A211422 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0.
1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761
Offset: 0
Keywords
A001845 Centered octahedral numbers (crystal ball sequence for cubic lattice).
1, 7, 25, 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017, 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775, 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153, 82239
Offset: 0
Comments
Number of points in simple cubic lattice at most n steps from origin.
If X is an n-set and Y_i (i=1,2,3) mutually disjoint 2-subsets of X then a(n-6) is equal to the number of 6-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Equals binomial transform of [1, 6, 12, 8, 0, 0, 0, ...] where (1, 6, 12, 8) = row 3 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 4, a(n-2) = -coeff(charpoly(A,x),x^(n-3)). - Milan Janjic, Jan 26 2010
a(n) = D(3,n) where D are the Delannoy numbers (A008288). As such, a(n) gives the number of grid paths from (0,0) to (3,n) using steps that move one unit north, east, or northeast. - David Eppstein, Sep 07 2014
The first comment above can be re-expressed and generalized as follows: a(n) is the number of points in Z^3 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array (A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 3 from any given point. - Shel Kaphan, Jan 02 2023
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Luciano Ancora, The Square Pyramidal Number and other figurate numbers, ch. 4.
- Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Section 2.3.
- D. Bump, K. Choi, P. Kurlberg, and J. Vaaler, A local Riemann hypothesis, I pages 16 and 17
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Milan Janjić, Two Enumerative Functions
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
- Eric Weisstein's World of Mathematics, Haüy Construction
- Eric Weisstein's World of Mathematics, Octahedral Number
- Index entries for crystal ball sequences
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Sums of 2 consecutive terms give A008412.
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
Partial sums of A005899.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Row/column 3 of A008288.
Programs
-
Haskell
a001845 n = (2 * n + 1) * (2 * n ^ 2 + 2 * n + 3) `div` 3 -- Reinhard Zumkeller, Dec 15 2013
-
Mathematica
Table[(4 n^3 - 6 n^2 + 8 n - 3)/3, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *) LinearRecurrence[{4, -6, 4, -1}, {1, 7, 25, 63}, 40] (* Harvey P. Dale, Jun 05 2013 *) CoefficientList[Series[(1 + x)^3/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
-
PARI
a(n)=(2*n+1)*(2*n^2+2*n+3)/3 \\ Charles R Greathouse IV, Dec 06 2011
Formula
G.f.: (1+x)^3 /(1-x)^4. [conjectured (correctly) by Simon Plouffe in his 1992 dissertation]
a(n) = (2*n+1)*(2*n^2 + 2*n + 3)/3.
First differences of A014820(n). - Alexander Adamchuk, May 23 2006
a(n) = a(n-1) + 4*n^2 + 2, a(0)=1. - Vincenzo Librandi, Mar 27 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=1, a(1)=7, a(2)=25, a(3)=63. - Harvey P. Dale, Jun 05 2013
a(n) = Sum_{k=0..min(3,n)} 2^k * binomial(3,k) * binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
From Luciano Ancora, Jan 08 2015: (Start)
E.g.f.: exp(x)*(3 + 18*x + 18*x^2 + 4*x^3)/3. - Stefano Spezia, Mar 14 2024
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = 5/6 - log(2) = (1 - 1/2 + 1/3) - log(2). - Peter Bala, Mar 21 2024
A005891 Centered pentagonal numbers: (5n^2+5n+2)/2; crystal ball sequence for 3.3.3.4.4. planar net.
1, 6, 16, 31, 51, 76, 106, 141, 181, 226, 276, 331, 391, 456, 526, 601, 681, 766, 856, 951, 1051, 1156, 1266, 1381, 1501, 1626, 1756, 1891, 2031, 2176, 2326, 2481, 2641, 2806, 2976, 3151, 3331, 3516, 3706, 3901, 4101, 4306, 4516, 4731, 4951, 5176, 5406
Offset: 0
Comments
Equals the triangular numbers convolved with [1, 3, 1, 0, 0, 0, ...]. - Gary W. Adamson and Alexander R. Povolotsky, May 29 2009
From Ant King, Jun 15 2012: (Start)
a(n) == 1 (mod 5) for all n.
The digital roots of the a(n) form a purely periodic palindromic 9-cycle 1, 6, 7, 4, 6, 4, 7, 6, 1.
The units' digits of the a(n) form a purely periodic palindromic 4-cycle 1, 6, 6, 1.
(End)
Binomial transform of (1, 5, 5, 0, 0, 0, ...) and second partial sum of (1, 4, 5, 5, 5, ...). - Gary W. Adamson, Sep 09 2015
a(n) = a(-1-n) for all n in Z. - Michael Somos, Jan 25 2019
On the plane start with a single regular pentagon, and repeat the following procedure, "For each edge of any pentagon not already connected to an existing pentagon create a mirror image such that the mirror image does not overlap with an existing pentagon." a(n) is the number of pentagons occupying the plane after n repetitions. - Torlach Rush, Sep 14 2022
Examples
a(2)= 5*T(2) + 1 = 5*3 + 1 = 16, a(4) = 5*T(4) + 1 = 5*10 + 1 = 51. - _Thomas M. Green_, Nov 16 2009
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Cliff Reiter, Polygonal Numbers and Fifty One Stars, Lafayette College, Easton, PA (2019).
- Eric Weisstein's World of Mathematics, Centered Pentagonal Number.
- Index entries for sequences related to centered polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for crystal ball sequences
Crossrefs
Programs
-
Magma
[5*n*(n+1)/2 + 1: n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
Maple
A005891 := proc(n) 1+5*n*(1+n)/2 ; end proc: seq(A005891(n),n=0..40) ; # R. J. Mathar, Oct 07 2021
-
Mathematica
FoldList[#1 + #2 &, 1, 5 Range@ 40] (* Robert G. Wilson v, Feb 02 2011 *) LinearRecurrence[{3,-3,1},{1,6,16},50] (* Harvey P. Dale, Sep 08 2018 *) Table[ j! Coefficient[Series[Exp[x]*(1 + 5 x^2/2)-1, {x, 0, 20}], x, j], {j, 0, 20}] (* Nikolaos Pantelidis, Feb 07 2023 *)
-
PARI
a(n)=5*n*(n+1)/2+1 \\ Charles R Greathouse IV, Mar 22 2016
-
Python
def A005891(n): return (5*n*(n+1)>>1)+1 # Chai Wah Wu, Mar 25 2025
Formula
G.f.: (1 + 3*x + x^2)/(1 - x)^3. Simon Plouffe in his 1992 dissertation
Narayana transform (A001263) of [1, 5, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=1, a(1)=6, a(2)=16. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 5*A000217(n) + 1 = 5*T(n) + 1, for n = 0, 1, 2, 3, ... and where T(n) = n*(n+1)/2 = n-th triangular number. - Thomas M. Green, Nov 25 2009
a(n) = a(n-1) + 5*n, with a(0)=1. - Vincenzo Librandi, Nov 18 2010
a(n) = A028895(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = 2*a(n-1) - a(n-2) + 5. - Ant King, Jun 12 2012
Sum_{n>=0} 1/a(n) = 2*Pi /sqrt(15) *tanh(Pi/2*sqrt(3/5)) = 1.360613169863... - Ant King, Jun 15 2012
a(n) = A101321(5,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (2 + 10*x + 5*x^2)*exp(x)/2. - Ilya Gutkovskiy, Jul 28 2016
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 17*e/2.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 3/(2*e). (End)
Extensions
Formula corrected and relocated by Johannes W. Meijer, Nov 07 2009
A056220 a(n) = 2*n^2 - 1.
