cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A183866 n+floor(2*sqrt(n-1)); complement of A035106.

Original entry on oeis.org

1, 4, 5, 7, 9, 10, 11, 13, 14, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Clark Kimberling, Jan 07 2011

Keywords

Crossrefs

Cf. A035106.

Programs

  • Mathematica
    a=4; b=-4;
    Table[n+Floor[(a*n+b)^(1/2)],{n,100}]
    Table[n-1+Ceiling[(n*n-b)/a],{n,70}]

A002378 Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1).

Original entry on oeis.org

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550
Offset: 0

Views

Author

Keywords

Comments

4*a(n) + 1 are the odd squares A016754(n).
The word "pronic" (used by Dickson) is incorrect. - Michael Somos
According to the 2nd edition of Webster, the correct word is "promic". - R. K. Guy
a(n) is the number of minimal vectors in the root lattice A_n (see Conway and Sloane, p. 109).
Let M_n denote the n X n matrix M_n(i, j) = (i + j); then the characteristic polynomial of M_n is x^(n-2) * (x^2 - a(n)*x - A002415(n)). - Benoit Cloitre, Nov 09 2002
The greatest LCM of all pairs (j, k) for j < k <= n for n > 1. - Robert G. Wilson v, Jun 19 2004
First differences are a(n+1) - a(n) = 2*n + 2 = 2, 4, 6, ... (while first differences of the squares are (n+1)^2 - n^2 = 2*n + 1 = 1, 3, 5, ...). - Alexandre Wajnberg, Dec 29 2005
25 appended to these numbers corresponds to squares of numbers ending in 5 (i.e., to squares of A017329). - Lekraj Beedassy, Mar 24 2006
A rapid (mental) multiplication/factorization technique -- a generalization of Lekraj Beedassy's comment: For all bases b >= 2 and positive integers n, c, d, k with c + d = b^k, we have (n*b^k + c)*(n*b^k + d) = a(n)*b^(2*k) + c*d. Thus the last 2*k base-b digits of the product are exactly those of c*d -- including leading 0(s) as necessary -- with the preceding base-b digit(s) the same as a(n)'s. Examples: In decimal, 113*117 = 13221 (as n = 11, b = 10 = 3 + 7, k = 1, 3*7 = 21, and a(11) = 132); in octal, 61*67 = 5207 (52 is a(6) in octal). In particular, for even b = 2*m (m > 0) and c = d = m, such a product is a square of this type. Decimal factoring: 5609 is immediately seen to be 71*79. Likewise, 120099 = 301*399 (k = 2 here) and 99990000001996 = 9999002*9999998 (k = 3). - Rick L. Shepherd, Jul 24 2021
Number of circular binary words of length n + 1 having exactly one occurrence of 01. Example: a(2) = 6 because we have 001, 010, 011, 100, 101 and 110. Column 1 of A119462. - Emeric Deutsch, May 21 2006
The sequence of iterated square roots sqrt(N + sqrt(N + ...)) has for N = 1, 2, ... the limit (1 + sqrt(1 + 4*N))/2. For N = a(n) this limit is n + 1, n = 1, 2, .... For all other numbers N, N >= 1, this limit is not a natural number. Examples: n = 1, a(1) = 2: sqrt(2 + sqrt(2 + ...)) = 1 + 1 = 2; n = 2, a(2) = 6: sqrt(6 + sqrt(6 + ...)) = 1 + 2 = 3. - Wolfdieter Lang, May 05 2006
Nonsquare integers m divisible by ceiling(sqrt(m)), except for m = 0. - Max Alekseyev, Nov 27 2006
The number of off-diagonal elements of an (n + 1) X (n + 1) matrix. - Artur Jasinski, Jan 11 2007
a(n) is equal to the number of functions f:{1, 2} -> {1, 2, ..., n + 1} such that for a fixed x in {1, 2} and a fixed y in {1, 2, ..., n + 1} we have f(x) <> y. - Aleksandar M. Janjic and Milan Janjic, Mar 13 2007
Numbers m >= 0 such that round(sqrt(m+1)) - round(sqrt(m)) = 1. - Hieronymus Fischer, Aug 06 2007
Numbers m >= 0 such that ceiling(2*sqrt(m+1)) - 1 = 1 + floor(2*sqrt(m)). - Hieronymus Fischer, Aug 06 2007
Numbers m >= 0 such that fract(sqrt(m+1)) > 1/2 and fract(sqrt(m)) < 1/2 where fract(x) is the fractional part (fract(x) = x - floor(x), x >= 0). - Hieronymus Fischer, Aug 06 2007
X values of solutions to the equation 4*X^3 + X^2 = Y^2. To find Y values: b(n) = n(n+1)(2n+1). - Mohamed Bouhamida, Nov 06 2007
Nonvanishing diagonal of A132792, the infinitesimal Lah matrix, so "generalized factorials" composed of a(n) are given by the elements of the Lah matrix, unsigned A111596, e.g., a(1)*a(2)*a(3) / 3! = -A111596(4,1) = 24. - Tom Copeland, Nov 20 2007
If Y is a 2-subset of an n-set X then, for n >= 2, a(n-2) is the number of 2-subsets and 3-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
a(n) coincides with the vertex of a parabola of even width in the Redheffer matrix, directed toward zero. An integer p is prime if and only if for all integer k, the parabola y = kx - x^2 has no integer solution with 1 < x < k when y = p; a(n) corresponds to odd k. - Reikku Kulon, Nov 30 2008
The third differences of certain values of the hypergeometric function 3F2 lead to the squares of the oblong numbers i.e., 3F2([1, n + 1, n + 1], [n + 2, n + 2], z = 1) - 3*3F2([1, n + 2, n + 2], [n + 3, n + 3], z = 1) + 3*3F2([1, n + 3, n + 3], [n + 4, n + 4], z = 1) - 3F2([1, n + 4, n + 4], [n + 5, n + 5], z = 1) = (1/((n+2)*(n+3)))^2 for n = -1, 0, 1, 2, ... . See also A162990. - Johannes W. Meijer, Jul 21 2009
Generalized factorials, [a.(n!)] = a(n)*a(n-1)*...*a(0) = A010790(n), with a(0) = 1 are related to A001263. - Tom Copeland, Sep 21 2011
For n > 1, a(n) is the number of functions f:{1, 2} -> {1, ..., n + 2} where f(1) > 1 and f(2) > 2. Note that there are n + 1 possible values for f(1) and n possible values for f(2). For example, a(3) = 12 since there are 12 functions f from {1, 2} to {1, 2, 3, 4, 5} with f(1) > 1 and f(2) > 2. - Dennis P. Walsh, Dec 24 2011
a(n) gives the number of (n + 1) X (n + 1) symmetric (0, 1)-matrices containing two ones (see [Cameron]). - L. Edson Jeffery, Feb 18 2012
a(n) is the number of positions of a domino in a rectangled triangular board with both legs equal to n + 1. - César Eliud Lozada, Sep 26 2012
a(n) is the number of ordered pairs (x, y) in [n+2] X [n+2] with |x-y| > 1. - Dennis P. Walsh, Nov 27 2012
a(n) is the number of injective functions from {1, 2} into {1, 2, ..., n + 1}. - Dennis P. Walsh, Nov 27 2012
a(n) is the sum of the positive differences of the partition parts of 2n + 2 into exactly two parts (see example). - Wesley Ivan Hurt, Jun 02 2013
a(n)/a(n-1) is asymptotic to e^(2/n). - Richard R. Forberg, Jun 22 2013
Number of positive roots in the root system of type D_{n + 1} (for n > 2). - Tom Edgar, Nov 05 2013
Number of roots in the root system of type A_n (for n > 0). - Tom Edgar, Nov 05 2013
