cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 233 results. Next

A355716 a(n) is the smallest number that has exactly n binary palindrome divisors (A006995).

Original entry on oeis.org

1, 3, 9, 15, 99, 45, 135, 189, 315, 495, 945, 765, 2079, 6237, 3465, 5355, 4095, 8415, 31185, 20475, 25245, 12285, 85995, 58905, 61425, 45045, 69615, 176715, 446985, 225225, 328185, 208845, 135135, 405405, 528255, 1396395, 675675, 2027025, 765765, 5360355, 2993445, 3968055, 3828825
Offset: 1

Views

Author

Bernard Schott, Jul 15 2022

Keywords

Examples

			a(4) = 15 since 15 has 4 divisors {1, 3, 5, 15} that are all palindromes when written in binary: 1, 11, 101 and 1111; no positive integer smaller than 15 has four divisors that are binary palindromes, hence a(4) = 15.
a(5) = 99 since 99 has 6 divisors {1, 3, 9, 11, 33, 99} of which only 11 is not a palindrome when written in binary: 11_10 = 1011_2; no positive integer smaller than 99 has five divisors that are binary palindromes, hence a(5) = 99.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, PalindromeQ[IntegerDigits[#, 2]] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n]; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[25, 10^5] (* Amiram Eldar, Jul 15 2022 *)
  • PARI
    is(n) = my(d=binary(n)); d==Vecrev(d); \\ A006995
    a(n) = my(k=1); while (sumdiv(k, d, is(d)) != n, k++); k; \\ Michel Marcus, Jul 15 2022
    
  • Python
    from sympy import divisors
    from itertools import count, islice
    def c(n): b = bin(n)[2:]; return b == b[::-1]
    def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    def agen():
        n, adict = 1, dict()
        for k in count(1):
            fk = f(k)
            if fk not in adict: adict[fk] = k
            while n in adict: yield adict[n]; n += 1
    print(list(islice(agen(), 20))) # Michael S. Branicky, Jul 23 2022

Extensions

More terms from Michael S. Branicky, Jul 15 2022

A226643 Numbers n such that the binary XOR of the divisors of n (A178910) is a binary palindrome (A006995) and not a power of 2 (A000079).

Original entry on oeis.org

81, 162, 169, 324, 338, 648, 676, 1296, 1352, 2401, 2592, 2704, 3249, 4802, 5184, 5408, 6498, 9604, 10368, 10816, 12996, 19208, 20736, 21632, 25992, 38416, 41472, 43264, 51984, 76832, 82944, 86528, 103968, 112225, 153664, 165888, 173056, 194481
Offset: 1

Views

Author

Robert G. Wilson v, Aug 18 2013

Keywords

Comments

A takeoff of A227843.

Crossrefs

Programs

  • Mathematica
    f[n_] := Fold[ BitXor[#1, #2] &, 0, Divisors@ n]; palQ[n_Integer, base_Integer] := Module[{idn = IntegerDigits[n, base]}, idn == Reverse@ idn]; fQ[n_] := palQ[ f@ n, 2] && ! IntegerQ@ Log2@ n; Select[ Range@ 200000, fQ]

A290424 Even numbers that are not the sum or difference of two binary palindromes (A006995).

Original entry on oeis.org

9404, 10120, 13714, 14576, 15812, 18622, 35102, 35438, 38696, 39164, 39656, 40072, 40712, 42776, 43096, 43256, 43780, 44560, 45284, 45796, 46346, 46532, 46624, 46858, 46880, 46984, 47936, 49622, 50810, 55048, 56600, 58564, 60932, 61190, 62792, 62986, 67816, 69244
Offset: 1

Views

Author

Altug Alkan, Jul 31 2017

Keywords

Comments

Intersection of A261678 and A290393.

Crossrefs

Programs

  • Mathematica
    g[w_] := FromDigits[Join @@ w, 2]; bp[1]={1}; bp[n_] := Block[{b,r, h = Floor[n/2]}, Sort@ Flatten@ Table[b = IntegerDigits[k, 2, h]; r = Reverse@ b; If[OddQ@n, g /@ {{b, {0}, r}, {b, {1}, r}}, g@{b, r}], {k, 2^h/2, 2^h - 1}]]; pp = Sort@ Flatten[Table[bp[h], {h, 32}]]; T = Range[35000]*0; i = 0; While[i < Length[pp] - 1, i++; j = i + 1; While[j <= Length[pp] && (d = pp[[j]] - pp[[i]]) <= 70000, T[[d/2]] = 1; j++]]; pp = Select[pp, # <= 70000 &]; Select[2 Flatten[ Position[T, 0]], {} == Quiet@ IntegerPartitions[#, {2}, pp, 1] &] (* Giovanni Resta, Aug 08 2017 *)

Extensions

a(7)-a(38) from Giovanni Resta, Aug 08 2017

A318206 Numbers having no divisor d > 1 that is a binary palindrome (i.e., an element of A006995).

Original entry on oeis.org

1, 2, 4, 8, 11, 13, 16, 19, 22, 23, 26, 29, 32, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 64, 67, 71, 74, 76, 79, 82, 83, 86, 88, 89, 92, 94, 97, 101, 103, 104, 106, 109, 113, 116, 118, 121, 122, 128, 131, 134, 137, 139, 142, 143, 148, 149, 151, 152, 157
Offset: 1

Views

Author

Jeffrey Shallit, Aug 21 2018

Keywords

Examples

			The nonunit divisors of 22 are 2,11,22 and none of these are binary palindromes.
		

Crossrefs

Cf. A006995.

Programs

  • Maple
    dmax:= 10: # to get all terms with at most dmax binary digits
    N:= 2^dmax-1:
    revdigs:= proc(n)
      local L, Ln, i;
      L:= convert(n, base, 2);
      Ln:= nops(L);
      add(L[i]*2^(Ln-i), i=1..Ln);
    end proc:
    P:= {}:
    for d from 2 to dmax do
      if d::even then
        P:= P union {seq(2^(d/2)*x + revdigs(x), x=2^(d/2-1)..2^(d/2)-1)}
      else
        m:= (d-1)/2;
        B:={seq(2^(m+1)*x + revdigs(x), x=2^(m-1)..2^m-1)};
        P:= P union B union map(`+`, B, 2^m)
      fi
    od:
    L:= Vector(N,1):
    for t in P  do
      L[[seq(k,k=t..N,t)]]:= 0
    od:
    select(t -> L[t]=1, [$1..N]); # Robert Israel, Aug 21 2018
  • PARI
    isok(n) = #select(x->((binary(x) == Vecrev(binary(x))) && (x>1)), divisors(n)) == 0; \\ Michel Marcus, Aug 21 2018

A002113 Palindromes in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 505, 515
Offset: 1

Views

Author

Keywords

Comments

n is a palindrome (i.e., a(k) = n for some k) if and only if n = A004086(n). - Reinhard Zumkeller, Mar 10 2002
It seems that if n*reversal(n) is in the sequence then n = 3 or all digits of n are less than 3. - Farideh Firoozbakht, Nov 02 2014
The position of a palindrome within the sequence can be determined almost without calculation: If the palindrome has an even number of digits, prepend a 1 to the front half of the palindrome's digits. If the number of digits is odd, prepend the value of front digit + 1 to the digits from position 2 ... central digit. Examples: 98766789 = a(19876), 515 = a(61), 8206028 = a(9206), 9230329 = a(10230). - Hugo Pfoertner, Aug 14 2015
This sequence is an additive basis of order at most 49, see Banks link. - Charles R Greathouse IV, Aug 23 2015
The order has been reduced from 49 to 3; see the Cilleruelo-Luca and Cilleruelo-Luca-Baxter links. - Jonathan Sondow, Nov 27 2017
See A262038 for the "next palindrome" and A261423 for the "preceding palindrome" functions. - M. F. Hasler, Sep 09 2015
The number of palindromes with d digits is 10 if d = 1, and otherwise it is 9 * 10^(floor((d - 1)/2)). - N. J. A. Sloane, Dec 06 2015
Sequence A033665 tells how many iterations of the Reverse-then-add function A056964 are needed to reach a palindrome; numbers for which this will never happen are Lychrel numbers (A088753) or rather Kin numbers (A023108). - M. F. Hasler, Apr 13 2019
This sequence is an additive basis of order 3, see Cilleruelo, Luca, & Baxter and Sigg. - Charles R Greathouse IV, Apr 08 2025

