah Wu, Jan 04 2015
    

Formula

G.f.: (4*x+x^2+2*x^3) / (1-x^2)^2.
a(n) = (1/4)*(7*n+2-(-1)^n*(5*n+2)). - Benoit Cloitre, May 12 2002
a(n) = ((n mod 2)*2 + 1)*n/(2 - (n mod 2)) + (n mod 2). - Reinhard Zumkeller, Sep 12 2002
a(n) = A014682(n+1) * A000034(n). - R. J. Mathar, Mar 09 2009
a(n) = a(a(2*n)) = -A001281(-n) for all n in Z. - Michael Somos, Nov 10 2016
E.g.f.: (2 + x)*sinh(x)/2 + 3*x*cosh(x). - Ilya Gutkovskiy, Dec 20 2016
From Federico Provvedi, Aug 17 2021: (Start)
Dirichlet g.f.: (1-2^(-s))*zeta(s) + (3-5*2^(-s))*zeta(s-1).
a(n) = ( a(n+2k) + a(n-2k) ) / 2, for every integer k. (End)
a(n) + a(n+1) = A047374(n+1). - Leo Ortega, Aug 22 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
Zero prepended and new Name from N. J. A. Sloane at the suggestion of M. F. Hasler, Nov 06 2017

A014682 The Collatz or 3x+1 function: a(n) = n/2 if n is even, otherwise (3n+1)/2.

Original entry on oeis.org

0, 2, 1, 5, 2, 8, 3, 11, 4, 14, 5, 17, 6, 20, 7, 23, 8, 26, 9, 29, 10, 32, 11, 35, 12, 38, 13, 41, 14, 44, 15, 47, 16, 50, 17, 53, 18, 56, 19, 59, 20, 62, 21, 65, 22, 68, 23, 71, 24, 74, 25, 77, 26, 80, 27, 83, 28, 86, 29, 89, 30, 92, 31, 95, 32, 98, 33, 101, 34, 104
Offset: 0

Views

Author

Keywords

Comments

This is the function usually denoted by T(n) in the literature on the 3x+1 problem. See A006370 for further references and links.
Intertwining of sequence A016789 '2,5,8,11,... ("add 3")' and the nonnegative integers.
a(n) = log_2(A076936(n)). - Amarnath Murthy, Oct 19 2002
The average value of a(0), ..., a(n-1) is A004526(n). - Amarnath Murthy, Oct 19 2002
Partial sums are A093353. - Paul Barry, Mar 31 2008
Absolute first differences are essentially in A014681 and A103889. - R. J. Mathar, Apr 05 2008
Only terms of A016789 occur twice, at positions given by sequences A005408 (odd numbers) and A016957 (6n+4): (1,4), (3,10), (5,16), (7,22), ... - Antti Karttunen, Jul 28 2017
a(n) represents the unique congruence class modulo 2n+1 that is represented an odd number of times in any 2n+1 consecutive oblong numbers (A002378). This property relates to Jim Singh's 2018 formula, as n^2 + n is a relevant oblong number. - Peter Munn, Jan 29 2022

Examples

			a(3) = -3*(-1) - 2*1 - 1*(-1) - 0*1 + 1*(-1) + 2*1 + 3*(-1) + 4*1 + 5*(-1) + 6*1 = 5. - _Bruno Berselli_, Dec 14 2015
		

References

  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010.

Crossrefs

Programs

  • Haskell
    a014682 n = if r > 0 then div (3 * n + 1) 2 else n'
                where (n', r) = divMod n 2
    -- Reinhard Zumkeller, Oct 03 2014
    