From Felix P. Muga II, Mar 18 2014: (Start)
a(m), for m >= 1, are the only positive integer values t for which the Binet-de Moivre formula for the recurrence b(n) = b(n-1) + t*b(n-2) with b(0) = 0 and b(1) = 1 has a root of a square. PROOF (as suggested by Wolfdieter Lang, Mar 26 2014): The sqrt(1 + 4t) appearing in the zeros r1 and r2 of the characteristic equation is (a positive) integer for positive integer t precisely if 4t + 1 = (2m + 1)^2, that is t = a(m), m >= 1. Thus, the characteristic roots are integers: r1 = m + 1 and r2 = -m.
Let m > 1 be an integer. If b(n) = b(n-1) + a(m)*b(n-2), n >= 2, b(0) = 0, b(1) = 1, then lim_{n->oo} b(n+1)/b(n) = m + 1. (End)
Cf. A130534 for relations to colored forests, disposition of flags on flagpoles, and colorings of the vertices (chromatic polynomial) of the complete graphs (here simply K_2). - Tom Copeland, Apr 05 2014
The set of integers k for which k + sqrt(k + sqrt(k + sqrt(k + sqrt(k + ...) ... is an integer. - Leslie Koller, Apr 11 2014
a(n-1) is the largest number k such that (n*k)/(n+k) is an integer. - Derek Orr, May 22 2014
Number of ways to place a domino and a singleton on a strip of length n - 2. - Ralf Stephan, Jun 09 2014
With offset 1, this appears to give the maximal number of crossings between n nonconcentric circles of equal radius. - Felix Fröhlich, Jul 14 2014
For n > 1, the harmonic mean of the n values a(1) to a(n) is n + 1. The lowest infinite sequence of increasing positive integers whose cumulative harmonic mean is integral. - Ian Duff, Feb 01 2015
a(n) is the maximum number of queens of one color that can coexist without attacking one queen of the opponent's color on an (n+2) X (n+2) chessboard. The lone queen can be placed in any position on the perimeter of the board. - Bob Selcoe, Feb 07 2015
With a(0) = 1, a(n-1) is the smallest positive number not in the sequence such that Sum_{i = 1..n} 1/a(i-1) has a denominator equal to n. - Derek Orr, Jun 17 2015
The positive members of this sequence are a proper subsequence of the so-called 1-happy couple products A007969. See the W. Lang link there, eq. (4), with Y_0 = 1, with a table at the end. - Wolfdieter Lang, Sep 19 2015
For n > 0, a(n) is the reciprocal of the area bounded above by y = x^(n-1) and below by y = x^n for x in the interval [0, 1]. Summing all such areas visually demonstrates the formula below giving Sum_{n >= 1} 1/a(n) = 1. - Rick L. Shepherd, Oct 26 2015
It appears that, except for a(0) = 0, this is the set of positive integers n such that x*floor(x) = n has no solution. (For example, to get 3, take x = -3/2.) - Melvin Peralta, Apr 14 2016
If two independent real random variables, x and y, are distributed according to the same exponential distribution: pdf(x) = lambda * exp(-lambda * x), lambda > 0, then the probability that n - 1 <= x/y < n is given by 1/a(n). - Andres Cicuttin, Dec 03 2016
a(n) is equal to the sum of all possible differences between n different pairs of consecutive odd numbers (see example). - Miquel Cerda, Dec 04 2016
a(n+1) is the dimension of the space of vector fields in the plane with polynomial coefficients up to order n. - Martin Licht, Dec 04 2016
It appears that a(n) + 3 is the area of the largest possible pond in a square (A268311). - Craig Knecht, May 04 2017
Also the number of 3-cycles in the (n+3)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jul 27 2017
Also the Wiener index of the (n+2)-wheel graph. - Eric W. Weisstein, Sep 08 2017
The left edge of a Floyd's triangle that consists of even numbers: 0; 2, 4; 6, 8, 10; 12, 14, 16, 18; 20, 22, 24, 26, 28; ... giving 0, 2, 6, 12, 20, ... The right edge generates A028552. - Waldemar Puszkarz, Feb 02 2018
a(n+1) is the order of rowmotion on a poset obtained by adjoining a unique minimal (or maximal) element to a disjoint union of at least two chains of n elements. - Nick Mayers, Jun 01 2018
From Juhani Heino, Feb 05 2019: (Start)
For n > 0, 1/a(n) = n/(n+1) - (n-1)/n.
For example, 1/6 = 2/3 - 1/2; 1/12 = 3/4 - 2/3.
Corollary of this:
Take 1/2 pill.
Next day, take 1/6 pill. 1/2 + 1/6 = 2/3, so your daily average is 1/3.
Next day, take 1/12 pill. 2/3 + 1/12 = 3/4, so your daily average is 1/4.
And so on. (End)
From Bernard Schott, May 22 2020: (Start)
For an oblong number m >= 6 there exists a Euclidean division m = d*q + r with q < r < d which are in geometric progression, in this order, with a common integer ratio b. For b >= 2 and q >= 1, the Euclidean division is m = qb*(qb+1) = qb^2 * q + qb where (q, qb, qb^2) are in geometric progression.
Some examples with distinct ratios and quotients:
6 | 4 30 | 25 42 | 18
----- ----- -----
2 | 1 , 5 | 1 , 6 | 2 ,
and also:
42 | 12 420 | 100
----- -----
6 | 3 , 20 | 4 .
Some oblong numbers also satisfy a Euclidean division m = d*q + r with q < r < d that are in geometric progression in this order but with a common noninteger ratio b > 1 (see A335064). (End)
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {2, 2n}]. For n=1, this collapses to [1; {2}]. - Magus K. Chu, Sep 09 2022
a(n-2) is the maximum irregularity over all trees with n vertices. The extremal graphs are stars. (The irregularity of a graph is the sum of the differences between the degrees over all edges of the graph.) - Allan Bickle, May 29 2023
For n > 0, number of diagonals in a regular 2*(n+1)-gon that are not parallel to any edge (cf. A367204). - Paolo Xausa, Mar 30 2024
a(n-1) is the maximum Zagreb index over all trees with n vertices. The extremal graphs are stars. (The Zagreb index of a graph is the sum of the squares of the degrees over all vertices of the graph.) - Allan Bickle, Apr 11 2024
For n >= 1, a(n) is the determinant of the distance matrix of a cycle graph on 2*n + 1 vertices (if the length of the cycle is even such a determinant is zero). - Miquel A. Fiol, Aug 20 2024
For n > 1, the continued fraction expansion of sqrt(16*a(n)) is [2n+1; {1, 2n-1, 1, 8n+2}]. - Magus K. Chu, Nov 20 2024
For n>=2, a(n) is the number of faces on a n+1-zone rhombic zonohedron. Each pair of a collection of great circles on a sphere intersects at two points, so there are 2*binomial(n+1,2) intersections. The dual of the implied polyhedron is a rhombic zonohedron, its faces corresponding to the intersections. - Shel Kaphan, Aug 12 2025