-1, 1, 7, 17, 31, 49, 71, 97, 127, 161, 199, 241, 287, 337, 391, 449, 511, 577, 647, 721, 799, 881, 967, 1057, 1151, 1249, 1351, 1457, 1567, 1681, 1799, 1921, 2047, 2177, 2311, 2449, 2591, 2737, 2887, 3041, 3199, 3361, 3527, 3697, 3871, 4049, 4231, 4417, 4607, 4801
Offset: 0
Comments
Image of squares (A000290) under "little Hankel" transform that sends [c_0, c_1, ...] to [d_0, d_1, ...] where d_n = c_n^2 - c_{n+1}*c_{n-1}. - Henry Bottomley, Dec 12 2000
Surround numbers of an n X n square. - Jason Earls, Apr 16 2001
Numbers n such that 2*n + 2 is a perfect square. - Cino Hilliard, Dec 18 2003, Juri-Stepan Gerasimov, Apr 09 2016
The sums of the consecutive integer sequences 2n^2 to 2(n+1)^2-1 are cubes, as 2n^2 + ... + 2(n+1)^2-1 = (1/2)(2(n+1)^2 - 1 - 2n^2 + 1)(2(n+1)^2 - 1 + 2n^2) = (2n+1)^3. E.g., 2+3+4+5+6+7 = 27 = 3^3, then 8+9+10+...+17 = 125 = 5^3. - Andras Erszegi (erszegi.andras(AT)chello.hu), Apr 29 2005
X values (other than 0) of solutions to the equation 2*X^3 + 2*X^2 = Y^2. To find Y values: b(n) = 2n*(2*n^2 - 1). - Mohamed Bouhamida, Nov 06 2007
Average of the squares of two consecutive terms is also a square. In fact: (2*n^2 - 1)^2 + (2*(n+1)^2 - 1)^2 = 2*(2*n^2 + 2*n + 1)^2. - Matias Saucedo (solomatias(AT)yahoo.com.ar), Aug 18 2008
Equals row sums of triangle A143593 and binomial transform of [1, 6, 4, 0, 0, 0, ...] with n > 1. - Gary W. Adamson, Aug 26 2008
Start a spiral of square tiles. Trivially the first tile fits in a 1 X 1 square. 7 tiles fit in a 3 X 3 square, 17 tiles fit in a 5 X 5 square and so on. - Juhani Heino, Dec 13 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-2, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jan 26 2010
For each n > 0, the recursive series, formula S(b) = 6*S(b-1) - S(b-2) - 2*a(n) with S(0) = 4n^2-4n+1 and S(1) = 2n^2, has the property that every even term is a perfect square and every odd term is twice a perfect square. - Kenneth J Ramsey, Jul 18 2010
Fourth diagonal of A154685 for n > 2. - Vincenzo Librandi, Aug 07 2010
First integer of (2*n)^2 consecutive integers, where the last integer is 3 times the first + 1. As example, n = 2: term = 7; (2*n)^2 = 16; 7, 8, 9, ..., 20, 21, 22: 7*3 + 1 = 22. - Denis Borris, Nov 18 2012
Chebyshev polynomial of the first kind T(2,n). - Vincenzo Librandi, May 30 2014
For n > 0, number of possible positions of a 1 X 2 rectangle in a (n+1) X (n+2) rectangular integer lattice. - Andres Cicuttin, Apr 07 2016
This sequence also represents the best solution for Ripà's n_1 X n_2 X n_3 dots problem, for any 0 < n_1 = n_2 < n_3 = floor((3/2)*(n_1 - 1)) + 1. - Marco Ripà, Jul 23 2018
Examples
a(0) = 0^2-1*1 = -1, a(1) = 1^2 - 4*0 = 1, a(2) = 2^2 - 9*1 = 7, etc. a(4) = 31 = (1, 3, 3, 1) dot (1, 6, 4, 0) = (1 + 18 + 12 + 0). - _Gary W. Adamson_, Aug 29 2008
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq., Vol. 13 (2010), Article # 10.7.8.
- Mitch Phillipson, Manda Riehl, and Tristan Williams, Enumeration of Wilf classes in Sn ~ Cr for two patterns of length 3, PU. M. A., Vol. 21, No. 2 (2010), pp. 321-338.
- Marco Ripà, The rectangular spiral or the n1 X n2 X ... X nk Points Problem , Notes on Number Theory and Discrete Mathematics, Vol. 20, No. 1 (2014), pp. 59-71.
- Leo Tavares, Illustration: Twin Squares
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A000105, A000217, A000290, A000384, A001082, A001653, A001844, A002378, A002593, A003215, A005563, A028347, A036666, A046092, A047875, A062717, A069074, A077585, A087475, A119258, A143593, A154685, A162610, A188653, A225227.
Cf. A066049 (indices of prime terms)
Column 2 of array A188644 (starting at offset 1).