  • Magma
    [IsOdd(n) select (3*n+1)/2 else n/2: n in [0..52]]; // Vincenzo Librandi, Sep 28 2018
  • Maple
    T:=proc(n) if n mod 2 = 0 then n/2 else (3*n+1)/2; fi; end; # N. J. A. Sloane, Jan 31 2011
    A076936 := proc(n) option remember ; local apr,ifr,me,i,a ; if n <=2 then n^2 ; else apr := mul(A076936(i),i=1..n-1) ; ifr := ifactors(apr)[2] ; me := -1 ; for i from 1 to nops(ifr) do me := max(me, op(2,op(i,ifr))) ; od ; me := me+ n-(me mod n) ; a := 1 ; for i from 1 to nops(ifr) do a := a*op(1,op(i,ifr))^(me-op(2,op(i,ifr))) ; od ; if a = A076936(n-1) then me := me+n ; a := 1 ; for i from 1 to nops(ifr) do a := a*op(1,op(i,ifr))^(me-op(2,op(i,ifr))) ; od ; fi ; RETURN(a) ; fi ; end: A014682 := proc(n) log[2](A076936(n)) ; end: for n from 1 to 85 do printf("%d, ",A014682(n)) ; od ; # R. J. Mathar, Mar 20 2007
  • Mathematica
    Collatz[n_?OddQ] := (3n + 1)/2; Collatz[n_?EvenQ] := n/2; Table[Collatz[n], {n, 0, 79}] (* Alonso del Arte, Apr 21 2011 *)
    LinearRecurrence[{0, 2, 0, -1}, {0, 2, 1, 5}, 70] (* Jean-François Alcover, Sep 23 2017 *)
    Table[If[OddQ[n], (3 n + 1) / 2, n / 2], {n, 0, 60}] (* Vincenzo Librandi, Sep 28 2018 *)
  • PARI
    a(n)=if(n%2,3*n+1,n)/2 \\ Charles R Greathouse IV, Sep 02 2015
    
  • PARI
    a(n)=if(n<2,2*n,(n^2-n-1)%(2*n+1)) \\ Jim Singh, Sep 28 2018
    
  • Python
    def a(n): return n//2 if n%2==0 else (3*n + 1)//2
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jul 29 2017
    

Formula

From Paul Barry, Mar 31 2008: (Start)
G.f.: x*(2 + x + x^2)/(1-x^2)^2.
a(n) = (4*n+1)/4 - (2*n+1)*(-1)^n/4. (End)
a(n) = -a(n-1) + a(n-2) + a(n-3) + 4. - John W. Layman
For n > 1 this is the image of n under the modified "3x+1" map (cf. A006370): n -> n/2 if n is even, n -> (3*n+1)/2 if n is odd. - Benoit Cloitre, May 12 2002
O.g.f.: x*(2+x+x^2)/((-1+x)^2*(1+x)^2). - R. J. Mathar, Apr 05 2008
a(n) = 5/4 + (1/2)*((-1)^n)*n + (3/4)*(-1)^n + n. - Alexander R. Povolotsky, Apr 05 2008
a(n) = Sum_{i=-n..2*n} i*(-1)^i. - Bruno Berselli, Dec 14 2015
a(n) = Sum_{k=0..n-1} Sum_{i=0..k} C(i,k) + (-1)^k. - Wesley Ivan Hurt, Sep 20 2017
a(n) = (n^2-n-1) mod (2*n+1) for n > 1. - Jim Singh, Sep 26 2018
The above formula can be rewritten to show a pattern: a(n) = (n*(n+1)) mod (n+(n+1)). - Peter Munn, Jan 29 2022
Binary: a(n) = (n shift left (n AND 1)) - (n shift right 1) = A109043(n) - A004526(n). - Rudi B. Stranden, Jun 15 2021
From Rudi B. Stranden, Mar 21 2022: (Start)
a(n) = A064455(n+1) - 1, relating the number ON cells in row n of cellular automaton rule 54.
a(n) = 2*n - A071045(n).
(End)
E.g.f.: (1 + x)*sinh(x)/2 + 3*x*cosh(x)/2 = ((4*x+1)*e^x + (2*x-1)*e^(-x))/4. - Rénald Simonetto, Oct 20 2022
a(n) = n*(n mod 2) + ceiling(n/2) = A193356(n) + A008619(n+1). - Jonathan Shadrach Gilbert, Mar 12 2023
a(n) = 2*a(n-2) - a(n-4) for n > 3. - Chai Wah Wu, Apr 17 2024

Extensions

Edited by N. J. A. Sloane, Apr 26 2008, at the suggestion of Artur Jasinski
Edited by N. J. A. Sloane, Jan 31 2011

A016945 a(n) = 6*n+3.