Examples

			a(3) = 12, since 2(3)+2 = 8 has 4 partitions with exactly two parts: (7,1), (6,2), (5,3), (4,4). Taking the positive differences of the parts in each partition and adding, we get: 6 + 4 + 2 + 0 = 12. - _Wesley Ivan Hurt_, Jun 02 2013
G.f. = 2*x + 6*x^2 + 12*x^3 + 20*x^4 + 30*x^5 + 42*x^6 + 56*x^7 + ... - _Michael Somos_, May 22 2014
From _Miquel Cerda_, Dec 04 2016: (Start)
a(1) = 2, since 45-43 = 2;
a(2) = 6, since 47-45 = 2 and 47-43 = 4, then 2+4 = 6;
a(3) = 12, since 49-47 = 2, 49-45 = 4, and 49-43 = 6, then 2+4+6 = 12. (End)
		

References

  • W. W. Berman and D. E. Smith, A Brief History of Mathematics, 1910, Open Court, page 67.
  • J. H. Conway and R. K. Guy, The Book of Numbers, 1996, p. 34.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Chelsea, p. 357, 1952.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, pp. 6, 232-233, 350 and 407, 1952.
  • H. Eves, An Introduction to the History of Mathematics, revised, Holt, Rinehart and Winston, 1964, page 72.
  • Nicomachus of Gerasa, Introduction to Arithmetic, translation by Martin Luther D'Ooge, Ann Arbor, University of Michigan Press, 1938, p. 254.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.
  • C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, pp. 61-62.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 54-55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. J. Swetz, From Five Fingers to Infinity, Open Court, 1994, p. 219.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 2-6.

Crossrefs

Partial sums of A005843 (even numbers). Twice triangular numbers (A000217).
1/beta(n, 2) in A061928.
A036689 and A036690 are subsequences. Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488. - Bruno Berselli, Jun 10 2013
Row n=2 of A185651.
Cf. A007745, A169810, A213541, A005369 (characteristic function).
Cf. A281026. - Bruno Berselli, Jan 16 2017
Cf. A045943 (4-cycles in triangular honeycomb acute knight graph), A028896 (5-cycles), A152773 (6-cycles).
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
A335064 is a subsequence.
Second column of A003506.
Cf. A002378, A046092, A028896 (irregularities of maximal k-degenerate graphs).
Cf. A347213 (Dgf at s=4).
Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).