References

  • Karl G. Kröber, "Palindrome, Perioden und Chaoten: 66 Streifzüge durch die palindromischen Gefilde" (1997, Deutsch-Taschenbücher; Bd. 99) ISBN 3-8171-1522-9.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 50-52.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 120.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A061917 and A221221.
A110745 is a subsequence.
Union of A056524 and A056525.
Palindromes in bases 2 through 11: A006995 and A057148, A014190 and A118594, A014192 and A118595, A029952 and A118596, A029953 and A118597, A029954 and A118598, A029803 and A118599, A029955 and A118600, this sequence, A029956. Also A262065 (base 60), A262069 (subsequence).
Palindromic primes: A002385. Palindromic nonprimes: A032350.
Palindromic-pi: A136687.
Cf. A029742 (complement), A086862 (first differences).
Palindromic floor function: A261423, also A261424. Palindromic ceiling: A262038.
Cf. A004086 (read n backwards), A064834, A118031, A136522 (characteristic function), A178788.
Ways to write n as a sum of three palindromes: A261132, A261422.
Minimal number of palindromes that add to n using greedy algorithm: A088601.
Minimal number of palindromes that add to n: A261675.

Programs

  • GAP
    Filtered([0..550],n->ListOfDigits(n)=Reversed(ListOfDigits(n))); # Muniru A Asiru, Mar 08 2019
    
  • Haskell
    a002113 n = a002113_list !! (n-1)
      a002113_list = filter ((== 1) . a136522) [1..] -- Reinhard Zumkeller, Oct 09 2011
    
  • Haskell
    import Data.List.Ordered (union)
      a002113_list = union a056524_list a056525_list -- Reinhard Zumkeller, Jul 29 2015, Dec 28 2011
    
  • Magma
    [n: n in [0..600] | Intseq(n, 10) eq Reverse(Intseq(n, 10))]; // Vincenzo Librandi, Nov 03 2014
    
  • Maple
    read transforms; t0:=[]; for n from 0 to 2000 do if digrev(n) = n then t0:=[op(t0),n]; fi; od: t0;
    # Alternatively, to get all palindromes with <= N digits in the list "Res":
    N:=5;
    Res:= $0..9:
    for d from 2 to N do
      if d::even then
        m:= d/2;
        Res:= Res, seq(n*10^m + digrev(n),n=10^(m-1)..10^m-1);
      else
        m:= (d-1)/2;
        Res:= Res, seq(seq(n*10^(m+1)+y*10^m+digrev(n),y=0..9),n=10^(m-1)..10^m-1);
      fi
    od: Res:=[Res]: # Robert Israel, Aug 10 2014
    # A variant: Gets all base-10 palindromes with exactly d digits, in the list "Res"
    d:=4:
    if d=1 then Res:= [$0..9]:
    elif d::even then
        m:= d/2:
        Res:= [seq(n*10^m + digrev(n), n=10^(m-1)..10^m-1)]:
    else
        m:= (d-1)/2:
        Res:= [seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1)]:
    fi:
    Res; # N. J. A. Sloane, Oct 18 2015
    isA002113 := proc(n)
        simplify(digrev(n) = n) ;
    end proc: # R. J. Mathar, Sep 09 2015
  • Mathematica
    palQ[n_Integer, base_Integer] := Module[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; (* then to generate any base-b sequence for 1 < b < 37, replace the 10 in the following instruction with b: *) Select[Range[0, 1000], palQ[#, 10] &]
    base10Pals = {0}; r = 2; Do[Do[AppendTo[base10Pals, n * 10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]], {n, 10^(e - 1), 10^e - 1}]; Do[AppendTo[base10Pals, n * 10^IntegerLength[n] + FromDigits@Reverse@IntegerDigits[n]], {n, 10^(e - 1), 10^e - 1}], {e, r}]; base10Pals (* Arkadiusz Wesolowski, May 04 2012 *)
    nthPalindromeBase[n_, b_] := Block[{q = n + 1 - b^Floor[Log[b, n + 1 - b^Floor[Log[b, n/b]]]], c = Sum[Floor[Floor[n/((b + 1) b^(k - 1) - 1)]/(Floor[n/((b + 1) b^(k - 1) - 1)] - 1/b)] - Floor[Floor[n/(2 b^k - 1)]/(Floor[n/(2 b^k - 1)] - 1/ b)], {k, Floor[Log[b, n]]}]}, Mod[q, b] (b + 1)^c * b^Floor[Log[b, q]] + Sum[Floor[Mod[q, b^(k + 1)]/b^k] b^(Floor[Log[b, q]] - k) (b^(2 k + c) + 1), {k, Floor[Log[b, q]]}]] (* after the work of Eric A. Schmidt, works for all integer bases b > 2 *)
    Array[nthPalindromeBase[#, 10] &, 61, 0] (* please note that Schmidt uses a different, a more natural and intuitive offset, that of a(1) = 1. - Robert G. Wilson v, Sep 22 2014 and modified Nov 28 2014 *)
    Select[Range[10^3], PalindromeQ] (* Michael De Vlieger, Nov 27 2017 *)
    nLP[cn_Integer]:=Module[{s,len,half,left,pal,fdpal},s=IntegerDigits[cn]; len=Length[s]; half=Ceiling[len/2]; left=Take[s,half]; pal=Join[left,Reverse[ Take[left,Floor[len/2]]]]; fdpal=FromDigits[pal]; Which[cn==9,11,fdpal>cn,fdpal,True,left=IntegerDigits[ FromDigits[left]+1]; pal=Join[left,Reverse[Take[left,Floor[len/2]]]]; FromDigits[pal]]]; NestList[nLP,0,100] (* Harvey P. Dale, Dec 10 2024 *)
  • PARI
    is_A002113(n)=Vecrev(n=digits(n))==n \\ M. F. Hasler, Nov 17 2008, updated Apr 26 2014, Jun 19 2018
    
  • PARI
    is(n)=n=digits(n);for(i=1,#n\2,if(n[i]!=n[#n+1-i],return(0))); 1 \\ Charles R Greathouse IV, Jan 04 2013
    
  • PARI
    a(n)={my(d,i,r);r=vector(#digits(n-10^(#digits(n\11)))+#digits(n\11));n=n-10^(#digits(n\11));d=digits(n);for(i=1,#d,r[i]=d[i];r[#r+1-i]=d[i]);sum(i=1,#r,10^(#r-i)*r[i])} \\ David A. Corneth, Jun 06 2014
    
  • PARI
    \\ recursive--feed an element a(n) and it gives a(n+1)
    nxt(n)=my(d=digits(n));i=(#d+1)\2;while(i&&d[i]==9,d[i]=0;d[#d+1-i]=0;i--);if(i,d[i]++;d[#d+1-i]=d[i],d=vector(#d+1);d[1]=d[#d]=1);sum(i=1,#d,10^(#d-i)*d[i]) \\ David A. Corneth, Jun 06 2014
    