Original entry on oeis.org

3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 255, 261, 267, 273, 279, 285, 291, 297, 303, 309, 315, 321, 327
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0(37).
Continued fraction expansion of tanh(1/3).
If a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-4) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
Leaves of the Odd Collatz-Tree: a(n) has no odd predecessors in all '3x+1' trajectories where it occurs: A139391(2*k+1) <> a(n) for all k; A082286(n)=A006370(a(n)). - Reinhard Zumkeller, Apr 17 2008
Let random variable X have a uniform distribution on the interval [0,c] where c is a positive constant. Then, for positive integer n, the coefficient of determination between X and X^n is (6n+3)/(n+2)^2, that is, A016945(n)/A000290(n+2). Note that the result is independent of c. For the derivation of this result, see the link in the Links section below. - Dennis P. Walsh, Aug 20 2013
Positions of 3 in A020639. - Zak Seidov, Apr 29 2015
a(n+2) gives the sum of 6 consecutive terms of A004442 starting with A004442(n). - Wesley Ivan Hurt, Apr 08 2016
Numbers k such that Fibonacci(k) mod 4 = 2. - Bruno Berselli, Oct 17 2017
Also numbers k such that t^k == -1 (mod 7), where t is a member of A047389. - Bruno Berselli, Dec 28 2017

Crossrefs

Third row of A092260.
Subsequence of A061641; complement of A047263; bisection of A047241.
Cf. A000225. - Loren Pearson, Jul 02 2009
Cf. A020639. - Zak Seidov, Apr 29 2015
Odd numbers in A355200.

Programs

Formula

a(n) = 3*(2*n + 1) = 3*A005408(n), odd multiples of 3.
A008615(a(n)) = n. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A103333(n+1). - Reinhard Zumkeller, Feb 24 2009
a(n) = 12*n - a(n-1) for n>0, a(0)=3. - Vincenzo Librandi, Nov 20 2010
G.f.: 3*(1+x)/(1-x)^2. - Mario C. Enriquez, Dec 14 2016
E.g.f.: 3*(1 + 2*x)*exp(x). - G. C. Greubel, Sep 18 2019
Sum_{n>=0} (-1)^n/a(n) = Pi/12 (A019679). - Amiram Eldar, Dec 10 2021
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2)/2 (A010503).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(3/2) (A115754). (End)
a(n) = (n+2)^2 - (n-1)^2. - Alexander Yutkin, Mar 15 2025

A006667 Number of tripling steps to reach 1 from n in '3x+1' problem, or -1 if 1 is never reached.

Original entry on oeis.org

0, 0, 2, 0, 1, 2, 5, 0, 6, 1, 4, 2, 2, 5, 5, 0, 3, 6, 6, 1, 1, 4, 4, 2, 7, 2, 41, 5, 5, 5, 39, 0, 8, 3, 3, 6, 6, 6, 11, 1, 40, 1, 9, 4, 4, 4, 38, 2, 7, 7, 7, 2, 2, 41, 41, 5, 10, 5, 10, 5, 5, 39, 39, 0, 8, 8, 8, 3, 3, 3, 37, 6, 42, 6, 3, 6, 6, 11, 11, 1, 6, 40, 40, 1, 1, 9, 9, 4, 9, 4, 33, 4, 4, 38
Offset: 1

Views

Author

Keywords

Comments

A075680, which gives the values for odd n, isolates the essential behavior of this sequence. - T. D. Noe, Jun 01 2006
A033959 and A033958 give record values and where they occur. - Reinhard Zumkeller, Jan 08 2014

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 204, Problem 22.
  • R. K. Guy, Unsolved Problems in Number Theory, E16.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A078719(n)-1.