Programs
-
GAP
List([0..50], n-> 2*n^2-1); # Muniru A Asiru, Jul 24 2018
-
Magma
[2*n^2-1 : n in [0..50]]; // Vincenzo Librandi, May 30 2014
-
Maple
A056220:=n->2*n^2-1; seq(A056220(n), n=0..50); # Wesley Ivan Hurt, Jun 16 2014
-
Mathematica
Array[2 #^2 - 1 &, 50, 0] (* Robert G. Wilson v, Jul 23 2018 *) CoefficientList[Series[(x^2 +4x -1)/(1-x)^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -3, 1}, {-1, 1, 7}, 51] (* Robert G. Wilson v, Jul 24 2018 *)
-
PARI
a(n)=2*n^2-1;
-
Sage
[2*n^2-1 for n in (0..50)] # G. C. Greubel, Jul 07 2019
Formula
G.f.: (-1 + 4*x + x^2)/(1-x)^3. - Henry Bottomley, Dec 12 2000
a(n) = A119258(n+1,2) for n > 0. - Reinhard Zumkeller, May 11 2006
From Doug Bell, Mar 08 2009: (Start)
a(0) = -1,
a(n) + a(n+1) + 1 = (2n+1)^2. - Doug Bell, Mar 09 2009
a(n) = a(n-1) + 4*n - 2 (with a(0)=-1). - Vincenzo Librandi, Dec 25 2010
a(n) = A188653(2*n) for n > 0. - Reinhard Zumkeller, Apr 13 2011
a(n) = A162610(2*n-1,n) for n > 0. - Reinhard Zumkeller, Jan 19 2013
a(n) = ( Sum_{k=0..2} (C(n+k,3)-C(n+k-1,3))*(C(n+k,3)+C(n+k+1,3)) ) - (C(n+2,3)-C(n-1,3))*(C(n,3)+C(n+3,3)), for n > 3. - J. M. Bergot, Jun 16 2014
a(n) = j^2 + k^2 - 2 or 2*j*k if n >= 2 and j = n + sqrt(2)/2 and k = n - sqrt(2)/2. - Avi Friedlich, Mar 30 2015
a(n) = A002593(n)/n^2. - Bruce J. Nicholson, Apr 03 2017
a(n) = A000384(n) + n - 1. - Bruce J. Nicholson, Nov 12 2017
a(n)*a(n+k) + 2k^2 = m^2 (a perfect square), m = a(n) + (2n*k), for n>=1. - Ezhilarasu Velayutham, May 13 2019
From Amiram Eldar, Aug 10 2020: (Start)
Sum_{n>=1} 1/a(n) = 1/2 - sqrt(2)*Pi*cot(Pi/sqrt(2))/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi*csc(Pi/sqrt(2))/4 - 1/2. (End)
From Amiram Eldar, Feb 04 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(2))*csc(Pi/sqrt(2)).
Product_{n>=2} (1 - 1/a(n)) = (Pi/(4*sqrt(2)))*csc(Pi/sqrt(2)). (End)
Let T(n) = n*(n+1)/2. Then a(n)^2 = T(2n-2)*T(2n+1) + n^2. - Charlie Marion, Feb 12 2023
E.g.f.: exp(x)*(2*x^2 + 2*x - 1). - Stefano Spezia, Jul 08 2023
A005899 Number of points on surface of octahedron; also coordination sequence for cubic lattice: a(0) = 1; for n > 0, a(n) = 4n^2 + 2.
1, 6, 18, 38, 66, 102, 146, 198, 258, 326, 402, 486, 578, 678, 786, 902, 1026, 1158, 1298, 1446, 1602, 1766, 1938, 2118, 2306, 2502, 2706, 2918, 3138, 3366, 3602, 3846, 4098, 4358, 4626, 4902, 5186, 5478, 5778, 6086, 6402, 6726, 7058, 7398, 7746, 8102, 8466
Offset: 0
Comments
Also, the number of regions the plane can be cut into by two overlapping concave (2n)-gons. - Joshua Zucker, Nov 05 2002
If X is an n-set and Y_i (i=1,2,3) are mutually disjoint 2-subsets of X then a(n-5) is equal to the number of 5-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Binomial transform of a(n) is A055580(n). - Wesley Ivan Hurt, Apr 15 2014
The identity (4*n^2+2)^2 - (n^2+1)*(4*n)^2 = 4 can be written as a(n)^2 - A002522(n)*A008586(n)^2 = 4. - Vincenzo Librandi, Jun 15 2014
Also the least number of unit cubes required, at the n-th iteration, to surround a 3D solid built from unit cubes, in order to hide all its visible faces, starting with a unit cube. - R. J. Cano, Sep 29 2015
Also, coordination sequence for "tfs" 3D uniform tiling. - N. J. A. Sloane, Feb 10 2018
Also, the number of n-th order specular reflections arriving at a receiver point from an emitter point inside a cuboid with reflective faces. - Michael Schutte, Sep 18 2018
References
- H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
- Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (225) cF8
- B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tilings #16 and #22.
- R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Barry Balof, Restricted tilings and bijections, J. Integer Seq. 15 (2012), no. 2, Article 12.2.3, 17 pp.
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Pierre de la Harpe, On the prehistory of growth of groups, arXiv:2106.02499 [math.GR], 2021.
- R. W. Grosse-Kunstleve, Coordination Sequences and Encyclopedia of Integer Sequences
- R. W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889.
- Milan Janjic, Two Enumerative Functions
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
- Carlos I. Perez-Sanchez, The Spectral Action on quivers, arXiv:2401.03705 [math.RT], 2024.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Reticular Chemistry Structure Resource (RCSR), The pcu tiling (or net)
- Reticular Chemistry Structure Resource (RCSR), The tfs tiling (or net)
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985),4545-4558.
- N. J. A. Sloane, Illustration of a(0)=1, a(1)=6, a(2)=18 (from Teo-Sloane 1985)
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Partial sums give A001845.
Column 2 * 2 of array A188645.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Programs
-
Magma
[4*n^2 + 2 : n in [0..50]]; // Wesley Ivan Hurt, Oct 26 2015
-
Maple
A005899:=n->4*n^2 + 2; seq(A005899(n), n=0..50); # Wesley Ivan Hurt, Apr 15 2014
-
Mathematica
Join[{1},4Range[40]^2+2] (* or *) Join[{1},LinearRecurrence[{3,-3,1},{6,18,38},40]] (* Harvey P. Dale, Nov 08 2011 *)
-
PARI
Vec(((1+x)/(1-x))^3 + O(x^100)) \\ Altug Alkan, Oct 26 2015
Formula
G.f.: ((1+x)/(1-x))^3. - Simon Plouffe in his 1992 dissertation
Binomial transform of [1, 5, 7, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Nov 02 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=1, a(1)=6, a(2)=18, a(3)=38. - Harvey P. Dale, Nov 08 2011
Recurrence: n*a(n) = (n-2)*a(n-2) + 6*a(n-1), a(0)=1, a(1)=6. - Fung Lam, Apr 15 2014
a(n) = 2*d*Hypergeometric2F1(1-d, 1-n, 2, 2) where d=3, n>0. - Shel Kaphan, Feb 16 2023
a(n) = A035597(n)*3/n, for n>0. - Shel Kaphan, Feb 26 2023
E.g.f.: exp(x)*(2 + 4*x + 4*x^2) - 1. - Stefano Spezia, Mar 08 2023
Sum_{n>=0} 1/a(n) = 3/4 + Pi *sqrt(2)*coth( Pi/sqrt 2)/8 = 1.31858... - R. J. Mathar, Apr 27 2024
A053755 a(n) = 4*n^2 + 1.