Programs

Formula

G.f.: 2*x/(1-x)^3. - Simon Plouffe in his 1992 dissertation.
a(n) = a(n-1) + 2*n, a(0) = 0.
Sum_{n >= 1} a(n) = n*(n+1)*(n+2)/3 (cf. A007290, partial sums).
Sum_{n >= 1} 1/a(n) = 1. (Cf. Tijdeman)
Sum_{n >= 1} (-1)^(n+1)/a(n) = log(4) - 1 = A016627 - 1 [Jolley eq (235)].
1 = 1/2 + Sum_{n >= 1} 1/(2*a(n)) = 1/2 + 1/4 + 1/12 + 1/24 + 1/40 + 1/60 + ... with partial sums: 1/2, 3/4, 5/6, 7/8, 9/10, 11/12, 13/14, ... - Gary W. Adamson, Jun 16 2003
a(n)*a(n+1) = a(n*(n+2)); e.g., a(3)*a(4) = 12*20 = 240 = a(3*5). - Charlie Marion, Dec 29 2003
Sum_{k = 1..n} 1/a(k) = n/(n+1). - Robert G. Wilson v, Feb 04 2005
a(n) = A046092(n)/2. - Zerinvary Lajos, Jan 08 2006
Log 2 = Sum_{n >= 0} 1/a(2n+1) = 1/2 + 1/12 + 1/30 + 1/56 + 1/90 + ... = (1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + ... = Sum_{n >= 0} (-1)^n/(n+1) = A002162. - Gary W. Adamson, Jun 22 2003
a(n) = A110660(2*n). - N. J. A. Sloane, Sep 21 2005
a(n-1) = n^2 - n = A000290(n) - A000027(n) for n >= 1. a(n) is the inverse (frequency distribution) sequence of A000194(n). - Mohammad K. Azarian, Jul 26 2007
(2, 6, 12, 20, 30, ...) = binomial transform of (2, 4, 2). - Gary W. Adamson, Nov 28 2007
a(n) = 2*Sum_{i=0..n} i = 2*A000217(n). - Artur Jasinski, Jan 09 2007, and Omar E. Pol, May 14 2008
a(n) = A006503(n) - A000292(n). - Reinhard Zumkeller, Sep 24 2008
a(n) = A061037(4*n) = (n+1/2)^2 - 1/4 = ((2n+1)^2 - 1)/4 = (A005408(n)^2 - 1)/4. - Paul Curtz, Oct 03 2008 and Klaus Purath, Jan 13 2022
a(0) = 0, a(n) = a(n-1) + 1 + floor(x), where x is the minimal positive solution to fract(sqrt(a(n-1) + 1 + x)) = 1/2. - Hieronymus Fischer, Dec 31 2008
E.g.f.: (x+2)*x*exp(x). - Geoffrey Critzer, Feb 06 2009
Product_{i >= 2} (1-1/a(i)) = -2*sin(Pi*A001622)/Pi = -2*sin(A094886)/A000796 = 2*A146481. - R. J. Mathar, Mar 12 2009, Mar 15 2009
E.g.f.: ((-x+1)*log(-x+1)+x)/x^2 also Integral_{x = 0..1} ((-x+1)*log(-x+1) + x)/x^2 = zeta(2) - 1. - Stephen Crowley, Jul 11 2009
a(A007018(n)) = A007018(n+1), i.e., A007018(n+1) = A007018(n)-th oblong numbers. - Jaroslav Krizek, Sep 13 2009
a(n) = floor((n + 1/2)^2). a(n) = A035608(n) + A004526(n+1). - Reinhard Zumkeller, Jan 27 2010
a(n) = 2*(2*A006578(n) - A035608(n)). - Reinhard Zumkeller, Feb 07 2010
a(n-1) = floor(n^5/(n^3 + n^2 + 1)). - Gary Detlefs, Feb 11 2010
For n > 1: a(n) = A173333(n+1, n-1). - Reinhard Zumkeller, Feb 19 2010
a(n) = A004202(A000217(n)). - Reinhard Zumkeller, Feb 12 2011
a(n) = A188652(2*n+1) + 1. - Reinhard Zumkeller, Apr 13 2011
For n > 0 a(n) = 1/(Integral_{x=0..Pi/2} 2*(sin(x))^(2*n-1)*(cos(x))^3). - Francesco Daddi, Aug 02 2011
a(n) = A002061(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(0) = 0, a(n) = A005408(A034856(n)) - A005408(n-1). - Ivan N. Ianakiev, Dec 06 2012
a(n) = A005408(A000096(n)) - A005408(n). - Ivan N. Ianakiev, Dec 07 2012
a(n) = A001318(n) + A085787(n). - Omar E. Pol, Jan 11 2013
Sum_{n >= 1} 1/(a(n))^(2s) = Sum_{t = 1..2*s} binomial(4*s - t - 1, 2*s - 1) * ( (1 + (-1)^t)*zeta(t) - 1). See Arxiv:1301.6293. - R. J. Mathar, Feb 03 2013
a(n)^2 + a(n+1)^2 = 2 * a((n+1)^2), for n > 0. - Ivan N. Ianakiev, Apr 08 2013
a(n) = floor(n^2 * e^(1/n)) and a(n-1) = floor(n^2 / e^(1/n)). - Richard R. Forberg, Jun 22 2013
a(n) = 2*C(n+1, 2), for n >= 0. - Felix P. Muga II, Mar 11 2014
A005369(a(n)) = 1. - Reinhard Zumkeller, Jul 05 2014
Binomial transform of [0, 2, 2, 0, 0, 0, ...]. - Alois P. Heinz, Mar 10 2015
a(2n) = A002943(n) for n >= 0, a(2n-1) = A002939(n) for n >= 1. - M. F. Hasler, Oct 11 2015
For n > 0, a(n) = 1/(Integral_{x=0..1} (x^(n-1) - x^n) dx). - Rick L. Shepherd, Oct 26 2015
a(n) = A005902(n) - A007588(n). - Peter M. Chema, Jan 09 2016
For n > 0, a(n) = lim_{m -> oo} (1/m)*1/(Sum_{i=m*n..m*(n+1)} 1/i^2), with error of ~1/m. - Richard R. Forberg, Jul 27 2016
From Ilya Gutkovskiy, Jul 28 2016: (Start)
Dirichlet g.f.: zeta(s-2) + zeta(s-1).
Convolution of nonnegative integers (A001477) and constant sequence (A007395).
Sum_{n >= 0} a(n)/n! = 3*exp(1). (End)
From Charlie Marion, Mar 06 2020: (Start)
a(n)*a(n+2k-1) + (n+k)^2 = ((2n+1)*k + n^2)^2.
a(n)*a(n+2k) + k^2 = ((2n+1)*k + a(n))^2. (End)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)/Pi. - Amiram Eldar, Jan 20 2021
A generalization of the Dec 29 2003 formula, a(n)*a(n+1) = a(n*(n+2)), follows. a(n)*a(n+k) = a(n*(n+k+1)) + (k-1)*n*(n+k+1). - Charlie Marion, Jan 02 2023
a(n) = A016742(n) - A049450(n). - Leo Tavares, Mar 15 2025