Programs

  • Haskell
    a006667 = length . filter odd . takeWhile (> 2) . (iterate a006370)
    a006667_list = map a006667 [1..]
    -- Reinhard Zumkeller, Oct 08 2011
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, 0,
          `if`(n::even, a(n/2), 1+a(3*n+1)))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 08 2023
  • Mathematica
    Table[Count[Differences[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]], ?Positive], {n,100}] (* _Harvey P. Dale, Nov 14 2011 *)
  • PARI
    for(n=2,100,s=n; t=0; while(s!=1,if(s%2==0,s=s/2,s=(3*s+1)/2; t++); if(s==1,print1(t,","); ); ))
    
  • Python
    def a(n):
        if n==1: return 0
        x=0
        while True:
            if n%2==0: n/=2
            else:
                n = 3*n + 1
                x+=1
            if n<2: break
        return x
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 14 2017

Formula

a(1) = 0, a(n) = a(n/2) if n is even, a(n) = a(3n+1)+1 if n>1 is odd. The Collatz conjecture is that this defines a(n) for all n >= 1.
a(n) = A078719(n) - 1; a(A000079(n))=0; a(A062052(n))=1; a(A062053(n))=2; a(A062054(n))=3; a(A062055(n))=4; a(A062056(n))=5; a(A062057(n))=6; a(A062058(n))=7; a(A062059(n))=8; a(A062060(n))=9. - Reinhard Zumkeller, Oct 08 2011
a(n*2^k) = a(n), for all k >= 0. - L. Edson Jeffery, Aug 11 2014
a(n) = floor(log(2^A006666(n)/n)/log(3)). - Joe Slater, Aug 30 2017
a(n) = a(A085062(n)) + A007814(n+1) for n >= 2. - Alan Michael Gómez Calderón, Feb 07 2025
From Alan Michael Gómez Calderón, Mar 31 2025: (Start)
a(n) = a(A139391(n)) + (n mod 2) for n >= 2;
a(n) = a(A139391(A000265(n))) - A209229(n) + 1 for n >= 2;
a(n) = a(A000265(A139391(n))) + (n mod 2) for n >= 2. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
"Escape clause" added to definition by N. J. A. Sloane, Jun 06 2017

A075677 Reduced Collatz function R applied to the odd integers: a(n) = R(2n-1), where R(k) = (3k+1)/2^r, with r as large as possible.

Original entry on oeis.org

1, 5, 1, 11, 7, 17, 5, 23, 13, 29, 1, 35, 19, 41, 11, 47, 25, 53, 7, 59, 31, 65, 17, 71, 37, 77, 5, 83, 43, 89, 23, 95, 49, 101, 13, 107, 55, 113, 29, 119, 61, 125, 1, 131, 67, 137, 35, 143, 73, 149, 19, 155, 79, 161, 41, 167, 85, 173, 11, 179, 91, 185, 47, 191, 97, 197
Offset: 1

Views

Author

T. D. Noe, Sep 25 2002

Keywords

Comments

The even-indexed terms a(2i+2) = 6i+5 = A016969(i), i >= 0 [Comment corrected by Bob Selcoe, Apr 06 2015]. The odd-indexed terms are the same as A067745. Note that this sequence is A016789 with all factors of 2 removed from each term. Also note that a(4i-1) = a(i). No multiple of 3 is in this sequence. See A075680 for the number of iterations of R required to yield 1.
From Bob Selcoe, Apr 06 2015: (Start)
All numbers in this sequence appear infinitely often.
From Eq. 1 and Eq. 2 in Formulas: Eq. 1 is used with 1/3 of the numbers in this sequence, Eq. 2 is used with 2/3 of the numbers.
(End)
Empirical: For arbitrary m, Sum_{n=2..A007583(m)} (a(n) - a(n-1)) = 0. - Fred Daniel Kline, Nov 23 2015
From Wolfdieter Lang, Dec 07 2021: (Start)
Only positive numbers congruent to 1 or 5 modulo 6 appear.
i) For the sequence entry with value A016921(m), for m >= 0, that is, a value from {1, 7, 13, ...}, the indices n are given by the row of array A178415(2*m+1, k), for k >= 1.
ii) For the sequence entry with value A007528(m), for m >= 1, that is, a value from {5, 11, 17, ...}, the indices n are given by the row of array A178415(2*m, k), for k >= 1.
See also the array A347834 with permuted row numbers and columns k >= 0. (End)