  • PARI
    \\ feed a(n), returns n.
    inv(n)={my(d=digits(n));q=ceil(#d/2);sum(i=1,q,10^(q-i)*d[i])+10^floor(#d/2)} \\ David A. Corneth, Jun 18 2014
    
  • PARI
    inv_A002113(P)={P\(P=10^(logint(P+!P,10)\/2))+P} \\ index n of palindrome P = a(n), much faster than above: no sum is needed. - M. F. Hasler, Sep 09 2018
    
  • PARI
    A002113(n,L=logint(n,10))=(n-=L=10^max(L-(n<11*10^(L-1)),0))*L+fromdigits(Vecrev(digits(if(nM. F. Hasler, Sep 11 2018
    
  • Python
    # edited by M. F. Hasler, Jun 19 2018
    def A002113_list(nMax):
      mlist=[]
      for n in range(nMax+1):
         mstr=str(n)
         if mstr==mstr[::-1]:
            mlist.append(n)
      return mlist # Bill McEachen, Dec 17 2010
    
  • Python
    from itertools import chain
    A002113 = sorted(chain(map(lambda x:int(str(x)+str(x)[::-1]),range(1,10**3)),map(lambda x:int(str(x)+str(x)[-2::-1]), range(10**3)))) # Chai Wah Wu, Aug 09 2014
    
  • Python
    from itertools import chain, count
    A002113 = chain(k for k in count(0) if str(k) == str(k)[::-1])
    print([next(A002113) for k in range(60)]) # Jan P. Hartkopf, Apr 10 2021
    
  • Python
    is_A002113 = lambda n: (s:=str(n))[::-1]==s # M. F. Hasler, May 23 2024
    
  • Python
    from math import log10, floor
    def A002113(n):
      if n < 2: return 0
      P = 10**floor(log10(n//2)); M = 11*P
      s = str(n - (P if n < M else M-P))
      return int(s + s[-2 if n < M else -1::-1]) # M. F. Hasler, Jun 06 2024
    
  • SageMath
    [n for n in (0..515) if Word(n.digits()).is_palindrome()] # Peter Luschny, Sep 13 2018
    
  • Scala
    def palQ(n: Int, b: Int = 10): Boolean = n - Integer.parseInt(n.toString.reverse) == 0
    (0 to 999).filter(palQ()) // _Alonso del Arte, Nov 10 2019

Formula

A136522(a(n)) = 1.
A178788(a(n)) = 0 for n > 9. - Reinhard Zumkeller, Jun 30 2010
A064834(a(n)) = 0. - Reinhard Zumkeller, Sep 18 2013
a(n+1) = A262038(a(n)+1). - M. F. Hasler, Sep 09 2015
Sum_{n>=2} 1/a(n) = A118031. - Amiram Eldar, Oct 17 2020
a(n) = (floor(d(n)/(c(n)*9 + 1)))*10^A055642(d(n)) + A004086(d(n)) where b(n, k) = ceiling(log((n + 1)/k)/log(10)), c(n) = b(n, 2) - b(n, 11) and d(n) = (n - A086573(b(n*(2 - c(n)), 2) - 1)/2 - 1). - Alan Michael Gómez Calderón, Mar 11 2025

A002450 a(n) = (4^n - 1)/3.

Original entry on oeis.org

0, 1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, 349525, 1398101, 5592405, 22369621, 89478485, 357913941, 1431655765, 5726623061, 22906492245, 91625968981, 366503875925, 1466015503701, 5864062014805, 23456248059221, 93824992236885, 375299968947541
Offset: 0