Extensions

Additional comments from Michael Somos
Comment and cross-reference added by Christopher Hunt Gribble, Oct 13 2009

A006446 Numbers k such that floor(sqrt(k)) divides k.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 15, 16, 20, 24, 25, 30, 35, 36, 42, 48, 49, 56, 63, 64, 72, 80, 81, 90, 99, 100, 110, 120, 121, 132, 143, 144, 156, 168, 169, 182, 195, 196, 210, 224, 225, 240, 255, 256, 272, 288, 289, 306, 323, 324, 342, 360, 361, 380, 399, 400, 420
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form k^2, k*(k+1), or k*(k+2). Nonsquare elements of this sequence are given by A035106. - Max Alekseyev, Nov 27 2006
Union of A000290, A002378, and A005563. - Fred Daniel Kline, Feb 06 2016
The asymptotic density of this sequence is 0 (Cooper and Kennedy, 1989). - Amiram Eldar, Jul 10 2020

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 73, problem 21.
  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006446 n = a006446_list !! (n-1)
    a006446_list = filter (\x -> x `mod` a000196 x == 0) [1..]
    -- Reinhard Zumkeller, Mar 31 2011
  • Maple
    A006446:=(-1-z-z**2+z**3)/(z**2+z+1)**2/(z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation
    A006446:=n->`if`(type(n/floor(sqrt(n)), integer), n, NULL); seq(A006446(n), n=1..100); # Wesley Ivan Hurt, Feb 11 2014
  • Mathematica
    Select[ Range[ 500 ], Mod[ #, Floor[ Sqrt[ # ]//N ] ]==0& ]
  • PARI
    { n=0; for (m=1, 10^9, if (m%floor(sqrt(m)) == 0, write("b006446.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 12 2010
    
  • PARI
    a(n)=my(k=n--\3+1);k*(k+n%3) \\ Charles R Greathouse IV, Jul 07 2011
    

Formula

For k>=1 a(3*k-2) = k^2, a(3*k-1) = k*(k+1) and a(3*k) = k*(k+2). - Benoit Cloitre, Jan 14 2012
a(n) mod A000196(a(n)) = 0. - Reinhard Zumkeller, Apr 12 2013
a(n) = floor((n+1)/3)*(floor(n/3) + 1) + floor((n+2)/3). - Ridouane Oudra, Nov 21 2020
a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7) for n > 7. - Chai Wah Wu, Apr 05 2021
Sum_{n>=1} 1/a(n) = 7/4 + Pi^2/6. - Amiram Eldar, Sep 24 2022

A004652 Expansion of x*(1+x^2+x^4)/((1-x)*(1-x^2)*(1-x^3)).

Original entry on oeis.org

0, 1, 1, 3, 4, 7, 9, 13, 16, 21, 25, 31, 36, 43, 49, 57, 64, 73, 81, 91, 100, 111, 121, 133, 144, 157, 169, 183, 196, 211, 225, 241, 256, 273, 289, 307, 324, 343, 361, 381, 400, 421, 441, 463, 484, 507, 529, 553, 576, 601, 625, 651, 676, 703, 729, 757, 784, 813
Offset: 0

Views

Author

Keywords

Comments

As a Molien series this arises as (1+x^12)/((1-x^4)*(1-x^8)^2).
Starting (1, 3, 4, ...) = row sums of an infinite triangle with alternate columns of (1, 2, 3, ...) and (1, 0, 0, 0, ...). - Gary W. Adamson, May 14 2010
a(n) is also the number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and one square has one of the colors. See the formula from A054772. - Wolfdieter Lang, Oct 03 2016
Also the genus of the complete bipartite graph K_{n+2,n+2}. - Eric W. Weisstein, Jan 19 2018

Examples

			From _Gary W. Adamson_, May 14 2010: (Start)
First few rows of the generating triangle =
1;
2, 1;
3, 0, 1;
4, 0, 2, 1;
5, 0, 3, 0, 1;
6, 0, 4, 0, 2, 1;
7, 0, 5, 0, 3, 0, 1;
8, 0, 6, 0, 4, 0, 2, 1;
...
Example: a(7) = 13 = (6 + 0 + 4 + 0 + 2 + 1). (End)
x + x^2 + 3*x^3 + 4*x^4 + 7*x^5 + 9*x^6 + 13*x^7 + 16*x^8 + 21*x^9 + ...
		

Crossrefs

First differences give A028242. Cf. A035104, A035106.
A002061(n)=a(2*n-1). A035104(n)=a(n+7)-12. A035106(n)=a(n+3)-1.
Column 1 of A195040. - Omar E. Pol, Sep 28 2011
Cf. A054772, column 2.

Programs

  • Haskell
    a004652 = ceiling . (/ 4) . fromIntegral . (^ 2)
    a004652_list = 0 : 1 : zipWith (+) a004652_list [1..]
    -- Reinhard Zumkeller, Dec 18 2013
  • Magma
    [Ceiling(n^2/4): n in [0..60] ]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card=2)}, unlabeled]: subs(r=1,stack): seq(count(subs(r=2,ZL),size=m+3),m=0..57) ; # Zerinvary Lajos, Mar 09 2007
  • Mathematica
    CoefficientList[Series[x (1 - x + x^2)/((1 - x)^2*(1 - x^2)), {x, 0, 57}], x] (* Michael De Vlieger, Oct 03 2016 *)
    Table[Ceiling[n^2/4], {n, 0, 20}] (* Eric W. Weisstein, Jan 19 2018 *)
    Ceiling[Range[0, 20]^2/4] (* Eric W. Weisstein, Jan 19 2018 *)
    LinearRecurrence[{2, 0, -2, 1}, {1, 1, 3, 4}, {0, 20}] (* Eric W. Weisstein, Jan 19 2018 *)
  • PARI
    {a(n) = ceil(n^2 / 4)}
    