Examples

			a(11) = 1 because 21 is the 11th odd number and R(21) = 64/64 = 1.
From _Wolfdieter Lang_, Dec 07 2021: (Start)
i) 1 (mod 6) entry 1 = A016921(0) appears for n = A178415(1, k) = A347834(1, k-1) (the arrays), for k >= 1, that is, for {1, 5, 21, ..} = A002450.
ii) 5 (mod 6) entry 11 = A007528(2) appears for n = A178415(4, k) = A347835(3, k-1) (the arrays), for k >= 1, that is, for {7, 29, 117, ..} = A072261. (End)
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section E16, pp. 330-336.
  • Victor Klee and Stan Wagon, Old and new unsolved problems in plane geometry and number theory, The Mathematical Association of America, 1991, p. 225, C(2n+1) = a(n+1), n >= 0.
  • Jeffrey C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see p. 57, also (90-9), p. 306.

Crossrefs

Cf. A006370, A014682 (for non-reduced Collatz maps), A087230 (A371093), A371094.
Odd bisection of A139391.
Even bisection of A067745, which is also the odd bisection of this sequence.
After the initial 1, the second leftmost column of A256598.
Row 2 of A372283.

Programs

  • Haskell
    a075677 = a000265 . subtract 2 . (* 6) -- Reinhard Zumkeller, Jan 08 2014
    
  • Maple
    f:=proc(n) local t1;
    if n=1 then RETURN(1) else
    t1:=3*n+1;
    while t1 mod 2 = 0 do t1:=t1/2; od;
    RETURN(t1); fi;
    end;
    # N. J. A. Sloane, Jan 21 2011
  • Mathematica
    nextOddK[n_] := Module[{m=3n+1}, While[EvenQ[m], m=m/2]; m]; (* assumes odd n *) Table[nextOddK[n], {n, 1, 200, 2}]
    v[x_] := IntegerExponent[x, 2]; f[x_] := (3*x + 1)/2^v[3*x + 1]; Table[f[2*n - 1], {n, 66}] (* L. Edson Jeffery, May 06 2015 *)
  • PARI
    a(n)=n+=2*n-1;n>>valuation(n,2) \\ Charles R Greathouse IV, Jul 05 2013
    
  • Python
    from sympy import divisors
    def a(n):
        return max(d for d in divisors(n) if d % 2)
    print([a(6*n - 2) for n in range(1, 101)]) # Indranil Ghosh, Apr 15 2017, after formula by Reinhard Zumkeller

Formula

a(n) = A000265(6*n-2) = A000265(3*n-1). - Reinhard Zumkeller, Jan 08 2014
From Bob Selcoe, Apr 05 2015: (Start)
For all n>=1 and for every k, there exists j>=0 dependent upon n and k such that either:
Eq. 1: a(n) = (3n-1)/2^(2j+1) when k = ((4^(j+1)-1)/3) mod 2^(2j+3). Alternatively: a(n) = A016789(n-1)/A081294(j+1) when k = A002450(j+1) mod A081294(j+2). Example: n=51; k=101 == 5 mod 32, j=1. a(51) = 152/8 = 19.
or
Eq. 2: a(n) = (3n-1)/4^j when k = (5*2^(2j+1) - 1)/3 mod 4^(j+1). Alternatively: a(n) = A016789(n-1)/A000302(j) when k = A072197(j) mod A000302(j+1). Example: n=91; k=181 == 53 mod 64, j=2. a(91) = 272/16 = 17.
(End) [Definition corrected by William S. Hilton, Jul 29 2017]
a(n) = a(n + g*2^r) - 6*g, n > -g*2^r. Examples: n=59; a(59)=11, r=5. g=-1: 11 = a(27) = 5 - (-1)*6; g=1: 11 = a(91) = 17 - 1*6; g=2: 11 = a(123) = 23 - 2*6; g=3: 11 = a(155) = 29 - 3*6; etc. - Bob Selcoe, Apr 06 2015
a(n) = a((1 + (3*n - 1)*4^(k-1))/3), k>=1 (cf. A191669). - L. Edson Jeffery, Oct 05 2015
a(n) = a(4n-1). - Bob Selcoe, Aug 03 2017
a(n) = A139391(2n-1). - Antti Karttunen, May 06 2024
Sum_{k=1..n} a(k) ~ n^2. - Amiram Eldar, Aug 26 2024
G.f.: Sum_{k>=1} ((3 + 2*(-1)^k)*x^(3*2^(k - 1) - (-2)^k/3 + 1/3) + (3 - 2*(-1)^k)*x^(2^(k - 1) - (-2)^k/3 + 1/3))/(x^(2^k) - 1)^2. - Miles Wilson, Oct 26 2024