1, 5, 17, 37, 65, 101, 145, 197, 257, 325, 401, 485, 577, 677, 785, 901, 1025, 1157, 1297, 1445, 1601, 1765, 1937, 2117, 2305, 2501, 2705, 2917, 3137, 3365, 3601, 3845, 4097, 4357, 4625, 4901, 5185, 5477, 5777, 6085, 6401, 6725, 7057
Offset: 0
Comments
Subsequence of A004613: all numbers in this sequence have all prime factors of the form 4k+1. E.g., 40001 = 13*17*181, 13 = 4*3 + 1, 17 = 4*4 + 1, 181 = 4*45 + 1. - Cino Hilliard, Aug 26 2006, corrected by Franklin T. Adams-Watters, Mar 22 2011
Solutions x of the Mordell equation y^2 = x^3 - 3a^2 - 1 for a = 0, 1, 2, ... - Michel Lagneau, Feb 12 2010
Ulam's spiral (NW spoke). - Robert G. Wilson v, Oct 31 2011
For n >= 1, a(n) is numerator of radius r(n) of circle with sagitta = n and cord length = 1. The denominator is A008590(n). - Kival Ngaokrajang, Jun 13 2014
a(n)+6 is prime for n = 0..6 and for n = 15..20. - Altug Alkan, Sep 28 2015
References
- Donald E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, 1997, Vol. 1, exercise 1.2.1 Nr. 11, p. 19.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- Kival Ngaokrajang, Illustration of initial terms.
- Robert G. Wilson v, Cover of the March 1964 issue of Scientific American.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Column 2 of array A188647.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Programs
-
GAP
List([0..45],n->4*n^2+1); # Muniru A Asiru, Nov 01 2018
-
Haskell
a053755 = (+ 1) . (* 4) . (^ 2) -- Reinhard Zumkeller, Apr 20 2015
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+5*x^2)/((1-x)^3))); /* or */ I:=[1,5]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+8: n in [1..50]]; // Vincenzo Librandi, Jun 26 2013 -
Maple
with (combinat):seq(fibonacci(3,2*n), n=0..42); # Zerinvary Lajos, Apr 21 2008
-
Mathematica
f[n_] := 4n^2 +1; Array[f, 40] (* Vladimir Joseph Stephan Orlovsky, Sep 02 2008 *) CoefficientList[Series[(1 + 2 x + 5 x^2) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 26 2013 *) LinearRecurrence[{3,-3,1},{1,5,17},50] (* Harvey P. Dale, Dec 28 2021 *)
-
PARI
for(x=0,100,print1(4*x^2+1",")) \\ Cino Hilliard, Aug 26 2006
-
Python
for n in range(0,50): print(4*n**2+1, end=', ') # Stefano Spezia, Nov 01 2018
Formula
a(n) = A000466(n) + 2. - Zak Seidov, Jan 16 2007
From R. J. Mathar, Apr 28 2008: (Start)
O.g.f.: (1 + 2*x + 5*x^2)/(1-x)^3.
a(n) = 3a(n-1) - 3a(n-2) + a(n-3). (End)
Equals binomial transform of [1, 4, 8, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
a(n+1) = denominator of Sum_{k=0..n} (-1)^n*(2*n + 1)^3/((2*n + 1)^4 + 4), see Knuth reference. - Reinhard Zumkeller, Apr 11 2010
a(n) = 8*n + a(n-1) - 4. with a(0)=1. - Vincenzo Librandi, Aug 06 2010
a(n) = ((2*n - 1)^2 + (2*n + 1)^2)/2. - J. M. Bergot, May 31 2012
a(n) = 2*a(n-1) - a(n-2) + 8 with a(0)=1, a(1)=5. - Vincenzo Librandi, Jun 26 2013
a(n+1) = a(n) + A017113(n), a(0) = 1. - Altug Alkan, Sep 26 2015
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/2)*coth(Pi/2))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/2)*csch(Pi/2))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/2)*sinh(Pi/sqrt(2)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/2)*csch(Pi/2). (End)
E.g.f.: exp(x)*(1 + 2*x)^2. - Stefano Spezia, Jun 10 2021
Extensions
Equation corrected, and examples that were based on a different offset removed, by R. J. Mathar, Mar 18 2010
A055998 a(n) = n*(n+5)/2.
0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272
Offset: 0
Comments
If X is an n-set and Y a fixed (n-3)-subset of X then a(n-3) is equal to the number of 2-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Bisection of A165157. - Jaroslav Krizek, Sep 05 2009
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w=x+y-1. - Clark Kimberling, Jun 02 2012
Numbers m >= 0 such that 8m+25 is a square. - Bruce J. Nicholson, Jul 26 2017
a(n-1) = 3*(n-1) + (n-1)*(n-2)/2 is the number of connected, loopless, non-oriented, multi-edge vertex-labeled graphs with n edges and 3 vertices. Labeled multigraph analog of A253186. There are 3*(n-1) graphs with the 3 vertices on a chain (3 ways to label the middle graph, n-1 ways to pack edges on one of connections) and binomial(n-1,2) triangular graphs (one way to label the graphs, pack 1 or 2 or ...n-2 on the 1-2 edge, ...). - R. J. Mathar, Aug 10 2017
a(n) is also the number of vertices of the quiver for PGL_{n+1} (see Shen). - Stefano Spezia, Mar 24 2020
Starting from a(2) = 7, this is the 4th column of the array: natural numbers written by antidiagonals downwards. See the illustration by Kival Ngaokrajang and the cross-references. - Andrey Zabolotskiy, Dec 21 2021
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Karl Dilcher and Larry Ericksen, Polynomials and algebraic curves related to certain binary and b-ary overpartitions, arXiv:2405.12024 [math.CO], 2024. See p. 10.
- Milan Janjic, Two Enumerative Functions.
- Kival Ngaokrajang, Illustration from A000027 (contains errors).
- Linhui Shen, Duals of semisimple Poisson-Lie groups and cluster theory of moduli spaces of G-local systems, arXiv:2003.07901 [math.RT], 2020. See p. 8.