Formula

a(n) = ceiling(n^2/4).
a(-n) = a(n).
G.f.: x * (1 - x + x^2) / ((1 - x)^2 * (1 - x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + 1. a(2*n) = n^2, a(2*n-1) = n^2 - n + 1. - Michael Somos, Apr 21 2000
Interleaves square numbers with centered polygonal numbers: a(2*n)=A000290(n), a(2*n+1)=A002061(n+1). - Paul Barry, Mar 13 2003
For n > 1: a(n) is the digit reversal of n in base A008619(n), where a(n) is written in base 10. - Naohiro Nomoto, Mar 15 2004
a(n) = a(n-2) + n - 1. - Paul Barry, Jul 14 2004
Euler transform of length 6 sequence [ 1, 2, 1, 0, 0, -1]. - Michael Somos, Apr 03 2007
Starting (1, 3, 4, 7, 9, 13, ...), row sums of triangle A135840. - Gary W. Adamson, Dec 01 2007
a(n) = (3/8)*(-1)^(n+1) + 5/8 - (3/4)*(n+1) + (1/4)*(n+2)*(n+1). - Richard Choulet, Nov 27 2008
a(n) = n^2/4 - 3*((-1)^n-1)/8. - Omar E. Pol, Sep 28 2011
a(n) = -n + floor( (n+1)(n+3)/4 ). - Wesley Ivan Hurt, Jun 23 2013
a(n) = A054772(n, 1) = A054772(n, n^2-1), n >= 1. - Wolfdieter Lang, Oct 03 2016
E.g.f.: (x*(x + 1)*exp(x) + 3*sinh(x))/4. - Ilya Gutkovskiy, Oct 03 2016
a(n) = binomial(floor((n+3)/2),2) + binomial(floor((n+(-1)^n)/2),2). - Yuchun Ji, Feb 03 2021

A198442 Number of sequences of n coin flips that win on the last flip, if the sequence of flips ends with (1,1,0) or (1,0,0).

Original entry on oeis.org

0, 0, 2, 3, 6, 8, 12, 15, 20, 24, 30, 35, 42, 48, 56, 63, 72, 80, 90, 99, 110, 120, 132, 143, 156, 168, 182, 195, 210, 224, 240, 255, 272, 288, 306, 323, 342, 360, 380, 399, 420, 440, 462, 483, 506, 528, 552, 575, 600, 624, 650, 675, 702, 728, 756, 783, 812
Offset: 1

Views

Author

Paul Weisenhorn, Oct 25 2011

Keywords

Comments

If the sequence ends with (1,1,0) Abel wins; if it ends with (1,0,0) Kain wins.
Abel(n) = A002620(n-1) = (2*n*(n - 2) + 1 - (-1)^n)/8.
Kain(n) = A004526(n-1) = floor((n - 1)/2).
Win probability for Abel = sum(Abel(n)/2^n) = 2/3.
Win probability for Kain = sum(Kain(n)/2^n) = 1/3.
Mean length of the game = sum(n*a(n)/2^n) = 16/3.
Essentially the same as A035106. - R. J. Mathar, Oct 27 2011
The sequence 2*a(n) is denoted as chi(n) by McKee (1994) and is the degree of the division polynomial f_n as a polynomial in x. He notes that "If x is given weight 1, a is given weight 2, and b is given weight 3, then all the terms in f_n(a, b, x) have weight chi(n)". - Michael Somos, Jan 09 2015
In Duistermaat (2010), at the end of section 11.2 The Elliptic Billiard, on page 492 the number of k-periodic fibers counted with multiplicities of the QRT root is given by equation (11.2.8) as "1/4 k^2 + 3{k/2}(1 - {k/2}) - 1 = n^2 - 1 when k = 2n, n^2 + n when k = 2n+1, for every integer k." - Michael Somos, Mar 14 2023

Examples

			For n = 6 the a(6) = 8 solutions are (0,0,0,1,1,0), (0,1,0,1,1,0),(0,0,1,1,1,0), (1,0,1,1,1,0), (0,1,1,1,1,0),(1,1,1,1,1,0) for Abel and
  (0,0,0,1,0,0), (0,1,0,1,0,0) for Kain.
G.f. = 2*x^3 + 3*x^4 + 6*x^5 + 8*x^6 + 12*x^7 + 15*x^8 + 20*x^9 + ...
		

References

  • J. J. Duistermaat, Discrete Integrable Systems, 2010, Springer Science+Business Media.
  • A. Engel, Wahrscheinlichkeitsrechnung und Statistik, Band 2, Klett, 1978, pages 25-26.

Crossrefs

Programs

  • Magma
    [(2*n^2-5-3*(-1)^n)/8: n in [1..60]]; // Vincenzo Librandi, Oct 28 2011
    
  • Maple
    for n from 1 by 2 to 99 do
      a(n):=(n^2-1)/4:
      a(n+1):=(n+1)^2/4-1:
    end do:
    seq(a(n),n=1..100);
  • Mathematica
    a[ n_] := Quotient[ n^2 - 1, 4]; (* Michael Somos, Jan 09 2015 *)
  • PARI
    a(n)=([1,1,0,0,0,0;0,0,1,1,0,0;0,1,0,0,1,0;0,0,0,1,1,0;0,0,0,0,0,2;0,0,0,0,0,2]^n)[1,5] \\ Charles R Greathouse IV, Oct 26 2011
    
  • PARI
    {a(n) = (n^2 - 1) \ 4}; /* Michael Somos, Jan 09 2015 */
    
  • Perl
    sub a {
        my ($t, $n) = (0, shift);
        for (0..((1<<$n)-1)) {
            my $str = substr unpack("B32", pack("N", $_)), -$n;
            $t++ if ($str =~ /1.0$/ and not $str =~ /1.0./);
        }
        return $t
    } # Charles R Greathouse IV, Oct 26 2011
    
  • Sage
    def A198442():
        yield 0
        x, y = 0, 2
        while True:
           yield x
           x, y = x + y, x//y + 1
    a = A198442(); print([next(a) for i in range(57)]) # Peter Luschny, Dec 22 2015