A078719 Number of odd terms among n, f(n), f(f(n)), ...., 1 for the Collatz function (that is, until reaching "1" for the first time), or -1 if 1 is never reached.

Original entry on oeis.org

1, 1, 3, 1, 2, 3, 6, 1, 7, 2, 5, 3, 3, 6, 6, 1, 4, 7, 7, 2, 2, 5, 5, 3, 8, 3, 42, 6, 6, 6, 40, 1, 9, 4, 4, 7, 7, 7, 12, 2, 41, 2, 10, 5, 5, 5, 39, 3, 8, 8, 8, 3, 3, 42, 42, 6, 11, 6, 11, 6, 6, 40, 40, 1, 9, 9, 9, 4, 4, 4, 38, 7, 43, 7, 4, 7, 7, 12, 12, 2, 7, 41, 41, 2, 2, 10, 10, 5, 10, 5, 34, 5, 5, 39
Offset: 1

Views

Author

Joseph L. Pe, Dec 20 2002

Keywords

Comments

The Collatz function (related to the "3x+1 problem") is defined by: f(n) = n/2 if n is even; f(n) = 3n + 1 if n is odd. A famous conjecture states that n, f(n), f(f(n)), .... eventually reaches 1.
a(n) = A006667(n) + 1; a(A000079(n))=1; a(A062052(n))=2; a(A062053(n))=3; a(A062054(n))=4; a(A062055(n))=5; a(A062056(n))=6; a(A062057(n))=7; a(A062058(n))=8; a(A062059(n))=9; a(A062060(n))=10. - Reinhard Zumkeller, Oct 08 2011
The count includes also the starting value n if it is odd. See A286380 for the version which never includes n itself. - Antti Karttunen, Aug 10 2017

Examples

			The terms n, f(n), f(f(n)), ...., 1 for n = 12 are: 12, 6, 3, 10, 5, 16, 8, 4, 2, 1, of which 3 are odd. Hence a(12) = 3.
		

Crossrefs

Programs

  • Haskell
    a078719 =
       (+ 1) . length . filter odd . takeWhile (> 2) . (iterate a006370)
    a078719_list = map a078719 [1..]
    -- Reinhard Zumkeller, Oct 08 2011
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          `if`(n::even, a(n/2), 1+a(3*n+1)))
        end:
    seq(a(n), n=1..94);  # Alois P. Heinz, Jan 17 2025
  • Mathematica
    f[n_] := Module[{a, i, o}, i = n; o = 1; a = {}; While[i > 1, If[Mod[i, 2] == 1, o = o + 1]; a = Append[a, i]; i = f[i]]; o]; Table[f[i], {i, 1, 100}]
    Table[Count[NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &], ?OddQ], {n, 94}] (* _Jayanta Basu, Jun 15 2013 *)
  • PARI
    a(n) = {my(x=n, v=List([])); while(x>1, if(x%2==0, x=x/2, listput(v, x); x=3*x+1)); 1+#v;} \\ Jinyuan Wang, Dec 29 2019

Formula

a(n) = A286380(n) + A000035(n). - Antti Karttunen, Aug 10 2017
a(n) = A258145(A003602(n)-1). - Alan Michael Gómez Calderón, Sep 15 2024

Extensions

"Escape clause" added to definition by N. J. A. Sloane, Jun 06 2017

A352892 Next even term in the trajectory of map x -> A341515(x), when starting from x=n; a(1) = 1. Here A341515 is the Collatz or 3x+1 map (A006370) conjugated by unary-binary-encoding (A156552).