- Leo Tavares, Illustration: Truncated Point Triangles.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
a(n) = A095660(n+1, 2): third column of (1, 3)-Pascal triangle.
Row n=2 of A255961.
Cf. other rows, columns and diagonals of A000027 written as a table: A034856, A046691, A052905, A055999, A155212, A051936, A056000, A183897, A056115, A051938; A000124, A022856, A152950, A145018, A077169, A166136, A167487, A173036; A059993, A090288, A054000, A142463, A056220, A001105, A001844, A058331, A051890, A097080, A093328, A137882.
Programs
-
Magma
[n*(n+5)/2: n in [0..50]]; // G. C. Greubel, Apr 05 2019
-
Mathematica
f[n_]:=n*(n+5)/2; f[Range[0,50]] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2011 *)
-
PARI
a(n)=n*(n+5)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[n*(n+5)/2 for n in (0..50)] # G. C. Greubel, Apr 05 2019
Formula
G.f.: x*(3-2*x)/(1-x)^3.
a(n) = A027379(n), n > 0.
a(n) = A126890(n,2) for n > 1. - Reinhard Zumkeller, Dec 30 2006
If we define f(n,i,m) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-m-j), then a(n) = -f(n,n-1,3), for n >= 1. - Milan Janjic, Dec 20 2008
a(n) = A167544(n+8). - Philippe Deléham, Nov 25 2009
a(n) = a(n-1) + n + 2 with a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(n) = Sum_{k=1..n} (k+2). - Gary Detlefs, Aug 10 2010
Sum_{n>=1} 1/a(n) = 137/150. - R. J. Mathar, Jul 14 2012
a(n) = 3*n + A000217(n-1) = 3*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=3..n+2} i. - Wesley Ivan Hurt, Jun 28 2013
a(n) = A046691(n) + 1. Also, a(n) = A052905(n-1) + 2 = A055999(n-1) + 3 for n>0. - Andrey Zabolotskiy, May 18 2016
E.g.f.: x*(6+x)*exp(x)/2. - G. C. Greubel, Apr 05 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 47/150. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -5*cos(sqrt(33)*Pi/2)/(4*Pi).
Product_{n>=1} (1 + 1/a(n)) = 15*cos(sqrt(17)*Pi/2)/(2*Pi). (End)
A143007 Square array, read by antidiagonals, where row n equals the crystal ball sequence for the 2*n-dimensional lattice A_n x A_n.
1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 25, 73, 25, 1, 1, 41, 253, 253, 41, 1, 1, 61, 661, 1445, 661, 61, 1, 1, 85, 1441, 5741, 5741, 1441, 85, 1, 1, 113, 2773, 17861, 33001, 17861, 2773, 113, 1, 1, 145, 4873, 46705, 142001, 142001, 46705, 4873, 145, 1
Offset: 0
Comments
The A_n lattice consists of all vectors v = (x_1,...,x_(n+1)) in Z^(n+1) such that x_1 + ... + x_(n+1) = 0. The lattice is equipped with the norm ||v|| = 1/2*(|x_1| + ... + |x_(n+1)|). Pairs of lattice points (v,w) in the product lattice A_n x A_n have norm ||(v,w)|| = ||v|| + ||w||. Then the k-th term in the crystal ball sequence for the A_n x A_n lattice gives the number of such pairs (v,w) for which ||(v,w)|| is less than or equal to k.
This array has a remarkable relationship with Apery's constant zeta(3). The row (or column) and main diagonal entries of the array occur in series acceleration formulas for zeta(3). For row n entries there holds zeta(3) = (1+1/2^3+...+1/n^3) + Sum_{k >= 1} 1/(k^3*T(n,k-1)*T(n,k)). Also, as consequence of Apery's proof of the irrationality of zeta(3), we have a series acceleration formula along the main diagonal of the table: zeta(3) = 6 * sum {n >= 1} 1/(n^3*T(n-1,n-1)*T(n,n)). Apery's result appears to generalize to the other diagonals of the table. Calculation suggests the following result may hold: zeta(3) = 1 + 1/2^3 + ... + 1/k^3 + Sum_{n >= 1} (2*n+k)*(3*n^2 +3*n*k +k^2)/(n^3*(n+k)^3*T(n-1,n+k-1)*T(n,n+k)).
For the corresponding results for the constant zeta(2), related to the crystal ball sequences of the lattices A_n, see A108625. For corresponding results for log(2), coming from either the crystal ball sequences of the hypercubic lattices A_1 x ... x A_1 or the lattices of type C_n, see A008288 and A142992 respectively.
Examples
The table begins n\k|0...1.....2......3.......4.......5 ====================================== 0..|1...1.....1......1.......1.......1 1..|1...5....13.....25......41......61 A001844 2..|1..13....73....253.....661....1441 A143008 3..|1..25...253...1445....5741...17861 A143009 4..|1..41...661...5741...33001..142001 A143010 5..|1..61..1441..17861..142001..819005 A143011 ........ Example row 1 [1,5,13,...]: The lattice A_1 x A_1 is equivalent to the square lattice of all integer lattice points v = (x,y) in Z x Z equipped with the taxicab norm ||v|| = (|x| + |y|). There are 4 lattice points (marked with a 1 on the figure below) satisfying ||v|| = 1 and 8 lattice points (marked with a 2 on the figure) satisfying ||v|| = 2. Hence the crystal ball sequence for the A_1 x A_1 lattice begins 1, 1+4 = 5, 1+4+8 = 13, ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . 2 1 2 . . . . . . . 2 1 0 1 2 . . . . . . . 2 1 2 . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . Row 1 = [1,5,13,...] is the sequence of partial sums of A008574; row 2 = [1,13,73,...] is the sequence of partial sums of A008530, so row 2 is the crystal ball sequence for the lattice A_2 x A_2 (the 4-dimensional di-isohexagonal orthogonal lattice). Read as a triangle the array begins n\k|0...1....2....3...4...5 =========================== 0..|1 1..|1...1 2..|1...5....1 3..|1..13...13....1 4..|1..25...73...25...1 5..|1..41..253..253..41...1
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
- J. H. Conway and N. J. A. Sloane, Low dimensional lattices VII Coordination sequences, Proc. R. Soc. Lond., Ser. A, 453 (1997), 2369-2389.
- Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
Crossrefs
Cf. A001844 (row 1), A005259 (main diagonal), A008288, A008530 (first differences of row 2), A008574 (first differences of row 1), A085478, A108625, A142992, A143003, A143004, A143005, A143006, A143008 (row 2), A143009 (row 3), A142010 (row 4), A143011 (row 5).