Formula

a(n) = (2*n^2 - 5 - 3*(-1)^n)/8.
a(2*n) = n^2 - 1; a(2*n+1) = n*(n + 1).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) with n>=4.
G.f.: x^3*(2 - x)/((1 + x)*(1 - x)^3). - R. J. Mathar, Oct 27 2011
a(n) = a(-n) for all n in Z. a(0) = -1. - Michael Somos, Jan 09 2015
0 = a(n)*(+a(n+1) - a(n+2)) + a(n+1)*(-1 - a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jan 09 2015
1 = a(n) - a(n+1) - a(n+2) + a(n+3), 2 = a(n) - 2*a(n+2) + a(n+4) for all n in Z. - Michael Somos, Jan 09 2015
a(n) = A002620(n+2) - A052928(n+2) for n >= 1. (Note A265611(n) = A002620(n+1) + A052928(n+1) for n >= 1.) - Peter Luschny, Dec 22 2015
a(n+1) = A110654(n)^2 + A110654(n)*(2 - (n mod 2)), n >= 0. - Fred Daniel Kline, Jun 08 2016
a(n) = A004526(n)*A004526(n+3). - Fred Daniel Kline, Aug 04 2016
a(n) = floor((n^2 - 1)/4). - Bruno Berselli, Mar 15 2021

Extensions

a(12) inserted by Charles R Greathouse IV, Oct 26 2011

A052938 Expansion of (1 + 2*x - 2*x^2)/( (1+x)*(1-x)^2 ).

Original entry on oeis.org

1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 10, 9, 11, 10, 12, 11, 13, 12, 14, 13, 15, 14, 16, 15, 17, 16, 18, 17, 19, 18, 20, 19, 21, 20, 22, 21, 23, 22, 24, 23, 25, 24, 26, 25, 27, 26, 28, 27, 29, 28, 30, 29, 31, 30, 32, 31, 33, 32, 34, 33, 35, 34, 36, 35, 37, 36, 38, 37, 39
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A028242 (same sequence with 1,0,2 prefix).
Cf. A035106.

Programs

  • GAP
    List([0..30], n-> (2*n+7-3*(-1)^n)/4); # G. C. Greubel, Oct 18 2019
  • Haskell
    a052938 n = a052938_list !! n
    a052938_list = 1 : 3 : 2 : zipWith (-) [5..] a052938_list
    -- Reinhard Zumkeller, Oct 06 2015
    
  • Magma
    [(2*n+7-3*(-1)^n)/4: n in [0..30]]; // G. C. Greubel, Oct 18 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 75); Coefficients(R!( (1 + 2*x - 2*x^2)/( (1+x)*(1-x)^2 ))); // Marius A. Burtea, Oct 18 2019
    
  • Maple
    spec := [S,{S=Prod(Union(Sequence(Z),Z,Z),Sequence(Prod(Z,Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    seq((2*n+7-3*(-1)^n)/4, n=0..30); # G. C. Greubel, Oct 18 2019
  • Mathematica
    LinearRecurrence[{1,1,-1},{1,3,2},80] (* Harvey P. Dale, Apr 10 2019 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,1,1]^n*[1;3;2])[1,1] \\ Charles R Greathouse IV, Sep 02 2015
    
  • Sage
    [(2*n+7-3*(-1)^n)/4 for n in (0..30)] # G. C. Greubel, Oct 18 2019
    

Formula

G.f.: (1+2*x-2*x^2)/((1+x)*(1-x)^2).
a(n) = -a(n-1) + n + 3, with a(0)=1.
a(n) = (3*(-1)^(n+1) + 2*n + 7)/4.
A112034(n) = 3*2^a(n); a(n) = A109613(n+2) - A084964(n). - Reinhard Zumkeller, Aug 27 2005
a(n) = A035106(n+3) - A035106(n+2). - Reinhard Zumkeller, Oct 06 2015
a(n) = A060762(n+1) - 1. - Filip Zaludek, Nov 19 2016
E.g.f.: ((5+x)*sinh(x) + (2+x)*cosh(x))/2. - G. C. Greubel, Oct 18 2019

Extensions

More terms from James Sellers, Jun 06 2000

A112970 A generalized Stern sequence.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 2, 2, 1, 5, 3, 3, 2, 5, 2, 3, 1, 6, 4, 3, 2, 6, 2, 3, 1, 7, 5, 4, 3, 8, 3, 5, 2, 8, 5, 4, 2, 8, 3, 3, 1, 9, 6, 5, 4, 9, 3, 6, 2, 9, 6, 4, 2, 9, 3, 3, 1, 10, 7, 6, 5, 11, 4, 8, 3, 12, 8, 6, 3, 13, 5, 5, 2, 13, 8, 7, 5, 12, 4, 7, 2, 12, 8, 5, 3, 11, 3, 4, 1, 12, 9, 7, 6
Offset: 0

Views

Author

Paul Barry, Oct 07 2005

Keywords

Comments

Conjectures: a(2^n)=a(2^(n+1)+1)=A033638(n); a(2^n-1)=a(3*2^n-1)=1.
The Gi1 and Gi2 triangle sums, see A180662 for their definitions, of Sierpinski's triangle A047999 equal this sequence. The Gi1 and Gi2 sums can also be interpreted as (i + 4*j = n) and (4*i + j = n) sums, see the Northshield reference. Some A112970(2^n-p) sequences, 0<=p<=32, lead to known sequences, see the crossrefs. - Johannes W. Meijer, Jun 05 2011

Crossrefs

Cf. A120562 (Northshield).
Cf. A033638 (p=0), A000012 (p=1), A004526 (p=2, p=3, p=5, p=9, p=17), A002620 (p=4, p=7, p=13, p=25), A000027 (p=6, p=11, p=21), A004116 (p=8, p=15, p=29), A035106 (p=10, p=19), A024206 (p=14, p=27), A007494 (p=18), A014616 (p=22), A179207 (p=26). - Johannes W. Meijer, Jun 05 2011