Views

Author

Keywords

Comments

For n > 0, a(n) is the degree (n-1) "numbral" power of 5 (see A048888 for the definition of numbral arithmetic). Example: a(3) = 21, since the numbral square of 5 is 5(*)5 = 101(*)101(base 2) = 101 OR 10100 = 10101(base 2) = 21, where the OR is taken bitwise. - John W. Layman, Dec 18 2001
a(n) is composite for all n > 2 and has factors x, (3*x + 2*(-1)^n) where x belongs to A001045. In binary the terms greater than 0 are 1, 101, 10101, 1010101, etc. - John McNamara, Jan 16 2002
Number of n X 2 binary arrays with path of adjacent 1's from upper left corner to right column. - R. H. Hardin, Mar 16 2002
The Collatz-function iteration started at a(n), for n >= 1, will end at 1 after 2*n+1 steps. - Labos Elemer, Sep 30 2002 [corrected by Wolfdieter Lang, Aug 16 2021]
Second binomial transform of A001045. - Paul Barry, Mar 28 2003
All members of sequence are also generalized octagonal numbers (A001082). - Matthew Vandermast, Apr 10 2003
Also sum of squares of divisors of 2^(n-1): a(n) = A001157(A000079(n-1)), for n > 0. - Paul Barry, Apr 11 2003
Binomial transform of A000244 (with leading zero). - Paul Barry, Apr 11 2003
Number of walks of length 2n between two vertices at distance 2 in the cycle graph C_6. For n = 2 we have for example 5 walks of length 4 from vertex A to C: ABABC, ABCBC, ABCDC, AFABC and AFEDC. - Herbert Kociemba, May 31 2004
Also number of walks of length 2n + 1 between two vertices at distance 3 in the cycle graph C_12. - Herbert Kociemba, Jul 05 2004
a(n+1) is the number of steps that are made when generating all n-step random walks that begin in a given point P on a two-dimensional square lattice. To make one step means to mark one vertex on the lattice (compare A080674). - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Mar 13 2005
a(n+1) is the sum of square divisors of 4^n. - Paul Barry, Oct 13 2005
a(n+1) is the decimal number generated by the binary bits in the n-th generation of the Rule 250 elementary cellular automaton. - Eric W. Weisstein, Apr 08 2006
a(n-1) / a(n) = percentage of wasted storage if a single image is stored as a pyramid with a each subsequent higher resolution layer containing four times as many pixels as the previous layer. n is the number of layers. - Victor Brodsky (victorbrodsky(AT)gmail.com), Jun 15 2006
k is in the sequence if and only if C(4k + 1, k) (A052203) is odd. - Paul Barry, Mar 26 2007
This sequence also gives the number of distinct 3-colorings of the odd cycle C(2*n - 1). - Keith Briggs, Jun 19 2007
All numbers of the form m*4^m + (4^m-1)/3 have the property that they are sums of two squares and also their indices are the sum of two squares. This follows from the identity m*4^m + (4^m-1)/3 = 4(4(..4(4m + 1) + 1) + 1) + 1 ..) + 1. - Artur Jasinski, Nov 12 2007
For n > 0, terms are the numbers that, in base 4, are repunits: 1_4, 11_4, 111_4, 1111_4, etc. - Artur Jasinski, Sep 30 2008
Let A be the Hessenberg matrix of order n, defined by: A[1, j] = 1, A[i, i] := 5, (i > 1), A[i, i - 1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 1, a(n) = charpoly(A,1). - Milan Janjic, Jan 27 2010
This is the sequence A(0, 1; 3, 4; 2) = A(0, 1; 4, 0; 1) of the family of sequences [a, b : c, d : k] considered by G. Detlefs, and treated as A(a, b; c, d; k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
6*a(n) + 1 is every second Mersenne number greater than or equal to M3, hence all Mersenne primes greater than M2 must be a 6*a(n) + 1 of this sequence. - Roderick MacPhee, Nov 01 2010
Smallest number having alternating bit sum n. Cf. A065359.
For n = 1, 2, ..., the last digit of a(n) is 1, 5, 1, 5, ... . - Washington Bomfim, Jan 21 2011
Rule 50 elementary cellular automaton generates this sequence. This sequence also appears in the second column of array in A173588. - Paul Muljadi, Jan 27 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 21, ..., in the square spiral whose edges are the Jacobsthal numbers A001045 and whose vertices are the numbers A000975. These parallel lines are two semi-diagonals in the spiral. - Omar E. Pol, Sep 10 2011
a(n), n >= 1, is also the inverse of 3, denoted by 3^(-1), Modd(2^(2*n - 1)). For Modd n see a comment on A203571. E.g., a(2) = 5, 3 * 5 = 15 == 1 (Modd 8), because floor(15/8) = 1 is odd and -15 == 1 (mod 8). For n = 1 note that 3 * 1 = 3 == 1 (Modd 2) because floor(3/2) = 1 and -3 == 1 (mod 2). The inverse of 3 taken Modd 2^(2*n) coincides with 3^(-1) (mod 2^(2*n)) given in A007583(n), n >= 1. - Wolfdieter Lang, Mar 12 2012
If an AVL tree has a leaf at depth n, then the tree can contain no more than a(n+1) nodes total. - Mike Rosulek, Nov 20 2012
Also, this is the Lucas sequence V(5, 4). - Bruno Berselli, Jan 10 2013
Also, for n > 0, a(n) is an odd number whose Collatz trajectory contains no odd number other than n and 1. - Jayanta Basu, Mar 24 2013
Sum_{n >= 1} 1/a(n) converges to (3*(log(4/3) - QPolyGamma[0, 1, 1/4]))/log(4) = 1.263293058100271... = A321873. - K. G. Stier, Jun 23 2014
Consider n spheres in R^n: the i-th one (i=1, ..., n) has radius r(i) = 2^(1-i) and the coordinates of its center are (0, 0, ..., 0, r(i), 0, ..., 0) where r(i) is in position i. The coordinates of the intersection point in the positive orthant of these spheres are (2/a(n), 4/a(n), 8/a(n), 16/a(n), ...). For example in R^2, circles centered at (1, 0) and (0, 1/2), and with radii 1 and 1/2, meet at (2/5, 4/5). - Jean M. Morales, May 19 2015
From Peter Bala, Oct 11 2015: (Start)
a(n) gives the values of m such that binomial(4*m + 1,m) is odd. Cf. A003714, A048716, A263132.
2*a(n) = A020988(n) gives the values of m such that binomial(4*m + 2, m) is odd.
4*a(n) = A080674(n) gives the values of m such that binomial(4*m + 4, m) is odd. (End)
Collatz Conjecture Corollary: Except for powers of 2, the Collatz iteration of any positive integer must eventually reach a(n) and hence terminate at 1. - Gregory L. Simay, May 09 2016
Number of active (ON, black) cells at stage 2^n - 1 of the two-dimensional cellular automaton defined by "Rule 598", based on the 5-celled von Neumann neighborhood. - Robert Price, May 16 2016
From Luca Mariot and Enrico Formenti, Sep 26 2016: (Start)
a(n) is also the number of coprime pairs of polynomials (f, g) over GF(2) where both f and g have degree n + 1 and nonzero constant term.
a(n) is also the number of pairs of one-dimensional binary cellular automata with linear and bipermutive local rule of neighborhood size n+1 giving rise to orthogonal Latin squares of order 2^m, where m is a multiple of n. (End)
Except for 0, 1 and 5, all terms are Brazilian repunits numbers in base 4, and so belong to A125134. For n >= 3, all these terms are composite because a(n) = {(2^n-1) * (2^n + 1)}/3 and either (2^n - 1) or (2^n + 1) is a multiple of 3. - Bernard Schott, Apr 29 2017
Given the 3 X 3 matrix A = [2, 1, 1; 1, 2, 1; 1, 1, 2] and the 3 X 3 unit matrix I_3, A^n = a(n)(A - I_3) + I_3. - Nicolas Patrois, Jul 05 2017
The binary expansion of a(n) (n >= 1) consists of n 1's alternating with n - 1 0's. Example: a(4) = 85 = 1010101_2. - Emeric Deutsch, Aug 30 2017
a(n) (n >= 1) is the viabin number of the integer partition [n, n - 1, n - 2, ..., 2, 1] (for the definition of viabin number see comment in A290253). Example: a(4) = 85 = 1010101_2; consequently, the southeast border of the Ferrers board of the corresponding integer partition is ENENENEN, where E = (1, 0), N = (0, 1); this leads to the integer partition [4, 3, 2, 1]. - Emeric Deutsch, Aug 30 2017
Numbers whose binary and Gray-code representations are both palindromes (i.e., intersection of A006995 and A281379). - Amiram Eldar, May 17 2021
Starting with n = 1 the sequence satisfies {a(n) mod 6} = repeat{1, 5, 3}. - Wolfdieter Lang, Jan 14 2022
Terms >= 5 are those q for which the multiplicative order of 2 mod q is floor(log_2(q)) + 2 (and which is 1 more than the smallest possible order for any q). - Tim Seuré, Mar 09 2024
The order of 2 modulo a(n) is 2*n for n >= 2. - Joerg Arndt, Mar 09 2024

Examples

			Apply Collatz iteration to 9: 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5 and hence 16, 8, 4, 2, 1.
Apply Collatz iteration to 27: 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5 and hence 16, 8, 4, 2, 1. [Corrected by _Sean A. Irvine_ at the suggestion of Stephen Cornelius, Mar 04 2024]
a(5) = (4^5 - 1)/3 = 341 = 11111_4 = {(2^5 - 1) * (2^5 + 1)}/3 = 31 * 33/3 = 31 * 11. - _Bernard Schott_, Apr 29 2017
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of powers of 4, A000302.
When converted to binary, this gives A094028.
Subsequence of A003714.
Primitive factors: A129735.

Programs

  • GAP
    List([0..25], n -> (4^n-1)/3); # Muniru A Asiru, Feb 18 2018
    
  • Haskell
    a002450 = (`div` 3) . a024036
    a002450_list = iterate ((+ 1) . (* 4)) 0
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Magma
    [ (4^n-1)/3: n in [0..25] ]; // Klaus Brockhaus, Oct 28 2008
    
  • Magma
    [n le 2 select n-1 else 5*Self(n-1)-4*Self(n-2): n in [1..70]]; // Vincenzo Librandi, Jun 13 2015
    
  • Maple
    [seq((4^n-1)/3,n=0..40)];
    A002450:=1/(4*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
  • Mathematica
    Table[(4^n - 1)/3, {n, 0, 127}] (* Vladimir Joseph Stephan Orlovsky, Sep 29 2008 *)
    LinearRecurrence[{5, -4}, {0, 1}, 30] (* Harvey P. Dale, Jun 23 2013 *)
  • Maxima
    makelist((4^n-1)/3, n, 0, 30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n) = (4^n-1)/3;
    
  • PARI
    my(z='z+O('z^40)); Vec(z/((1-z)*(1-4*z))) \\ Altug Alkan, Oct 11 2015
    
  • Python
    def A002450(n): return ((1<<(n<<1))-1)//3 # Chai Wah Wu, Jan 29 2023
  • Scala
    ((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)( * )).scanLeft(0: BigInt)( + ) // Alonso del Arte, Sep 17 2019
    