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Programs
-
Magma
A:= func< n,k | (&+[(Binomial(n,j)*Binomial(n+k-j,k-j))^2: j in [0..n]]) >; // Array A143007:= func< n,k | A(n-k,k) >; // Antidiagonal triangle [A143007(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
-
Maple
with(combinat): T:= (n,k) -> add(binomial(n+j,2*j)*binomial(2*j,j)^2*binomial(k+j,2*j), j = 0..n): for n from 0 to 9 do seq(T(n,k),k = 0..9) end do;
-
Mathematica
T[n_, k_]:= HypergeometricPFQ[{-k, k+1, -n, n+1}, {1, 1, 1}, 1]; Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Mar 06 2013 *)
-
PARI
/* Print as a square array: */ {T(n, k)=sum(j=0, n, binomial(n+j, 2*j)*binomial(2*j, j)^2*binomial(k+j, 2*j))} for(n=0, 10, for(k=0,10, print1(T(n,k), ", "));print(""))
-
PARI
/* (1) G.f. A(x,y) when read as a triangle: */ {T(n,k)=local(A=1+x); A=sum(m=0, n, x^m * y^m / (1-x +x*O(x^n))^(2*m+1) * sum(k=0, m, binomial(m, k)^2*x^k)^2 ); polcoeff(polcoeff(A, n,x), k,y)} for(n=0, 10, for(k=0,n, print1(T(n,k), ", "));print(""))
-
PARI
/* (2) G.f. A(x,y) when read as a triangle: */ {T(n,k)=local(A=1+x); A=sum(m=0, n, x^m/(1-x*y +x*O(x^n))^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * x^k * y^k)^2 ); polcoeff(polcoeff(A, n,x), k,y)} for(n=0, 10, for(k=0,n, print1(T(n,k), ", "));print(""))
-
PARI
/* (3) G.f. A(x,y) when read as a triangle: */ {T(n,k)=local(A=1+x); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m , k)^2 * y^k * sum(j=0, k, binomial(k, j)^2 * x^j)+x*O(x^n))); polcoeff(polcoeff(A, n,x), k,y)} for(n=0, 10, for(k=0,n, print1(T(n,k), ", "));print(""))
-
PARI
/* (4) G.f. A(x,y) when read as a triangle: */ {T(n,k)=local(A=1+x); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * y^(m-k) * sum(j=0, k, binomial(k, j)^2 * x^j * y^j)+x*O(x^n))); polcoeff(polcoeff(A, n,x), k,y)} for(n=0, 10, for(k=0,n, print1(T(n,k), ", "));print("")) /* End */
-
SageMath
def A(n,k): return sum((binomial(n,j)*binomial(n+k-j,k-j))^2 for j in range(n+1)) # array def A143007(n,k): return A(n-k,k) # antidiagonal triangle flatten([[A143007(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023
Formula
T(n,k) = Sum_{j = 0..n} C(n+j,2*j)*C(2*j,j)^2*C(k+j,2*j).
The array is symmetric T(n,k) = T(k,n).
The main diagonal [1,5,73,1445,...] is the sequence of Apery numbers A005259.
The entries in the k-th column satisfy the Apery-like recursion n^3*T(n,k) + (n-1)^3*T(n-2,k) = (2*n-1)*(n^2-n+1+2*k^2+2*k)*T(n-1,k).
The LDU factorization of the square array is L * D * transpose(L), where L is the lower triangular array A085478 and D is the diagonal matrix diag(C(2n,n)^2). O.g.f. for row n: The generating function for the coordination sequence of the lattice A_n is [Sum_{k = 0..n} C(n,k)^2*x^k ]/(1-x)^n. Thus the generating function for the coordination sequence of the product lattice A_n x A_n is {[Sum_{k = 0..n} C(n,k)^2*x^k]/(1-x)^n}^2 and hence the generating function for row n of this array, the crystal ball sequence of the lattice A_n x A_n, equals [Sum_{k = 0..n} C(n,k)^2*x^k]^2/(1-x)^(2n+1) = 1/(1-x)*[Legendre_P(n,(1+x)/(1-x))]^2. See [Conway & Sloane].
Series acceleration formulas for zeta(3): Row n: zeta(3) = (1 + 1/2^3 + ... + 1/n^3) + Sum_{k >= 1} 1/(k^3*T(n,k-1)*T(n,k)), n = 0,1,2,... . For example, the fourth row of the table (n = 3) gives zeta(3) = (1 + 1/2^3 + 1/3^3) + 1/(1^3*1*25) + 1/(2^3*25*253) + 1/(3^3*253*1445) + ... . See A143003 for further details.
Main diagonal: zeta(3) = 6 * Sum_{n >= 1} 1/(n^3*T(n-1,n-1)*T(n,n)). Conjectural result for other diagonals: zeta(3) = 1 + 1/2^3 + ... + 1/k^3 + Sum_{n >= 1} (2*n+k)*(3*n^2+3*n*k+k^2)/(n^3*(n+k)^3*T(n-1,n+k-1)*T(n,n+k)).
Sum_{k=0..n} T(n-k,k) = A227845(n) (antidiagonal sums). - Paul D. Hanna, Aug 27 2014
The main superdiagonal numbers S(n) := T(n,n+1) appear to satisfy the supercongruences S(m*p^r - 1) == S(m*p^(r-1) - 1) (mod p^(3*r)) for prime p >= 5 and m, r in N (this is true: see A352653. - Peter Bala, Apr 16 2022).
From Paul D. Hanna, Aug 27 2014: (Start)
G.f. A(x,y) = Sum_{n>=0, k=0..n} T(n,k)*x^n*y^k can be expressed by:
(1) Sum_{n>=0} x^n * y^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k]^2,
(2) Sum_{n>=0} x^n / (1 - x*y)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k * y^k]^2,
(3) Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * y^k * Sum_{j=0..k} C(k,j)^2 * x^j,
(4) Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * y^(n-k) * Sum_{j=0..k} C(k,j)^2 * x^j * y^j. (End)
From Peter Bala, Jun 23 2023: (Start)
T(n,k) = Sum_{j = 0..n} C(n,j)^2 * C(n+k-j,k-j)^2.
T(n,k) = binomial(n+k,k)^2 * hypergeom([-n, -n, -k, -k],[-n - k, -n - k, 1], 1).
T(n,k) = hypergeom([n+1, -n, k+1, -k], [1, 1, 1], 1). (End)
From Peter Bala, Jun 28 2023: (Start)
T(n,k) = the coefficient of (x*z)^n*(y*t)^k in the expansion of 1/( (1 - x - y)*(1 - z - t) - x*y*z*t ).