Programs

  • Maple
    A112970:=proc(n) option remember; if n <0 then A112970(n):=0 fi: if (n=0 or n=1) then 1 elif n mod 2 = 0 then A112970(n/2) + A112970((n/2)-2) else A112970((n-1)/2); fi; end: seq(A112970(n),n=0..99); # Johannes W. Meijer, Jun 05 2011
  • Mathematica
    a[n_] := a[n] = Which[n<0, 0, n==0 || n==1, 1, Mod[n, 2]==0, a[n/2] + a[n/2-2], True, a[(n-1)/2]];
    Table[a[n], {n, 0, 99}] (* Jean-François Alcover, Aug 02 2022 *)

Formula

a(n) = Sum_{k=0..n} mod(sum{j=0..n, (-1)^(n-k)*C(j, n-j)*C(k, j-k)}, 2).
From Johannes W. Meijer, Jun 05 2011: (Start)
a(2*n+1) = a(n) and a(2*n) = a(n) + a(n-2) with a(0) = 1, a(1) = 1 and a(n)=0 for n<=-1.
G.f.: Product_{n>=0} (1 + x^(2^n) + x^(4*2^n)). (End)
G.f. A(x) satisfies: A(x) = (1 + x + x^4) * A(x^2). - Ilya Gutkovskiy, Jul 09 2019

A064764 Largest integer m such that every permutation (p_1, ..., p_n) of (1, ..., n) satisfies lcm(p_i, p_{i+1}) >= m for some i, 1 <= i <= n-1.

Original entry on oeis.org

1, 2, 3, 4, 6, 6, 12, 12, 12, 12, 18, 18, 24, 24, 24, 24, 35, 35, 44, 44, 44, 44, 55, 55, 55, 55, 55, 55, 68, 68, 85, 85, 85, 85, 85, 85, 102, 102, 102, 102, 119, 119, 145, 145, 145, 145, 174, 174, 174, 174, 174, 174, 203, 203, 203, 203, 203, 203, 232, 232, 261, 261, 261
Offset: 1

Views

Author

N. J. A. Sloane, Oct 21 2001

Keywords

Comments

For n >= 4, a(n) >= A073818(pi(n)), with equality for 19 <= n <= 70. - David Wasserman, Aug 17 2002

Examples

			n=6: we must arrange the numbers 1..6 so that the max of the lcm of pairs of adjacent terms is minimized. The answer is 632415, with max lcm = 6, so a(6) = 6.
		

Crossrefs

Formula

a(n) = (1+o(1))n^2/(4 log n) as n -> infinity.

Extensions

More terms from Vladeta Jovovic, Oct 21 2001
Further terms from David Wasserman, Aug 17 2002

A064796 Largest integer m such that every permutation (p_1, ..., p_n) of (1, ..., n) satisfies p_i * p_{i+1} >= m for some i, 1 <= i <= n, where p_{n+1} = p_1.

Original entry on oeis.org

1, 2, 6, 8, 12, 15, 20, 24, 30, 35, 42, 48, 56, 63, 72, 80, 90, 99, 110, 120, 132, 143, 156, 168, 182, 195, 210, 224, 240, 255, 272, 288, 306, 323, 342, 360, 380, 399, 420, 440, 462, 483, 506, 528, 552, 575, 600, 624, 650, 675, 702, 728, 756, 783, 812, 840, 870
Offset: 1

Views

Author

N. J. A. Sloane, Oct 21 2001

Keywords

Comments

Conjecture: a(n) = (n+1)(n+3)/4 for odd n, a(n) = (n)(n+4)/4 for even n. - Jud McCranie, Oct 25 2001

Examples

			n=5: we must arrange the numbers 1..5 in a circle so that the max of the products of pairs of adjacent terms is minimized. The answer is 15243, with max product = 12, so a(5) = 12.
		

Crossrefs

Programs

  • Magma
    [1,2] cat [1/8*(3-3*(-1)^n+8*n+2*n^2): n in [3..60]]; // Vincenzo Librandi, Feb 24 2017
  • Mathematica
    Join[{1,2},LinearRecurrence[{2,0,-2,1},{6,8,12,15},60]] (* Harvey P. Dale, Sep 17 2013 *)
  • PARI
    a(n)=if(n<3, n, if(n%2, (n+1)*(n+3), (n+4)*n)/4) \\ Charles R Greathouse IV, Feb 19 2017
    

Formula

For odd n > 2, a(n) = (n+1)(n+3)/4. For even n > 2, a(n) = n(n+4)/4. - David Wasserman, Aug 19 2002
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>6. G.f.: -x*(x^5-x^4-2*x^3+2*x^2+1) / ((x-1)^3*(x+1)). - Colin Barker, Aug 28 2013
For n>2: a(n)=1/8*(3-3*(-1)^n+8*n+2*n^2). - Tom Edgar, Aug 28 2013

Extensions

More terms from Naohiro Nomoto and Vladeta Jovovic, Oct 22 2001
More terms from David Wasserman, Aug 19 2002

A128915 Triangle read by rows: row n gives coefficients (lowest degree first) of P_n(x), where P_0(x) = P_1(x) = 1; P_n(x) = P_{n-1}(x) + x^n*P_{n-2}(x).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 3, 3, 2, 2, 2, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 24 2007

Keywords

Comments

P_n(x) appears to have degree A035106(n).

Examples

			Triangle begins:
1
1
1,0,1
1,0,1,1
1,0,1,1,1,0,1
1,0,1,1,1,1,1,1,1
1,0,1,1,1,1,2,1,2,1,1,0,1
1,0,1,1,1,1,2,2,2,2,2,1,2,1,1,1
1,0,1,1,1,1,2,2,3,2,3,2,3,2,3,2,2,1,1,0,1
		

Crossrefs

Rows converge to A003114 (coefficients in expansion of the first Rogers-Ramanujan identities). Cf. A119469.
Rows converge to A003106. Cf. A127836, A119469.

Programs

  • Maple
    P[0]:=1; P[1]:=1; d:=[0,0]; M:=14; for n from 2 to M do P[n]:=expand(P[n-1]+q^n*P[n-2]);
    lprint(seriestolist(series(P[n],q,M^2))); d:=[op(d),degree(P[n],q)]; od: d;
Showing 1-10 of 18 results. Next