Formula

From Wolfdieter Lang, Apr 24 2001: (Start)
a(n+1) = Sum_{m = 0..n} A060921(n, m).
G.f.: x/((1-x)*(1-4*x)). (End)
a(n) = Sum_{k = 0..n-1} 4^k; a(n) = A001045(2*n). - Paul Barry, Mar 17 2003
E.g.f.: (exp(4*x) - exp(x))/3. - Paul Barry, Mar 28 2003
a(n) = (A007583(n) - 1)/2. - N. J. A. Sloane, May 16 2003
a(n) = A000975(2*n)/2. - N. J. A. Sloane, Sep 13 2003
a(n) = A084160(n)/2. - N. J. A. Sloane, Sep 13 2003
a(n+1) = 4*a(n) + 1, with a(0) = 0. - Philippe Deléham, Feb 25 2004
a(n) = Sum_{i = 0..n-1} C(2*n - 1 - i, i)*2^i. - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n+1) = Sum_{k = 0..n} binomial(n+1, k+1)*3^k. - Paul Barry, Aug 20 2004
a(n) = center term in M^n * [1 0 0], where M is the 3 X 3 matrix [1 1 1 / 1 3 1 / 1 1 1]. M^n * [1 0 0] = [A007583(n-1) a(n) A007583(n-1)]. E.g., a(4) = 85 since M^4 * [1 0 0] = [43 85 43] = [A007583(3) a(4) A007583(3)]. - Gary W. Adamson, Dec 18 2004
a(n) = Sum_{k = 0..n, j = 0..n} C(n, j)*C(j, k)*A001045(j - k). - Paul Barry, Feb 15 2005
a(n) = Sum_{k = 0..n} C(n, k)*A001045(n-k)*2^k = Sum_{k = 0..n} C(n, k)*A001045(k)*2^(n-k). - Paul Barry, Apr 22 2005
a(n) = A125118(n, 3) for n > 2. - Reinhard Zumkeller, Nov 21 2006
a(n) = Sum_{k = 0..n} 2^(n - k)*A128908(n, k), n >= 1. - Philippe Deléham, Oct 19 2008
a(n) = Sum_{k = 0..n} A106566(n, k)*A100335(k). - Philippe Deléham, Oct 30 2008
If we define f(m, j, x) = Sum_{k = j..m} binomial(m, k)*stirling2(k, j)*x^(m - k) then a(n-1) = f(2*n, 4, -2), n >= 2. - Milan Janjic, Apr 26 2009
a(n) = A014551(n) * A001045(n). - R. J. Mathar, Jul 08 2009
a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3) = 5*a(n-1) - 4*a(n-2), a(0) = 0, a(1) = 1, a(2) = 5. - Wolfdieter Lang, Oct 18 2010
a(0) = 0, a(n+1) = a(n) + 2^(2*n). - Washington Bomfim, Jan 21 2011
A036555(a(n)) = 2*n. - Reinhard Zumkeller, Jan 28 2011
a(n) = Sum_{k = 1..floor((n+2)/3)} C(2*n + 1, n + 2 - 3*k). - Mircea Merca, Jun 25 2011
a(n) = Sum_{i = 1..n} binomial(2*n + 1, 2*i)/3. - Wesley Ivan Hurt, Mar 14 2015
a(n+1) = 2^(2*n) + a(n), a(0) = 0. - Ben Paul Thurston, Dec 27 2015
a(k*n)/a(n) = 1 + 4^n + ... + 4^((k-1)*n). - Gregory L. Simay, Jun 09 2016
Dirichlet g.f.: (PolyLog(s, 4) - zeta(s))/3. - Ilya Gutkovskiy, Jun 26 2016
A000120(a(n)) = n. - André Dalwigk, Mar 26 2018
a(m) divides a(m*n), in particular: a(2*n) == 0 (mod 5), a(3*n) == 0 (mod 3*7), a(5*n) == 0 (mod 11*31), etc. - M. F. Hasler, Oct 19 2018
a(n) = 4^(n-1) + a(n-1). - Bob Selcoe, Jan 01 2020
a(n) = A178415(1, n) = A347834(1, n-1), arrays, for n >= 1. - Wolfdieter Lang, Nov 29 2021
a(n) = A000225(2*n)/3. - John Keith, Jan 22 2022
a(n) = A080674(n) + 1 = A047849(n) - 1 = A163834(n) - 2 = A155701(n) - 3 = A163868(n) - 4 = A156605(n) - 7. - Ray Chandler, Jun 16 2023
From Peter Bala, Jul 23 2025: (Start)
The following are examples of telescoping products. Cf. A016153:
Product_{k = 1..2*n} 1 + 2^k/a(k+1) = a(n+1)/A007583(n) = (4^(n+1) - 1)/(2*4^n + 1).
Hence, Product_{k >= 1} 1 + 2^k/a(k+1) = 2.
Product_{k >= 1} 1 - 2^k/a(k+1) = 2/5, since 1 - 2^n/a(n+1) = b(n)/b(n-1), where b(n) = 2 - 3/(1 - 2^(n+1)).
Product_{k >= 1} 1 + (-2)^k/a(k+1) = 2/3, since 1 + (-2)^n/a(n+1) = c(n)/c(n-1), where c(n) = 2 - 1/(1 + (-2)^(n+1)).
Product_{k >= 1} 1 - (-2)^k/a(k+1) = 6/5, since 1 - (-2)^n/a(n+1) = d(n)/d(n-1), where d(n) = 2 - 1/(1 - (-2)^(n+1)). (End)

A030101 a(n) is the number produced when n is converted to binary digits, the binary digits are reversed and then converted back into a decimal number.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 13, 3, 11, 7, 15, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31, 1, 33, 17, 49, 9, 41, 25, 57, 5, 37, 21, 53, 13, 45, 29, 61, 3, 35, 19, 51, 11, 43, 27, 59, 7, 39, 23, 55, 15, 47, 31, 63, 1, 65, 33, 97, 17, 81, 49, 113, 9, 73, 41, 105, 25, 89, 57
Offset: 0

Views

Author

Keywords

Comments

As with decimal reversal, initial zeros are ignored; otherwise, the reverse of 1 would be 1000000... ad infinitum.
Numerators of the binary van der Corput sequence. - Eric Rowland, Feb 12 2008
It seems that in most cases A030101(x) = A000265(x) and that if A030101(x) <> A000265(x), the next time A030101(y) = A000265(x), A030101(x) = A000265(y). Also, it seems that if a pair of values exist at one index, they will exist at any index where one of them exist. It also seems like the greater of the pair always shows up on A000265 first. - Dylan Hamilton, Aug 04 2010
The number of occasions A030101(n) = A000265(n) before n = 2^k is A053599(k) + 1. For n = 0..2^19, the sequences match less than 1% of the time. - Andrew Woods, May 19 2012
For n > 0: a(a(n)) = n if and only if n is odd; a(A006995(n)) = A006995(n). - Juli Mallett, Nov 11 2010, corrected: Reinhard Zumkeller, Oct 21 2011
n is binary palindromic if and only if a(n) = n. - Reinhard Zumkeller, corrected: Jan 17 2012, thanks to Hieronymus Fischer, who pointed this out; Oct 21 2011
Given any n > 1, the set of numbers A030109(i) = (A030101(i) - 1)/2 for indexes i ranging from 2^n to 2^(n + 1) - 1 is a permutation of the set of consecutive integers {0, 1, 2, ..., 2^n - 1}. This is important in the standard FFT algorithms (starting or ending bit-reversal permutation). - Stanislav Sykora, Mar 15 2012
Row n of A030308 gives the binary digits of a(n), prepended with zero at even positions. - Reinhard Zumkeller, Jun 17 2012
The binary van der Corput sequence is the infinite sequence of fractions { A030101(n)/A062383(n), n = 0, 1, 2, 3, ... }, and begins 0, 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, 1/16, 9/16, 5/16, 13/16, 3/16, 11/16, 7/16, 15/16, 1/32, 17/32, 9/32, 25/32, 5/32, 21/32, 13/32, 29/32, 3/32, 19/32, 11/32, 27/32, 7/32, 23/32, 15/32, 31/32, 1/64, 33/64, 17/64, 49/64, ... - N. J. A. Sloane, Dec 01 2019
Record highs occur at n = A209492(m) (for n>=1) with values a(n) = A224195(m) (for n>=3). - Bill McEachen, Aug 02 2023

Examples

			a(100) = 19 because 100 (base 10) = 1100100 (base 2) and R(1100100 (base 2)) = 10011 (base 2) = 19 (base 10).
		