T(n,k) = A(n, k, n, k) in the notation of Straub, equation 7.
The supercongruences T(n*p^r, k*p^r) == T(n*p^(r-1), k*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and positive integers n and k.
The formula T(n,k) = hypergeom([n+1, -n, k+1, -k], [1, 1, 1], 1) allows the table indexing to be extended to negative values of n and k; we have T(-n,k) = T(n-1,k) and T(n,-k) = T(n,k-1) leading to T(-n,-k) = T(n-1, k-1). (End)
From G. C. Greubel, Oct 05 2023: (Start)
Let t(n, k) = T(n-k, k) be the antidiagonal triangle, then:
t(n, k) = t(n, n-k).
Sum_{k=0..floor(n/2)} t(n-k,k) = A246563(n).
t(2*n+1, n+1) = A352653(n+1). (End)
From Peter Bala, Sep 27 2024: (Start)
Let L denote the lower triangular array (l(n,k))n,k >= 0, where l(n, k) = (-1)^(n+k) * binomial(n, k)*binomial(n+k, k). (L is a signed version of A063007 and L = A063007 * A007318 ^(-1).)
Then the square array = L * transpose(A108625).
Extensions
Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010
A005917 Rhombic dodecahedral numbers: a(n) = n^4 - (n - 1)^4.
1, 15, 65, 175, 369, 671, 1105, 1695, 2465, 3439, 4641, 6095, 7825, 9855, 12209, 14911, 17985, 21455, 25345, 29679, 34481, 39775, 45585, 51935, 58849, 66351, 74465, 83215, 92625, 102719, 113521, 125055, 137345, 150415, 164289, 178991
Offset: 1
Comments
Final digits of a(n), i.e., a(n) mod 10, are repeated periodically with period of length 5 {1,5,5,5,9}. There is a symmetry in this list since the sum of two numbers equally distant from the ends is equal to 10 = 1 + 9 = 5 + 5 = 2*5. Last two digits of a(n), i.e., a(n) mod 100, are repeated periodically with period of length 50. - Alexander Adamchuk, Aug 11 2006
a(n) = VarScheme(n,2) in the scheme displayed in A128195. - Peter Luschny, Feb 26 2007
If Y is a 3-subset of a 2n-set X then, for n >= 2, a(n-2) is the number of 4-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
The numbers are the constant number found in magic squares of order n, where n is an odd number, see the comment in A006003. A Magic Square of side 1 is 1; 3 is 15; 5 is 65 and so on. - David Quentin Dauthier, Nov 07 2008
Two times the area of the triangle with vertices at (0,0), ((n - 1)^2, n^2), and (n^2, (n - 1)^2). - J. M. Bergot, Jun 25 2013
Bisection of A006003. - Omar E. Pol, Sep 01 2018
Construct an array M with M(0,n) = 2*n^2 + 4*n + 1 = A056220(n+1), M(n,0) = 2*n^2 + 1 = A058331(n) and M(n,n) = 2*n*(n+1) + 1 = A001844(n). Row(n) begins with all the increasing odd numbers from A058331(n) to A001844(n) and column(n) begins with all the decreasing odd numbers from A056220(n+1) to A001844(n). The sum of the terms in row(n) plus those in column(n) minus M(n,n) equals a(n+1). The first five rows of array M are [1, 7, 17, 31, 49, ...]; [3, 5, 15, 29, 47, ...]; [9, 11, 13, 27, 45, ...]; [19, 21, 23, 25, 43, ...]; [33, 35, 37, 39, 41, ...]. - J. M. Bergot, Jul 16 2013 [This contribution was moved here from A047926 by Petros Hadjicostas, Mar 08 2021.]
For n>=2, these are the primitive sides s of squares of type 2 described in A344332. - Bernard Schott, Jun 04 2021
(a(n) + 1) / 2 = A212133(n) is the number of cells in the n-th rhombic-dodecahedral polycube. - George Sicherman, Jan 21 2024
References
- J. H. Conway and R. K. Guy, The Book of Numbers, p. 53.
- E. Deza and M. M. Deza, Figurate Numbers, World Scientific Publishing, 2012, pp. 123-124.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Mario Defranco and Paul E. Gunnells, Hypergraph matrix models and generating functions, arXiv:2204.11361 [math.CO], 2022.
- Milan Janjic, Two Enumerative Functions
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (9).
- Andy Nicol, Illustration of Rhombic Dodecahedral Numbers
- C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
- Eric Weisstein's World of Mathematics, Rhombic Dodecahedral Number.
- Eric Weisstein's World of Mathematics, Nexus Number.
- D. Zeitlin, A family of Galileo sequences, Amer. Math. Monthly 82 (1975), 819-822.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Haskell
a005917 n = a005917_list !! (n-1) a005917_list = map sum $ f 1 [1, 3 ..] where f x ws = us : f (x + 2) vs where (us, vs) = splitAt x ws -- Reinhard Zumkeller, Nov 13 2014
-
Magma
[n^4 - (n-1)^4: n in [1..50]]; // Vincenzo Librandi, Aug 01 2011
-
Mathematica
Table[n^4-(n-1)^4,{n,40}] (* Harvey P. Dale, Apr 01 2011 *) #[[2]]-#[[1]]&/@Partition[Range[0,40]^4,2,1] (* More efficient than the above Mathematica program because it only has to calculate each 4th power once *) (* Harvey P. Dale, Feb 07 2015 *) Differences[Range[0,40]^4] (* Harvey P. Dale, Aug 11 2023 *)
-
PARI
a(n)=n^4-(n-1)^4 \\ Charles R Greathouse IV, Jul 31 2011
-
Python
A005917_list, m = [], [24, -12, 2, 1] for _ in range(10**2): A005917_list.append(m[-1]) for i in range(3): m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
Formula
a(n) = (2*n - 1)*(2*n^2 - 2*n + 1).