Original entry on oeis.org

1, 2, 2, 6, 2, 2, 2, 12, 4, 8, 2, 14, 2, 18, 6, 24, 2, 6, 2, 54, 10, 50, 2, 28, 4, 98, 8, 150, 2, 2, 2, 48, 14, 242, 6, 70, 2, 338, 22, 108, 2, 8, 2, 294, 12, 578, 2, 56, 4, 20, 26, 726, 2, 12, 10, 300, 34, 722, 2, 26, 2, 1058, 20, 96, 14, 18, 2, 1014, 38, 32, 2, 140, 2, 1682, 18, 1734, 6, 50, 2, 216, 16, 1922, 2, 686
Offset: 1

Views

Author

Antti Karttunen, Apr 08 2022

Keywords

Crossrefs

Coincides with A353268 on even n, and with A348717 on odd n.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A329603(n) = A005940(2+(3*A156552(n)));
    A341515(n) = if(n%2, A064989(n), A329603(n));
    A348717(n) = { my(f=factor(n)); if(#f~>0, my(pi1=primepi(f[1, 1])); for(k=1, #f~, f[k, 1] = prime(primepi(f[k, 1])-pi1+1))); factorback(f); }; \\ From A348717
    A352892(n) = A348717(A341515(n));
    
  • PARI
    A352892(n) = if(1==n, n, n = A341515(n); while(n%2, n = A341515(n)); (n)); \\ A slower alternative.

Formula

a(n) = A348717(A341515(n)).
For all n >= 1, a(2n) = A353268(2n), a(2n-1) = A348717(2n-1).
a(p) = 2 for all primes p.
For n > 1, a(n) = A005940(1+A139391(A156552(n))).

A254102 Square array A(row,col) = A253887(A254055(row,col)) = A126760(A254101(row,col)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 4, 8, 3, 3, 6, 1, 6, 14, 1, 2, 9, 32, 68, 21, 2, 5, 20, 50, 24, 7, 122, 1, 10, 26, 4, 75, 284, 608, 183, 5, 12, 15, 39, 176, 446, 107, 456, 1094, 2, 7, 5, 86, 230, 132, 669, 2552, 5468, 1641, 1, 4, 38, 104, 129, 345, 1580, 4010, 1914, 2051, 9842
Offset: 1

Views

Author

Antti Karttunen, Jan 28 2015

Keywords

Comments

Starting with an odd number x = A135765(row,col), the result after one combined Collatz step (3x+1)/2 is found in A254051(row+1,col), and after iterated [i.e., we divide all powers of 2 out] Collatz step: x_new <- A139391(x) = A000265(3x+1) the resulting odd number x_new is located A135764(1,A254055(row+1,col)).
What the resulting odd number will be, is given by A254101(row+1,col) = A000265(A254051(row+1,col)).
That number's column index in array A135765 is then given by A(row+1,col).

Examples

			The top left corner of the array:
     1,    1,    1,    1,     3,     1,     2,    1,     5,     2,     1,
     1,    1,    4,    6,     2,     5,    10,   12,     7,     4,    16,
     2,    8,    1,    9,    20,    26,    15,    5,    38,    44,    12,
     3,    6,   32,   50,     4,    39,    86,  104,    57,    17,   140,
    14,   68,   24,   75,   176,   230,   129,   78,   338,   392,    53,
    21,    7,  284,  446,   132,   345,   770,  932,   507,   294,  1256,
   122,  608,  107,  669,  1580,  2066,  1155,   44,  3038,  3524,   942,
   183,  456, 2552, 4010,   593,  3099,  6926, 8384,  4557,   331, 11300,
  1094, 5468, 1914, 6015, 14216, 18590, 10389, 6288, 27338, 31712,   530,
etc.
		

Crossrefs

Programs

Formula

A(row,col) = A126760(A254051(row,col)) = A126760(A254101(row,col)).
A(row,col) = A253887(A254055(row,col)).
A(row+1,col) = A254048(A135765(row,col)).
Previous Showing 11-20 of 32 results. Next