References

  • Hlawka E. The theory of uniform distribution. Academic Publishers, Berkhamsted, 1984. See pp. 93, 94 for the van der Corput sequence. - N. J. A. Sloane, Dec 01 2019

Crossrefs

Cf. A055944 (reverse and add), A178225, A273258.
Cf. A056539, A057889 (bijective variants), A224195, A209492.

Programs

  • Haskell
    a030101 = f 0 where
       f y 0 = y
       f y x = f (2 * y + b) x'  where (x', b) = divMod x 2
    -- Reinhard Zumkeller, Mar 18 2014, Oct 21 2011
    
  • J
    ([: #. [: |. #:)"0 NB. Stephen Makdisi, May 07 2018
    
  • Magma
    A030101:=func; // Jason Kimberley, Sep 19 2011
    
  • Maple
    A030101 := proc(n)
        convert(n,base,2) ;
        ListTools[Reverse](%) ;
        add(op(i,%)*2^(i-1),i=1..nops(%)) ;
    end proc: # R. J. Mathar, Mar 10 2015
    # second Maple program:
    a:= proc(n) local m, r; m:=n; r:=0;
          while m>0 do r:=r*2+irem(m, 2, 'm') od; r
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Nov 17 2015
  • Mathematica
    Table[FromDigits[Reverse[IntegerDigits[i, 2]], 2], {i, 0, 80}]
    bitRev[n_] := Switch[Mod[n, 4], 0, bitRev[n/2], 1, 2 bitRev[(n + 1)/2] - bitRev[(n - 1)/4], 2, bitRev[n/2], 3, 3 bitRev[(n - 1)/2] - 2 bitRev[(n - 3)/4]]; bitRev[0] = 0; bitRev[1] = 1; bitRev[3] = 3; Array[bitRev, 80, 0] (* Robert G. Wilson v, Mar 18 2014 *)
  • PARI
    a(n)=if(n<1,0,subst(Polrev(binary(n)),x,2))
    
  • PARI
    a(n) = fromdigits(Vecrev(binary(n)), 2); \\ Michel Marcus, Nov 10 2017
    
  • Python
    def a(n): return int(bin(n)[2:][::-1], 2) # Indranil Ghosh, Apr 24 2017
    
  • Sage
    def A030101(n): return Integer(bin(n).lstrip("0b")[::-1],2) if n!=0 else 0
    [A030101(n) for n in (0..78)]  # Peter Luschny, Aug 09 2012
    
  • Scala
    (0 to 127).map(n => Integer.parseInt(Integer.toString(n, 2).reverse, 2)) // Alonso del Arte, Feb 11 2020

Formula

a(n) = 0, a(2n) = a(n), a(2n+1) = a(n) + 2^(floor(log_2(n)) + 1). For n > 0, a(n) = 2*A030109(n) - 1. - Ralf Stephan, Sep 15 2003
a(n) = b(n, 0) with b(n, r) = r if n = 0, otherwise b(floor(n/2), 2*r + n mod 2). - Reinhard Zumkeller, Mar 03 2010
a(1) = 1, a(3) = 3, a(2n) = a(n), a(4n+1) = 2a(2n+1) - a(n), a(4n+3) = 3a(2n+1) - 2a(n) (as in the Project Euler problem). To prove this, expand the recurrence into binary strings and reversals. - David Applegate, Mar 16 2014, following a posting to the Sequence Fans Mailing List by Martin Møller Skarbiniks Pedersen.
Conjecture: a(n) = 2*w(n) - 2*w(A053645(n)) - 1 for n > 0, where w = A264596. - Velin Yanev, Sep 12 2017

Extensions

Edits (including correction of an erroneous date pointed out by J. M. Bergot) by Jon E. Schoenfield, Mar 16 2014
Name clarified by Antti Karttunen, Nov 09 2017

A016116 a(n) = 2^floor(n/2).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 2097152
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Powers of 2 doubled up. The usual OEIS policy is to omit the duplicates in such cases (when this would become A000079). This is an exception.
Number of symmetric compositions of n: e.g., 5 = 2+1+2 = 1+3+1 = 1+1+1+1+1 so a(5) = 4; 6 = 3+3 = 2+2+2 = 1+4+1 = 2+1+1+2 = 1+2+2+1 = 1+1+2+1+1 = 1+1+1+1+1+1 so a(6) = 8. - Henry Bottomley, Dec 10 2001
This sequence is the number of digits of each term of A061519. - Dmitry Kamenetsky, Jan 17 2009
Starting with offset 1 = binomial transform of [1, 1, -1, 3, -7, 17, -41, ...]; where A001333 = (1, 1, 3, 7, 17, 41, ...). - Gary W. Adamson, Mar 25 2009
a(n+1) is the number of symmetric subsets of [n]={1,2,...,n}. A subset S of [n] is symmetric if k is an element of S implies (n-k+1) is an element of S. - Dennis P. Walsh, Oct 27 2009
INVERT and inverse INVERT transforms give A006138, A039834(n-1).
The Kn21 sums, see A180662, of triangle A065941 equal the terms of this sequence. - Johannes W. Meijer, Aug 15 2011
First differences of A027383. - Jason Kimberley, Nov 01 2011
Run lengths in A079944. - Jeremy Gardiner, Nov 21 2011
Number of binary palindromes (A006995) between 2^(n-1) and 2^n (for n>1). - Hieronymus Fischer, Feb 17 2012
Pisano period lengths: 1, 1, 4, 1, 8, 4, 6, 1, 12, 8, 20, 4, 24, 6, 8, 1, 16, 12, 36, 8, ... . - R. J. Mathar, Aug 10 2012
Range of row n of the Circular Pascal array of order 4. - Shaun V. Ault, May 30 2014
a(n) is the number of permutations of length n avoiding both 213 and 312 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Also, the decimal representation of the diagonal from the origin to the corner (and from the corner to the origin except for the initial term) of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 190", based on the 5-celled von Neumann neighborhood when initialized with a single black (ON) cell at stage zero. - Robert Price, May 10 2017
a(n + 1) + n - 1, n > 0, is the number of maximal subsemigroups of the monoid of partial order-preserving or -reversing mappings on a set with n elements. See the East et al. link. - James Mitchell and Wilf A. Wilson, Jul 21 2017
Number of symmetric stairs with n cells. A stair is a snake polyomino allowing only two directions for adjacent cells: east and north. See A005418. - Christian Barrientos, May 11 2018
For n >= 4, a(n) is the exponent of the group of the Gaussian integers in a reduced system modulo (1+i)^(n+2). See A302254. - Jianing Song, Jun 27 2018
a(n) is the number of length-(n+1) binary sequences, denoted , with s(1)=1 and with s(i+1)=s(i) for odd i. - Dennis P. Walsh, Sep 06 2018
a(n+1) is the number of subsets of {1,2,..,n} in which all differences between successive elements of subsets are even. For example, for n = 7, a(6) = 8 and the 8 subsets are {7}, {1,7}, {3,7}, {5,7}, {1,3,7}, {1,5,7}, {3,5,7}, {1,3,5,7}. For odd differences between elements see Comment in A000045 (Fibonacci numbers). - Enrique Navarrete, Jul 01 2020
Also, the number of walks of length n on the graph x--y--z, starting at x. - Sean A. Irvine, May 30 2025