G.f.: x*(1+x)*(1+10*x+x^2)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
More generally, g.f. for n^m - (n - 1)^m is Euler(m, x)/(1 - x)^m, where Euler(m, x) is Eulerian polynomial of degree m (cf. A008292). E.g.f.: x*(exp(y/(1 - x)) - exp(x*y/(1 - x)))/(exp(x*y/(1 - x))-x*exp(y/(1 - x))). - Vladeta Jovovic, May 08 2002
a(n) = sum of the next (2*n - 1) odd numbers; i.e., group the odd numbers so that the n-th group contains (2*n - 1) elements like this: (1), (3, 5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27, 29, 31), ... E.g., a(3) = 65 because 9 + 11 + 13 + 15 + 17 = 65. - Xavier Acloque, Oct 11 2003
a(n) = 2*n - 1 + 12*Sum_{i = 1..n} (i - 1)^2. - Xavier Acloque, Oct 16 2003
a(n) = (4*binomial(n,2) + 1)*sqrt(8*binomial(n,2) + 1). - Paul Barry, Mar 14 2004
Binomial transform of [1, 14, 36, 24, 0, 0, 0, ...], if the offset is 0. - Gary W. Adamson, Dec 20 2007
Sum_{i=1..n-1}(a(i) + a(i+1)) = 8*Sum_{i=1..n}(i^3 + i) = 16*A002817(n-1) for n > 1. - Bruno Berselli, Mar 04 2011
a(n+1) = a(n) + 2*(6*n^2 + 1) = a(n) + A005914(n). - Vincenzo Librandi, Mar 16 2011
a(n+1) = Sum_{k=0..2*n+1} (A176850(n,k) - A176850(n-1,k))*(2*k + 1), n >= 1. - L. Edson Jeffery, Nov 02 2012
a(n) = A005408(n-1) * A001844(n-1) = (2*(n - 1) + 1) * (2*(n - 1)*n + 1) = A000290(n-1)*12 + 2 + a(n-1). - Bruce J. Nicholson, May 17 2017
a(n) = A007588(n) + A007588(n-1) = A000292(2n-1) + A000292(2n-2) + A000292(2n-3) = A002817(2n-1) - A002817(2n-2). - Bruce J. Nicholson, Oct 22 2017
a(n) = A005898(n-1) + 6*A000330(n-1) (cf. Deza, Deza, 2012, p. 123, Section 2.6.2). - Felix Fröhlich, Oct 01 2018
G.f.: polylog(-4, x)*(1-x)/x. See the Simon Plouffe formula above (with expanded numerator), and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021
A027862 Primes of the form j^2 + (j+1)^2.
5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, 4513, 5101, 7321, 8581, 9661, 9941, 10513, 12641, 13613, 14281, 14621, 15313, 16381, 19013, 19801, 20201, 21013, 21841, 23981, 24421, 26681
Offset: 1
Comments
Also, primes of the form 4*k+1 which are the hypotenuse of one and only one right triangle with integral legs. - Cino Hilliard, Mar 16 2003
Centered square primes (i.e., prime terms of centered squares A001844). - Lekraj Beedassy, Jan 21 2005
Primes of the form 2*k*(k-1)+1. - Juri-Stepan Gerasimov, Apr 27 2010
Equivalently, primes of the form (m^2+1)/2 (take m=2*j+1). These primes a(n) have nontrivial solutions of x^2 == 1 (Modd a(n)) given by x=x(n)=A002731(n). For Modd n see a comment on A203571. See also A206549 for such solutions for primes of the form 4*k+1, given in A002144.
E.g., a(3)=41, A002731(3)=9, 9^2=81, floor(81/41)=1 (odd),
-81 = -2*41 + 1 == 1 (mod 2*41), hence 9^2 == 1 (Modd 41). - Wolfdieter Lang, Feb 24 2012
Also primes of the form 4*k+1 that are the smallest side length of one and only one integer Soddyian triangle (see A230812). - Frank M Jackson, Mar 13 2014
Also, primes of the form (m^2+1)/2. - Zak Seidov, May 01 2014
Note that ((2n+1)^2 + 1)/2 = n^2 + (n+1)^2. - Thomas Ordowski, May 25 2015
Primes p such that 2p-1 is a square. - Thomas Ordowski, Aug 27 2016
Primes in the main diagonal of A000027 when represented as an array read by antidiagonals. - Clark Kimberling, Mar 12 2023
The diophantine equation x^2 + ... + (x + r)^2 = p may be rewritten to A*x^2 + B*x + C = p, where A = (r + 1), B = r*(r + 1), C = r*(r + 1)*(2*r + 1)/6. If gcd(A, B, C) > 1 no solution for a prime p exists. The gcd(A, B, C) = 1 holds only for r = 1, 2, 5 (gcd is the greatest common divisor). For r = 1 we have x^2 + (x + 1)^2 = p, thus for x from A027861 we calculate primes p from A027862. For r = 2 we have x^2 + (x + 1)^2 + (x + 2)^2 = p, thus for x from A027863 we calculate primes p from A027864. For r = 5 we have x^2 + ... + (x + 5)^2 = p, thus for x from A027866 we calculate primes p from A027867. - Ctibor O. Zizka, Oct 04 2023
Examples
13 is in the sequence because it is prime and 13 = 2^2 + 3^2. - _Michael B. Porter_, Aug 27 2016
References
- D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc. Boston, MA, 1976, p. 271.
- Morris Kline, Mathematical Thought from Ancient to Modern Times, 1972. pp. 275.
Links
- T. D. Noe and Zak Seidov, Table of n, a(n) for n = 1..10000
- Patrick De Geest, World!Of Numbers
- Daniel Shanks, An analytic criterion for the existence of infinitely many primes of the form 1/2 * (n^2 + 1), Illinois Journal of Mathematics 8:3 (1964), p. 377-379.
- Wacław Sierpiński, Sur les nombres triangulaires qui sont sommes de deux nombres triangulaires, Elem. Math., 17 (1962), pp. 63-65.
- Panayiotis G. Tsangaris, A sieve for all primes of the form x^2 + (x+1)^2, Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae, 25 (1998), pp. 39-53.
Crossrefs
Programs
-
Magma
[ a: n in [0..150] | IsPrime(a) where a is n^2+(n+1)^2 ]; // Vincenzo Librandi, Dec 18 2010
-
Mathematica
Select[Table[n^2+(n+1)^2,{n,200}],PrimeQ] (* Harvey P. Dale, Aug 22 2012 *) Select[Total/@Partition[Range[200]^2,2,1],PrimeQ] (* Harvey P. Dale, Apr 20 2016 *)
-
PARI
je=[]; for(n=1,500, if(isprime(n^2+(n+1)^2),je=concat(je,n^2+(n+1)^2))); je
-
PARI
fermat(n) = { for(x=1,n, y=2*x*(x+1)+1; if(isprime(y),print1(y" ")) ) }
Formula
a(n) = ((A002731(n)^2 - 1)/2) + 1. - Torlach Rush, Mar 14 2014
a(n) = (A002731(n)^2 + 1)/2. - Zak Seidov, May 01 2014
Extensions
More terms from Cino Hilliard, Mar 16 2003
Comments
Examples
Links
Crossrefs
Programs
Mathematica