Examples

			For n=5 the a(5)=4 symmetric subsets of [4] are {1,4}, {2,3}, {1,2,3,4} and the empty set. - _Dennis P. Walsh_, Oct 27 2009
For n=5 the a(5)=4 length-6 binary sequences are <1,1,0,0,0,0>, <1,1,0,0,1,1>, <1,1,1,1,0,0> and <1,1,1,1,1,1>. - _Dennis P. Walsh_, Sep 06 2018
		

Crossrefs

a(n) = A094718(3, n).
Cf. A001333.
See A052955 for partial sums (without the initial term).
A000079 gives the odd-indexed terms of a(n).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

Formula

a(n) = a(n-1)*a(n-2)/a(n-3) = 2*a(n-2) = 2^A004526(n).
G.f.: (1+x)/(1-2*x^2).
a(n) = (1/2 + sqrt(1/8))*sqrt(2)^n + (1/2 - sqrt(1/8))*(-sqrt(2))^n. - Ralf Stephan, Mar 11 2003
E.g.f.: cosh(sqrt(2)*x) + sinh(sqrt(2)*x)/sqrt(2). - Paul Barry, Jul 16 2003
The signed sequence (-1)^n*2^floor(n/2) has a(n) = (sqrt(2))^n(1/2 - sqrt(2)/4) + (-sqrt(2))^n(1/2 + sqrt(2)/4). It is the inverse binomial transform of A000129(n-1). - Paul Barry, Apr 21 2004
Diagonal sums of A046854. a(n) = Sum_{k=0..n} binomial(floor(n/2), k). - Paul Barry, Jul 07 2004
a(n) = a(n-2) + 2^floor((n-2)/2). - Paul Barry, Jul 14 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2), floor(k/2)). - Paul Barry, Jul 15 2004
E.g.f.: cosh(asinh(1) + sqrt(2)*x)/sqrt(2). - Michael Somos, Feb 28 2005
a(n) = Sum_{k=0..n} A103633(n,k). - Philippe Deléham, Dec 03 2006
a(n) = 2^(n/2)*((1 + (-1)^n)/2 + (1-(-1)^n)/(2*sqrt(2))). - Paul Barry, Nov 12 2009
a(n) = 2^((2*n - 1 + (-1)^n)/4). - Luce ETIENNE, Sep 20 2014

A001317 Sierpiński's triangle (Pascal's triangle mod 2) converted to decimal.

Original entry on oeis.org

1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295, 4294967297, 12884901891, 21474836485, 64424509455, 73014444049, 219043332147, 365072220245, 1095216660735, 1103806595329, 3311419785987
Offset: 0

Views

Author

Keywords

Comments

The members are all palindromic in binary, i.e., a subset of A006995. - Ralf Stephan, Sep 28 2004
J. H. Conway writes (in Math Forum): at least the first 31 numbers give odd-sided constructible polygons. See also A047999. - M. Dauchez (mdzzdm(AT)yahoo.fr), Sep 19 2005 [This observation was also made in 1982 by N. L. White (see letter). - N. J. A. Sloane, Jun 15 2015]
Decimal number generated by the binary bits of the n-th generation of the Rule 60 elementary cellular automaton. Thus: 1; 0, 1, 1; 0, 0, 1, 0, 1; 0, 0, 0, 1, 1, 1, 1; 0, 0, 0, 0, 1, 0, 0, 0, 1; ... . - Eric W. Weisstein, Apr 08 2006
Limit_{n->oo} log(a(n))/n = log(2). - Bret Mulvey, May 17 2008
Equals row sums of triangle A166548; e.g., 17 = (2 + 4 + 6 + 4 + 1). - Gary W. Adamson, Oct 16 2009
Equals row sums of triangle A166555. - Gary W. Adamson, Oct 17 2009
For n >= 1, all terms are in A001969. - Vladimir Shevelev, Oct 25 2010
Let n,m >= 0 be such that no carries occur when adding them. Then a(n+m) = a(n)*a(m). - Vladimir Shevelev, Nov 28 2010
Let phi_a(n) be the number of a(k) <= a(n) and respectively prime to a(n) (i.e., totient function over {a(n)}). Then, for n >= 1, phi_a(n) = 2^v(n), where v(n) is the number of 0's in the binary representation of n. - Vladimir Shevelev, Nov 29 2010
Trisection of this sequence gives rows of A008287 mod 2 converted to decimal. See also A177897, A177960. - Vladimir Shevelev, Jan 02 2011
Converting the rows of the powers of the k-nomial (k = 2^e where e >= 1) term-wise to binary and reading the concatenation as binary number gives every (k-1)st term of this sequence. Similarly with powers p^k of any prime. It might be interesting to study how this fails for powers of composites. - Joerg Arndt, Jan 07 2011
This sequence appears in Pascal's triangle mod 2 in another way, too. If we write it as
1111111...
10101010...
11001100...
10001000...
we get (taking the period part in each row):
.(1) (base 2) = 1
.(10) = 2/3
.(1100) = 12/15 = 4/5
.(1000) = 8/15
The k-th row, treated as a binary fraction, seems to be equal to 2^k / a(k). - Katarzyna Matylla, Mar 12 2011
From Daniel Forgues, Jun 16-18 2011: (Start)
Since there are 5 known Fermat primes, there are 32 products of distinct Fermat primes (thus there are 31 constructible odd-sided polygons, since a polygon has at least 3 sides). a(0)=1 (empty product) and a(1) to a(31) are those 31 non-products of distinct Fermat primes.
It can be proved by induction that all terms of this sequence are products of distinct Fermat numbers (A000215):
a(0)=1 (empty product) are products of distinct Fermat numbers in { };
a(2^n+k) = a(k) * (2^(2^n)+1) = a(k) * F_n, n >= 0, 0 <= k <= 2^n - 1.
Thus for n >= 1, 0 <= k <= 2^n - 1, and
a(k) = Product_{i=0..n-1} F_i^(alpha_i), alpha_i in {0, 1},
this implies
a(2^n+k) = Product_{i=0..n-1} F_i^(alpha_i) * F_n, alpha_i in {0, 1}.
(Cf. OEIS Wiki links below.) (End)
The bits in the binary expansion of a(n) give the coefficients of the n-th power of polynomial (X+1) in ring GF(2)[X]. E.g., 3 ("11" in binary) stands for (X+1)^1, 5 ("101" in binary) stands for (X+1)^2 = (X^2 + 1), and so on. - Antti Karttunen, Feb 10 2016

Examples

			Given a(5)=51, a(6)=85 since a(5) XOR 2*a(5) = 51 XOR 102 = 85.
From _Daniel Forgues_, Jun 18 2011: (Start)
  a(0) = 1 (empty product);
  a(1) = 3 = 1 * F_0 = a(2^0+0) = a(0) * F_0;
  a(2) = 5 = 1 * F_1 = a(2^1+0) = a(0) * F_1;
  a(3) = 15 = 3 * 5 = F_0 * F_1 = a(2^1+1) = a(1) * F_1;
  a(4) = 17 = 1 * F_2 = a(2^2+0) = a(0) * F_2;
  a(5) = 51 = 3 * 17 = F_0 * F_2 = a(2^2+1) = a(1) * F_2;
  a(6) = 85 = 5 * 17 = F_1 * F_2 = a(2^2+2) = a(2) * F_2;
  a(7) = 255 = 3 * 5 * 17 = F_0 * F_1 * F_2 = a(2^2+3) = a(3) * F_2;
  ... (End)
		

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 113.
  • Henry Wadsworth Gould, Exponential Binomial Coefficient Series, Tech. Rep. 4, Math. Dept., West Virginia Univ., Morgantown, WV, Sept. 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 136-137.

Crossrefs

Cf. A038183 (odd bisection, 1D Cellular Automata Rule 90).
Iterates of A048724 (starting from 1).
Row 3 of A048723.
Positions of records in A268389.
Positions of ones in A268669 and A268384 (characteristic function).
Not the same as A045544 nor as A053576.
Cf. A045544.

Programs

  • Haskell
    a001317 = foldr (\u v-> 2*v + u) 0 . map toInteger . a047999_row
    -- Reinhard Zumkeller, Nov 24 2012
    (Scheme, with memoization-macro definec, two variants)
    (definec (A001317 n) (if (zero? n) 1 (A048724 (A001317 (- n 1)))))
    (definec (A001317 n) (if (zero? n) 1 (A048720bi 3 (A001317 (- n 1))))) ;; Where A048720bi implements the dyadic function given in A048720.
    ;; Antti Karttunen, Feb 10 2016
    
  • Magma
    [&+[(Binomial(n, i) mod 2)*2^i: i in [0..n]]: n in [0..41]]; // Vincenzo Librandi, Feb 12 2016
    
  • Maple
    A001317 := proc(n) local k; add((binomial(n,k) mod 2)*2^k, k=0..n); end;
  • Mathematica
    a[n_] := Nest[ BitXor[#, BitShiftLeft[#, 1]] &, 1, n]; Array[a, 42, 0] (* Joel Madigan (dochoncho(AT)gmail.com), Dec 03 2007 *)
    NestList[BitXor[#,2#]&,1,50] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    a(n)=sum(i=0,n,(binomial(n,i)%2)*2^i)
    
  • PARI
    a=1; for(n=0, 66, print1(a,", "); a=bitxor(a,a<<1) ); \\ Joerg Arndt, Mar 27 2013
    
  • PARI
    A001317(n,a=1)={for(k=1,n,a=bitxor(a,a<<1));a} \\ M. F. Hasler, Jun 06 2016
    
  • PARI
    a(n) = subst(lift(Mod(1+'x,2)^n), 'x, 2); \\ Gheorghe Coserea, Nov 09 2017
    
  • Python
    from sympy import binomial
    def a(n): return sum([(binomial(n, i)%2)*2**i for i in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
    
  • Python
    def A001317(n): return int(''.join(str(int(not(~n&k))) for k in range(n+1)),2) # Chai Wah Wu, Feb 04 2022

Formula

a(n+1) = a(n) XOR 2*a(n), where XOR is binary exclusive OR operator. - Paul D. Hanna, Apr 27 2003
a(n) = Product_{e(j, n) = 1} (2^(2^j) + 1), where e(j, n) is the j-th least significant digit in the binary representation of n (Roberts: see Allouche & Shallit). - Benoit Cloitre, Jun 08 2004
a(2*n+1) = 3*a(2*n). Proof: Since a(n) = Product_{k in K} (1 + 2^(2^k)), where K is the set of integers such that n = Sum_{k in K} 2^k, clearly K(2*n+1) = K(2*n) union {0}, hence a(2*n+1) = (1+2^(2^0))*a(2*n) = 3*a(2*n). - Emmanuel Ferrand and Ralf Stephan, Sep 28 2004
a(32*n) = 3 ^ (32 * n * log(2) / log(3)) + 1. - Bret Mulvey, May 17 2008
For n >= 1, A000120(a(n)) = 2^A000120(n). - Vladimir Shevelev, Oct 25 2010
a(2^n) = A000215(n); a(2^n-1) = a(2^n)-2; for n >= 1, m >= 0,
a(2^(n-1)-1)*a(2^n*m + 2^(n-1)) = 3*a(2^(n-1))*a(2^n*m + 2^(n-1)-2). - Vladimir Shevelev, Nov 28 2010
Sum_{k>=0} 1/a(k) = Product_{n>=0} (1 + 1/F_n), where F_n=A000215(n);
Sum_{k>=0} (-1)^(m(k))/a(k) = 1/2, where {m(n)} is Thue-Morse sequence (A010060).
If F_n is defined by F_n(z) = z^(2^n) + 1 and a(n) by (1/2)*Sum_{i>=0}(1-(-1)^{binomial(n,i)})*z^i, then, for z > 1, the latter two identities hold as well with the replacement 1/2 in the right hand side of the 2nd one by 1-1/z. - Vladimir Shevelev, Nov 29 2010
G.f.: Product_{k>=0} ( 1 + z^(2^k) + (2*z)^(2^k) ). - conjectured by Shamil Shakirov, proved by Vladimir Shevelev
a(n) = A000225(n+1) - A219843(n). - Reinhard Zumkeller, Nov 30 2012
From Antti Karttunen, Feb 10 2016: (Start)
a(0) = 1, and for n > 1, a(n) = A048720(3, a(n-1)) = A048724(a(n-1)).
a(n) = A048723(3,n).
a(n) = A193231(A000079(n)).
For all n >= 0: A268389(a(n)) = n.
(End)

A206913 Greatest binary palindrome <= n; the binary palindrome floor function.

Original entry on oeis.org

0, 1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 9, 9, 9, 9, 15, 15, 17, 17, 17, 17, 21, 21, 21, 21, 21, 21, 27, 27, 27, 27, 31, 31, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 45, 45, 45, 45, 45, 45, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 63, 63, 65, 65, 65, 65
Offset: 0

Views

Author

Hieronymus Fischer, Feb 13 2012

Keywords

Comments

Also the greatest binary palindrome < n + 1;
For n > 0, a(n-1) is the greatest binary palindrome < n.

Examples

			a(0) = 0 since 0 is the greatest binary palindrome <= 0;
a(1) = 1 since 1 is the greatest binary palindrome <= 1;
a(2) = 1 since 1 is the greatest binary palindrome <= 2;
a(3) = 3 since 3 is the greatest binary palindrome <= 3.
		

Crossrefs

Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509.

Programs

  • Haskell
    a206913 n = last $ takeWhile (<= n) a006995_list
    -- Reinhard Zumkeller, Feb 27 2012

Formula

Let n > 2, p = 1 + 2*floor((n-1)/2), m = floor(log_2(p)), q = floor((m+1)/2), s = floor(log_2(p-2^q)),
F(x, r) = floor(x/2^q)*2^q + Sum_{k = 0...q - 1} (floor(x/2^(r-k)) mod 2)*2^k;
If F(p, m) <= n then a(n) = F(p, m), otherwise a(n) = F(p-2^q, s).
By definition: F(p, m) = floor(p/2^q)*2^q + A030101(p) mod 2^q; also: F(p-2^q, s) = floor((p-2^q)/2^q)*2^q + A030101(p-2^q) mod 2^q; [Edited and corrected by Hieronymus Fischer, Sep 08 2018]
a(n) = A006995(A206915(n));
a(n) = A006995(A206915(A206914(n+1))-1);
a(n) = A006995(A206916(A206914(n+1))-1).
Previous Showing 21-30 of 233 results. Next